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Abstract Restricted edge connectivity is a more refined network reliability
index than edge connectivity. It is known that communication networks with
lager restricted edge connectivity are more locally reliable. This work presents a
distance condition for graphs to be maximally restricted edge connected, which
generalizes Plesnik’s corresponding result.
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1 Introduction

The restricted edge connectivity A'(G) of a graph G is the minimum cardinality
over all its restricted edge cuts, where an edge cut S of G is restricted if G - S
contains no isolated vertices. Let £(G) = min{d(z) + d(y) — 2 : zy is an edge of
graph G}, where d(zy) = d(z) + d(y) — 2 is called the degree of edge zy. If G is
a connected graph of order at least four that is not isomorphic to any star K ,
then X' (G) < &(G) [3], graph G is called maximally restricted edge connected
if the equality holds. It is known that communication networks are locally
more reliable if they have greater restricted edge connectivity [6], [14). And so,
the optimization of restricted edge connectivity draws a lot of attentions. For
advances in this field, the readers are suggested to refer to [4], [8-13),[15] and a
survey [1].

Conditions involving the diameter and the girth for a graph to be maximally
restricted edge connected are widely studied, resent advances on this subject are
as follows. A connected graph G that contains restricted edge cut is maximally
restricted edge connected if one of the following conditions holds: (1). d(u) +
d(v) 2 |V(G)| + 1 holds for all pairs u,v of nonadjacent vertices {16]; (2).
|[N(u} N N(v)| > 3 for all pairs u, v of nonadjacent vertices and the lower bound
can be decrease to 2 if G is triangle-free [2}; (3). minimum degree § > 2 and
diameter d(G) < g~ 2 [4}; (4). § > 2, girth g is odd, d(G) = g — 1 and
| N(g—1)72(w) N Ng—1)/2(v)| 2 3 holds for all pairs u,v of vertices at distance
d(u,v) =g—1[4]; (5). § 22, giseven, d(G) = g —1 and only § — 1 vertices
are mutually at distance g — 1 apart [5].

In [11], Plesnik shows that if a connected graph G contains no such four ver-
tices uy,v1,uz, v2 that d(uy,us), d(uy,v2),d(vy, u2),d(v;,v2) > 3 then its edge
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connectivity A(G) is equal to its minimum degree 6(G), where d(u;,v;) repre-
sents the distance between vertices u; and v;. In this work, we generalize this
observation and show that if the same condition holds for a triangle-free graph
then it is maximally restricted edge connected.

Let Ng(z), or simply N(z), indicate the neighborhood of a vertex z in graph
G. For any two disjoint subsets X, Y of the vertex set V(G) of graph G or two
subgraphs, let [X,Y) denote the set of edges of G with one end in X and the
other in Y. For other symbols and terminologies not specified, we follow that

of [7].

2 Optimization of restricted edge connectivity

Theorem 2.1 Let G be a connected triangle-free graph that contains restricted
edge cuts. If G contains no such four vertices uj,v;,uz,v2 that d(u,up),
d(u1,v2), d(v1,u2), d(v1,v2) 2 3, then N(G) = §(G).

Proof. Suppose on the contrary that graph G is not maximally restricted
edge connected. Choose a minimum restricted edge cut S = [A, 4] of G such
that |A| is as small as possible, where A = V(G) — A. Let A, C Aand 4, C A
be the sets of vertices that are incident with edges of S, write Ag = A— A; and
Ag = A — Aj. If denote the cardinalities of Ao, A;, A; and Ag by ag,a;,d; and
dp respectively, then X > a1, X' > d.

If ap > 2 and dp > 2 hold simultaneously, then there are four vertices
u1,v1 € Ag and ug,vp € Ay that destroy the distance condition of theorem
2.1. And so, we may assume without loss of generality that ag < 1. Now two
different cases appear. '

Case 1. ag = 0.

In this case, Ag =@ and A = A,. Since G is triangle-free, it follows that

Y. dle) < |E(GlA)|(a1 - 2) + N (G) < |E(G[A)I(X(G) - 2) + X(G)-
e€E(G[A)])

Since G contains restricted edge cuts, we can see G is not any star and £(G) >
N(G), then £(G) > N(G) + 1, otherwise G is maximally restricted edge con-
nected, which is a contradiction, so

> dle) 2 |E(GIADIEG) 2 IE(GIADI(X(G) + 1),
e€E(G[A4)])

the previous two formulas show that 3|E(G[A})| £ X(G). But we shall show
the opposition of this inequality is also true by the following claim 1, and so

case 1 cannot occur.
Claim 1. N(G) < 3|E(G[A])] when ap = 0.



Since S is a minimum restricted edge cut and X (G) < £(G), it follows that
|A| > 3. Suppose on the contrary that X'(G) > 3|E(G[A])|. For any vertex
z € A, let ds(z) denote the number of edges in S that are incident with z and
da(z) denote the degree of = in G[A]. If d4(z) > ds(z) for all z € A, then

B = 5 Y dat@) 2 3 T ds(z) = 2X(G) > X ().
ZEA z€A,

It follows from this contradiction that A contains a vertex zp such that ds(z0) <
ds(xo). ’

If G[A] — {zo} # ¢ contains no isolated vertices, choose a component of
G|[A] - {zo} say G[A'], essily we can see G[A'] is also connected and |A’| > 2.
let &' = [A’, A'], then ' is a restricted edge cut with |S’| < |S| — |ds(zo)| +
[da(zo)| < |S|; if G[A] — {z0} has an isolated vertex y, for any edge e = zgy €
E(G[A]) we have £(G) < d(e) = da(zo) — 1 + ds(zo) + ds(y) < N(G). These
contradictions confirm claim 1.

Case 2. ap = 1.

In this case, we have

Y dle) <|E(G[A))(ar - 1) + N(G) < |E(GIA]I(N(G) - 1) + N(G).
e€E(G[A])

Combining this observation with

D dle) 2 |E(GIADIEG) 2 |B(GIANI(X(G) + 1),
e E(G[A])

we obtain 2|E(G[A])| < N(G). But on the other hand, we shall show by the
following claim 2 that the opposition of this inequality is also true when ap = 1.
So, case 2 cannot occur yet and the theorem follows.

Claim 2. N'(G) < 2|E(G[A))| when a¢ = 1.

Suppose on the contrary that X'(G) > 2|E(G[A])| when ap = 1. Let Ag =
{z'} and take any edge e = z'y € E(G[A]). If da(x) > ds(z) holds for every
vertex £ € A, then

20EGIA)| = Y da(z) +da(z') > Y ds(z) +da(z) > > ds(z) = N(G).

TEA, zEA; €A

This contradiction implies that A, contains a vertex z; such that ds(zy) >
dA(:zl).

If G[A] — {z1} # ¢ contains no isolated vertices, choose a component of
G(A] - {z,}, say G[A']. Easily we can see G[A'] is also connected and |A'| > 2.
Let S’ = [A’, A'], then §’ is a restricted-edge-cut with || < |S| — |ds(z;)| +
|da(z1)| < |S|. This contradiction shows that the set Y of isolated vertices of
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G[A] — {1} is not empty. If z’ € Y, then e = z;2' € E(G[A]) and d(e) =
da(z') — 2 + ds(z1) + da(z1) = ds(z1) + da(z)) =1 < N(G); if 2 € Y, then
Y C A, choose a component of G[A] — ({z:} UY) say G[A], and G[A'] and
G[A'] are connected subgraphs of order at least two. Let S’ = [4], A}], then &'
is a restricted edge cut. Since d4(z;) < ds(z1), it follows that

IS'| < INa(z1) =Y+ Y, ds(z) < Y ds(z) < N(G)
z€ A1 —({z1}UY) TE€A)

Claim 2 follows from these two contradictions. O

Corollary 2.2 Let G be a connected triangle-free graph that contains re-
stricted edge cuts. If G contains a vertex v such that d(z,y) < 2 for all

z,y € V(G) — {v}, then N¥(G) = £(G).

Proof. Since the condition postulated in this corollary implies the condition
of theorem 2.1, corollary 2.2 follows. O

Remark Let G be a connected graph with minimum degree at least two
that contains restricted edge cuts. Balbuena shows in [4] that if its diameter
d(G) < g — 2 then G is maximally restricted edge connected, where g is the
girth of graph G. Corollary 2.2 strengthens this observation in the case g = 4
since it allows that d(G) = 3.

= .

Figure 1. Example of graphs

Figure 1 lists two classes of graphs. Graph G is an example that can be
proved to be maximally restricted edge connected by theorem 2.1, since G does
not contains two vertices that have distance at least three from other two ver-
tices. But it cannot be shown to be so by other known results such as is listed
in the first section one of this paper, including those obtained in [4].

Graph H is an example to show that the condition of theorem 2.1 is best pos-
sible to some extent, it contains four vertices u;, ua, v;, vz such that d(u;, us),
d(uy,v2), d(v1,u2), d(v1,v2) = 3 and H is not maximally restricted edge con-
nected. We also remark here that every set of four vertices of H with the
property postulated in theorem 2.1 must contains u2 and vs. So, the condition
of theorem 2.1 is best possible to some extent.
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