OPTIMAL ORIENTATIONS OF G-VERTEX MULTIPLICATIONS OF BIPARTITE GRAPHS

R. Lakshmi
Department of Mathematics
Annamalai University
Annamalainagar - 608 002
Tamilnadu, India.

Abstract. For a graph G, let $\mathcal{D}(G)$ be the set of all strong orientations of G. Define the *orientation number* of G, $\vec{d}(G) = \min \{d(D) | D \in \mathcal{D}(G)\}$, where d(D) denotes the diameter of the digraph D. In this paper, it has been shown that $\vec{d}(G(n_1, n_2, \ldots, n_p)) = d(G)$, where $G(n_1, n_2, \ldots, n_p)$ is a G-vertex multiplication ([2]) of a connected bipartite graph G of order $p \geq 3$ with diameter $d(G) \geq 5$ and any finite sequence $\{n_1, n_2, \ldots, n_p\}$ with $n_i \geq 3$.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For $v \in V(G)$, the eccentricity, denoted by $e_G(v)$, of v is defined as $e_G(v) = \max \{d_G(v,x) \mid x \in V(G)\}$, where $d_G(v,x)$ denotes the distance from v to x in G. The diameter of G, denoted by d(G), is defined as $d(G) = \max \{e_G(v) \mid v \in V(G)\}$.

Let D be a digraph with vertex set V(D) and arc set A(D) which has neither loops nor multiple arcs (that is, arcs with same tail and same head). For $v \in V(D)$, the notions $e_D(v)$ and d(D) are defined as in the undirected graph. For $x, y \in V(D)$, we write $x \to y$ or $y \leftarrow x$ if $(x, y) \in A(D)$. For sets $X, Y \subseteq V(D)$, $X \to Y$ denotes $\{(x, y) \in A(D) : x \in X \text{ and } y \in Y\}$.

An orientation of a graph G is a digraph D obtained from G by assigning a direction to each of its edge. By abuse of notation, by D we mean an orientation of G and also the digraph arising out of an orientation of G.

A vertex v is reachable from a vertex u of a digraph D if there is a directed path in D from u to v. An orientation D of G is strong if any pair of vertices

in D are mutually reachable in D. Robbins' celebrated one-way street theorem [5] states that a connected graph G has a strong orientation if and only if G is 2-edge-connected. For a 2-edge-connected graph G, let $\mathcal{D}(G)$ denote the set of all strong orientations of G. The *orientation number* of G is defined to be $\vec{d}(G) = \min \{d(D) \mid D \in \mathcal{D}(G)\}$. In [3], $\vec{d}(G) - d(G)$ is defined as $\rho(G)$. Any orientation D in $\mathcal{D}(G)$ with $d(D) = \vec{d}(G)$ is called an *optimal orientation* of G. For results on orientations of graphs, see [3], a survey by Koh and Tay.

Let G be a connected graph with $V(G) = \{v_1, v_2, \ldots, v_p\}$. For any finite sequence $\{n_1, n_2, \ldots, n_p\}$ of p positive integers, let $G(n_1, n_2, \ldots, n_p)$ denote the graph with vertex set $V^* = \bigcup_{i=1}^p V_i$ and edge set E^* , such that V_i 's are pairwise disjoint sets with $|V_i| = n_i$, $i \in \{1, 2, \ldots, p\}$, and for any two distinct vertices x, y in V^* , $xy \in E^*$ if and only if $x \in V_i$ and $y \in V_j$ for some $i, j \in \{1, 2, \ldots, p\}$ with $i \neq j$ and $v_i v_j \in E(G)$. The graph $G(n_1, n_2, \ldots, n_p)$ is called an extension of G. It is also called a G-vertex multiplication. If $n_i = n$, $i \in \{1, 2, \ldots, p\}$, then $G(n, n, \ldots, n)$ is denoted by $G^{(n)}$. When $G = K_p$, the graph $K_p(n_1, n_2, \ldots, n_p)$ is a complete p-partite graph with partite sets containing n_1, n_2, \ldots, n_p vertices. In [2], Koh and Tay have extended the results on the optimal orientations of the complete p-partite graphs to $G(n_1, n_2, \ldots, n_p)$. We next list some of the results in [2] for $G(n_1, n_2, \ldots, n_p)$.

Theorem 1.1. (Koh and Tay [2]). Given $n_i \geq 2$ for each $i \in \{1, 2, ..., p\}$, where $p \geq 3$, $d(G) \leq \vec{d}(G(n_1, n_2, ..., n_p)) \leq d(G) + 2$.

Theorem 1.2. (Koh and Tay [2]). If $d(G) \geq 4$ and $n_i \geq 4$ for each $i \in \{1, 2, \ldots, p\}$, then $\vec{d}(G(n_1, n_2, \ldots, n_p)) = d(G)$.

Theorem 1.3. (Koh and Tay [2]). If d(G) = 3 and $n_i \geq 4$ for each $i \in \{1, 2, \ldots, p\}$, then $\vec{d}(G(n_1, n_2, \ldots, n_p)) \leq d(G) + 1$.

The following conjecture was posed by Koh and Tay [2].

Conjecture 1.1. (Koh and Tay [2]). If G is a graph such that $d(G) \geq 3$ and $n_i \geq 2$ for each $i \in \{1, 2, ..., p\}$, then $\vec{d}(G(n_1, n_2, ..., n_p)) \leq d(G) + 1$.

In this paper we assume stronger conditions on G, namely, $d(G) \ge 5$, G is bipartite and $n_i \ge 3$ and prove a stronger result, namely, $\vec{d}(G(n_1, n_2, \ldots, n_p)) = d(G)$.

Let C_n and K_n denote the cycle and complete graph of order n, respectively. Notations and terminology not defined here can be seen in [1].

2 Results

We shall now establish our main result.

Theorem 2.1. Let G be a connected bipartite graph with $d(G) \geq 5$. If $n_i \geq 3$ for each $i \in \{1, 2, ..., p\}$, then $\vec{d}(G(n_1, n_2, ..., n_p)) = d(G)$.

For our convenience, let $V(G) = \{1, 2, ..., p\}$. For $i \in \{1, 2, ..., p\}$, let $V_i = \{(i, 1), (i, 2), ..., (i, n_i)\}$ and call (i, x) the xth vertex of V_i .

For the proof of Theorem 2.1, we will use the following Lemma.

Lemma 2.1. (Koh and Tay [2]). Let t_i , n_i be integers such that $t_i \leq n_i$ for $i \in \{1, 2, ..., p\}$. If the graph $G(t_1, t_2, ..., t_p)$ admits an orientation F in which every vertex v lies on a cycle of length not exceeding m, then $\vec{d}(G(n_1, n_2, ..., n_p)) \leq max\{m, d(F)\}$.

Proof of Theorem 2.1. Let (X,Y) be the bipartition of G. We first show that $\vec{d}(G^{(3)}) = d(G)$. Orient $G^{(3)}$ so that for every edge xy of G with $x \in X$ and $y \in Y$, $(x,i) \to (y,i)$ for $i \in \{1,2,3\}$ and $(x,i) \leftarrow (y,j)$ for $i,j \in \{1,2,3\}$ with $i \neq j$. Let D be the resulting digraph.

Let u=(a,i) and v=(b,j) be any two vertices in D. We shall now prove that d(D)=d(G) by showing that $d_D(u,v)\leq \max\{5,d_G(a,b)\}$. By the nature of the orientation, assume that u=(a,1). Let P be a shortest (a,b)-path of length ℓ in G. We shall split our proof into several cases according as $a\in X$ or Y and ℓ , the length of P.

Case 1. $a \in X$ and $\ell \geq 4$.

We shall prove Case 1 by induction on ℓ . For $\ell=4$, let $P=x_1y_1x_2y_2x_3$ and let $a=x_1$ and $b=x_3$. The existence of the paths $(x_1,1)\to (y_1,1)\to (x_2,3)\to (y_2,3)\to (x_3,1), (x_1,1)\to (y_1,1)\to (x_2,3)\to (y_2,3)\to (x_3,2)$ and $(x_1,1)\to (y_1,1)\to (x_2,2)\to (y_2,2)\to (x_3,3)$ in D shows that $d_D(u,v)\le 4$. Therefore, the result is true for $\ell=4$. Hence we assume that $\ell=m+1\ge 5$. Let c be an internal vertex of P such that c is adjacent to b. By the induction hypothesis, $d_D(u,\{(c,1),(c,2),(c,3)\})\le m$. Hence $d_D(u,\{(b,1),(b,2),(b,3)\})\le m+1=\ell$. Case $a\in X$ and $a\in X$

Let $P = x_1y_1x_2y_2$ and let $a = x_1$ and $b = y_2$. The existence of the paths $(x_1, 1) \to (y_1, 1) \to (x_2, 2) \to (y_2, 2) \to (x_2, 1) \to (y_2, 1)$ and $(x_1, 1) \to (y_1, 1) \to (x_2, 3) \to (y_2, 3)$ in D proves that $d_D(u, v) \leq 5$. Case 3. $a \in X$ and $\ell = 2$.

Let $P=x_1y_1x_2$ and let $a=x_1$ and $b=x_2$. The existence of the paths $(x_1,1)\to (y_1,1)\to (x_2,2)\to (y_1,2)\to (x_2,1)$ and $(x_1,1)\to (y_1,1)\to (x_2,3)$ in D shows that $d_D(u,v)\leq 4$.

Case 4. $a \in X$ and $\ell = 1$.

As $\ell=1$, ab is an edge of G. The existence of the paths $(a,1)\to (b,1)$, $(a,1)\to (b,1)\to (a,2)\to (b,2)$ and $(a,1)\to (b,1)\to (a,3)\to (b,3)$ in D proves that $d_D(u,v)\leq 3$.

Case 5. $a \in X$ and $\ell = 0$.

There is a vertex y in Y with $ay \in E(G)$. The existence of the paths $(a,1) \to (y,1) \to (a,2)$ and $(a,1) \to (y,1) \to (a,3)$ in D shows that $d_D(u,v) \leq 2$.

Case 6. $a \in Y$ and $\ell \geq 3$.

We shall prove Case 6 by induction on ℓ . For $\ell=3$, let $P=y_1x_1y_2x_2$ and let $a=y_1$ and $b=x_2$. The existence of the paths $(y_1,1)\to (x_1,2)\to (y_2,2)\to (x_2,1), \ (y_1,1)\to (x_1,3)\to (y_2,3)\to (x_2,2)$ and $(y_1,1)\to (x_1,2)\to (y_2,2)\to (x_2,3)$ in D proves that $d_D(u,v)\le 3$. Therefore, the result is true for $\ell=3$. Hence we assume that $\ell=m+1\ge 4$. Let c be an internal vertex of P such that c is adjacent to c. By the induction hypothesis, $d_D(u,\{(c,1),(c,2),(c,3)\})\le m$. Hence $d_D(u,\{(b,1),(b,2),(b,3)\})\le m+1=\ell$.

Case 7. $a \in Y$ and $\ell = 2$.

Let $P=y_1x_1y_2$ and let $a=y_1$ and $b=y_2$. The existence of the paths $(y_1,1)\to (x_1,2)\to (y_2,2)\to (x_1,1)\to (y_2,1)$ and $(y_1,1)\to (x_1,3)\to (y_2,3)$ in D shows that $d_D(u,v)\leq 4$.

Case 8. $a \in Y$ and $\ell = 1$.

As $\ell=1$, ab is an edge of G. The existence of the paths $(a,1) \to (b,2) \to (a,2) \to (b,1)$ and $(a,1) \to (b,3)$ in D proves that $d_D(u,v) \leq 3$. Case 9. $a \in Y$ and $\ell=0$.

There is a vertex x in X with $ax \in E(G)$. The existence of the paths $(a,1) \to (x,2) \to (a,2)$ and $(a,1) \to (x,3) \to (a,3)$ in D shows that $d_D(u,v) \leq 2$.

This completes the proof of $\vec{d}(G^{(3)}) = d(G)$.

By the nature of the orientation, every vertex of D lies on a directed cycle of length 4 in D. The proof now follows from Lemma 2.1.

Corollary 2.1. Let G be a bipartite graph with $d(G) \geq 5$. If $n_i \geq 3$ for each $i \in \{1, 2, ..., p\}$, then $\rho(G(n_1, n_2, ..., n_p)) = 0$.

Corollary 2.2. $\vec{d}(C_p(n_1, n_2, \ldots, n_p)) = \frac{p}{2}$ for all $p \geq 10$ is even and $n_i \geq 3$ for each $i \in \{1, 2, \ldots, p\}$.

We now state a result obtained by Ng and Koh [4] which is partially implied by the above corollary.

Theorem 2.2. (Ng and Koh [4]).

(i) $\vec{d}(C_p(n_1, n_2, \ldots, n_p)) = d(C_p)$ for all $p \ge 10$ and $n_i \ge 3$ for each $i \in \{1, 2, \ldots, p\}$;

(ii)
$$\vec{d}(C_p^3) = d(C_p) + 1$$
 for $6 \le p \le 9$;
(iii) $\vec{d}(C_p^4) = d(C_p)$ for $p = 6, 7$.

Acknowledgement. The author expresses her sincere thanks to Dr. P. Paulraja for several useful discussions.

References

- [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
- [2] K.M. Koh and E.G. Tay, On optimal orientations of G vertexmultiplications, Discrete Math. 219 (2000) 153-171.
- [3] K.M. Koh and E.G. Tay, Optimal orientations of graphs and digraphs: a survey, *Graphs and Combin.* 18 (2002) 745-756.
- [4] K.L. Ng and K.M. Koh, On optimal orientation of cycle vertex multiplications, Discrete Math. 297 (2005) 104-118.
- [5] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.