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Abstract. For a graph G, let D(G) be the set of all strong orientations of G.
Define the orientation number of G, d(G) = min {d(D)|D € D(G)}, where
d(D) denotes the diameter of the digraph D. In this paper, it has been shown that
d(G(n1,na, .. -»np)) = d(G), where G(ni1,nz,...,n,) is a G-vertex multiplication
([2]) of a connected bipartite graph G of order p > 3 with diameter d{(G) > 5 and
any finite sequence {ni,n2,...,np,} with n; > 3.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For
v € V(G), the eccentricity, denoted by eg(v), of v is defined as eg(v) =
max {dg(v,z) |z € V(G)}, where dg(v,z) denotes the distance from v to
z in G. The diameter of G, denoted by d(G), is defined as d(G) = max
{ec(v) lveV(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which has
neither loops nor multiple arcs (that is, arcs with same tail and same head).
For v € V(D), the notions ep(v) and d(D) are defined as in the undirected
graph. For z,y € V(D), we write z — y or y — z if (z,y) € A(D). For
sets X, Y CV(D), X — Y denotes {(z,y) € A(D): € X and y € Y}.

An orientation of agraph G isadigraph D obtained from G by assigning a
direction to each of its edge. By abuse of notation, by D we mean an orientation
of G and also the digraph arising out of an orientation of G.

A vertex v is reachable from a vertex u of a digraph D if there is a directed
pathin D from u to v. Anorientation D of G is strong if any pair of vertices
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in D are mutually reachable in D. Robbins’ celebrated one-way street theorem
[5] states that a connected graph G has a strong orientation if and only if G
is 2-edge-connected. For a 2-edge-connected graph G, let D(G) denote the set
of all strong orientations of G. The orientation number of G is defined to be
d(G) =min {d(D) |D€D(G)}. In [3] d{(G) —d(G) is defined as p(G). Any
orientation D in D(G) with d(D) = d(G) is called an optimal orientation
of G. For results on orientations of graphs, see [3], a survey by Koh and Tay.

Let G be a connected graph with V(G) = {vi,vs,...,vp}. For any finite
sequence {nj,n2,...,np} of p positive integers, let G(ny,n2,...,n,) denote
the graph with vertex set V* = |Ji_, Vi and edge set E*, such that Vs
are pairwise disjoint sets with |V;} =n;, 4 € {1,2,...,p}, and for any two
distinct vertices z,y in V*, zy € E* ifandonlyif z € V; and y € V;
for some ¢,5 € {1,2,...,p} with ¢ # j and wv; € E(G). The graph
G(ny,ng,...,np) is called an extension of G. It is also called a G-vertex
multiplication. If n; = n, i € {1,2,...,p}, then G(n,n,...,n) is denoted
by G™. When G = K,, the graph Kp(ni,na,...,np) is a complete p-
partite graph with partite sets containing ni,ng,...,n, vertices. In [2], Koh
and Tay have extended the results on the optimal orientations of the complete
p-partite graphs to G(n1,7g2,...,np). We next list some of the results in (2] for
G(ny,n2,...,np).

Theorem 1.1. (Koh and Tay [2]). Given n; > 2 for each i € {1,2,...,p},
where p > 3, d(G) < d(G(ni,ng,...,np)) < d(G)+2.

Theorem 1.2. (Koh and Tay 2). If d(G) > 4 and n; > 4 for each i €
{1,2,..., p}, then d(G(ny,n2,...,np)) = d(G).

Theorem 1.3. (Koh and Tay [2)). If d(G) = 3 and n; > 4 foreach i €
{1,2, ..., p}, then d(G(n1,na,...,np)) < d(G)+1.

The following conjecture was posed by Koh and Tay [2)].

Conjecture 1.1. (Koh and Tay [2]). If C_v: 18 a graph such that d(G) > 3 and
n; > 2 for each i € {1,2,...,p}, then d(G(n1,na,...,np)) < d(G) +1.

In this paper we assume stronger conditions on G, namely, d(G) >
5 G is bipartite and n; > 3 and prove a stronger result, namely,

d(G(n1,n2, e ,np)) = d(G)

Let C, and K, denote the cycle and complete graph of order n, respectively.
Notations and terminology not defined here can be seen in [1].
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2 Results

We shall now establish our main result.

Theorem 2.1. Let G be a connected bipartite graph with d(G) > 5. If n; > 3
for each i € {1,2,...,p}, then d(G(n1,n,...,n,)) = d(G).

For our convenience, let V(G) = {1,2,...,p}. For i € {1,2,...,p}, let
Vi = {({,1),(,2),...,(¢,n;)} and call (¢,z) the zth vertex of V;.

For the proof of Theorem 2.1, we will use the following Lemma.

Lemma 2.1. (Koh and Tay [2]). Let ¢:;, n; be integers such that t; < ny
for i € {1,2,...,p}. If the graph G(t1,t3,...,t,) admits an orientation
F in which every vertez v lies on a cycle of length not exceeding m, then
d(G(n1,n2,...,np)) < maz{m,d(F)}. [ ]

Proof of Theorem 2.1. Let (X,Y) be the bipartition of G. We first show that
d(G®) = d(G). Orient G® so that for every edge zy of G with z € X and
y€Y, (z,9) - (y,9) for i € {1,2,3} and (z,i) « (y,5) for 4,5 € {1,2,3}
with 7 # j. Let D be the resulting digraph.

Let u = (a,%) and v = (b,j) be any two vertices in D. We shall now prove
that d(D) = d(G) by showing that dp(u,v) < max{5,dg(a,b)}. By the
nature of the orientation, assume that u = (a,1). Let P be a shortest (a,b)-
path of length ¢ in G. We shall split our proof into several cases according as
a € XorY and ¢, the length of P.

Casel. a € X and ¢ > 4.

We shall prove Case 1 by induction on £ For ¢ = 4, let P = z1y1Z2y273
and let a = z; and b = z3. The existence of the paths (z1,1) — (y1,1) —
(72,3) = (¥2,3) = (23,1), (x1,1) = (y1,1) = (z2,3) = (¥2,3) — (z3,2)
and (z3,1) — (y1,1) — (22,2) — (¥2,2) — (z3,3) in D shows that
dp(u,v) < 4. Therefore, the result is true for £ = 4. Hence we assume that
£ =m+1 > 5 Let ¢ be an internal vertex of P such that ¢ is adjacent
to b. By the induction hypothesis, dp(u,{(c,1),(c,2),(c,3)}) < m. Hence
dD(u!{(bv 1)’(b72)’(b73)}) <Sm+l=_¢L
Case 2. a € X and ¢ = 3.

Let P = =ziy1zoy2 and let @ = z; and b = y,. The existence of
the paths (z1,1) — (y1,1) — (22,2) — (¥2,2) — (z2,1) = (¥2,1) and
(x1,1) = (¥1,1) — (22,3) = (y2,3) in D proves that dp(u,v) < 5.

Case 3. a€ X and ¢ = 2.

Let P = z1y122 and let ¢ = z; and b = z,. The existence of the paths
(z1,1) = (y1,1) = (22,2) = (¥1,2) — (22,1) and (z4,1) = (y1,1) — (z2,3)
in D shows that dp(u,v) < 4.

Cased4. a € X and £ = 1.
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As £ = 1, ab is an edge of G. The existence of the paths (a,1) — (b, 1),
(a,1) = (b,1) = (a,2) — (b,2) and (a,1) — (b,1) = (a,3) — (b,3) in D
proves that dp(u,v) < 3.

Case 5. a € X and £ = 0.

There is a vertex y in Y with ay € E(G). The existence of the paths
(a,1) = (1) — (a,2) and (a,1) — (y,1) — (a,3) in D shows that
dp(u,v) < 2.

Case 6. a €Y and ¢ > 3.

We shall prove Case 6 by induction on £. For £ = 3, let P = y1z1y272
and let ¢ = y; and b = z5. The existence of the paths (y1,1) — (1,2) —
(2,2) = (22,1), (11,1) = (21,3) = (y2,3) — (z2,2) and (¥1,1) = (21,2) —
(¥2,2) — (z2,3) in D proves that dp(u,v) < 3. Therefore, the result is
true for £ = 3. Hence we assume that £ = m+1 > 4. Let ¢ be an
internal vertex of P such that ¢ is adjacent to b. By the induction hypothesis,
dp(u, {(c,1),(¢,2),(c,3)}) < m. Hence dp(u,{(b,1),(5,2),(5,3)}) < m+1=
£

Case7. a €Y and ¢ = 2.

Let P = yz1y2 and let a = y; and b = yo. The existence of the paths
(1, 1) = (21,2) = (v2,2) — (z1,1) = (v2,1) and (y1,1) — (21,3) = (v2,3)
in D shows that dp(u,v) < 4.

Case 8. a €Y and £ = 1.

As £ = 1, ab is an edge of G. The existence of the paths (a,1) — (5,2) —
(a,2) = (b,1) and (a@,1) — (b,3) in D proves that dp(u,v) < 3.

Case9. a €Y and £ = 0.

There is a vertex z in X with az € E(G). The existence of the paths
(a,1) = (2,2) — (a,2) and (a,1) = (2,3) — (a,3) in D shows that
dp(u,v) < 2.

This completes the proof of d(G®) = d(G).

By the nature of the orientation, every vertex of D lies on a directed cycle
of length 4 in D. The proof now follows from Lemma 2.1. ]

Corollary 2.1. Let G be a bipartite graph with d(G) 2 5. If n; > 3 for each
i€ {1,2,...,p}, then p(G(ny,ny,...,np)) = 0. ]

Corollary 2.2. J(Cp(nl,ng,...,np)) = £ forall p > 10 is even and n; > 3
for each i € {1,2,...,p}. a

We now state a result obtained by Ng and Koh [4] which is partially implied
by the above corollary.

Theorem 2.2. (Ng and Koh [4]).
(i) d(Cp(n1,na,...,np)) = d(Cp) for all p > 10 and n; > 3 for each
i€{l,2,...,p};
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(ii) d(C3) = d(Cp) +1 for 6 <p < 9;
(iii) d(C4) = d(Cp) for p = 6,7. (]
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