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Abstract
We present a unified extension of alternating subsets to k-
combinations of {1,2,...,n} containing a prescribed number of se-

quences of elements of the same parity. This is achieved by shifting
attention from parity-alternating elements to pairs of adjacent el-
ements of the same parity. Enumeration formulas for both linear
and circular combinations are obtained by direct combinatorial ar-
guments. The results are applied to the enumeration of bit strings.

1 Introduction

A totally ordered finite set of positive integer numbers is called alternating
if any pair of adjacent elements have opposite parities (cf. [5]). The empty
set and the single-element set are also alternating by convention. Such sets
are known as alternating subsets of integers (see for example [2, 12, 8]).

In 1975, Tanny [10] showed that the number ho(n,k) of alternating
k-subsets of {1,2,...,n} is given by:

ho(n, k) = (L?J) + (I'Bg;lj), (1)

where | N | is the floor function.

The enumerative function ho(n, k) has been studied by several authors
(see for example [5, 12]), and it is known that 3, ho(n, k) = Fry3 — 2,
where Fy is the Nth Fibonacci number. It has since been extended to the
enumerator of (o, §)-alternating subsets, that is, combinations consisting of
a sequence of blocks of lengths o, 8,a, 5, ..., in which the first o elements
have the same parity, the next 3 elements have opposite parity, and so
on [11, 8]. A more recent paper on the subject [4] describes how certain
restricted classes of alternating subsets may be applied to the study of faces
of the polytope of tridiagonal doubly stochastic matrices.

However, there was no known result on the enumeration of the fun-
damental superset of k-combinations of [n] = {1,2,...,n} containing a
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prescribed number of sequences of elements of the same parity, of which
the class of (a, ) subsets is a specialization. In order to fill this gap we
approach the study of alternating subsets by concentrating on pairs of ad-
jacent elements of the same parity since they are analogous to pairs of
consecutive integers (also known as successions) which are used in the enu-
meration of general subsets (see for example [1, 7]).

A parity succession (or simply succession) is a pair of integers z, y satis-
fying x =y (mod 2), and we define a succession block as a finite sequence of
elements of the same parity. Let H(n, k, ) denote the set of k-combinations
of [n] containing r successions, with cardinality |H(n,k,7)| = h(n,k,r).
Thus ho(n, k) = h(n, k,0).

Example 1 Elements of H(9,5,2) include
1,2,3,5,7),(1,3,4,5,9),(2,4,5,7,8),(3,4,6,8,9).

In what follows we show that the function h(n, k,r) provides the natural
setting for obtaining the most complete results.

In Section 2 we give a relatively simple derivation of Equation (1), fol-
lowed by its recurrence relation. Then we employ combinatorial arguments
to obtain both recursive and exact formulas for h(n, k,7), which lead to the
general result on k-combinations of [n] containing a prescribed number of
succession blocks (Corollary 2). The section closes with a discussion of the
subset of H(n,k,r) consisting of succession blocks of length at most 2.

Section 3 is devoted to the enumeration of circular combinations, where
the previous questions are posed for combinations of [n] whose elements
are arranged on a circle. Lastly, Section 4 deals with the application of our
results to the enumeration of bit strings.

2 Enumeration Formulas

We start with a relatively simple derivation of Equation (1).

Associate each member of H(n,k,0) with a succession block of lenght
k with elements in [n+ k — 1]. Notice that to each (zy,...,zx) € H(n,k,0)
there corresponds a unique succession block (z3, z2+1,...,zx+k—1) C [n+
k — 1], and conversely. For instance, (1,4,5,6,7) € H(9,5,0) corresponds
to (1,5,7,9,11) C [13].

Thus if we define Ep i as the set of k-combinations of {2,4,...} C [N],
and Op i as the set of k-combinations of {1,3,...} C [N], we have a
bijection

H(n, k, 0) - n+k—1,kU0n+k—1,k : (xlgx% ceey xk) —= (xl,x2+11 vee ,$k+k"1).
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Since [n + k — 1] contains [(n + k — 1)/2| even numbers and |(n + k)/2]
odd numbers, it follows that
nik—1 n+k
|Bntk—1,k] = (L Ii J) and  [Onik_1,k| = (I' ,26 J)-

Thus the proof of (1) is complete.

The recurrence relation for ho(n,k) is found by considering the the
least element min(X) of each X € H(n,k,0). Let ho(n, k)1, ho(n, k)>1
and ho(n,k)p, denote the number of objects X € H(n,k,0) such that
min(X) = 1, min(X) > 1 and min(X) has parity P, respectively. Then
we have

hO(n) k) = hO(n, k)l + hO(n) k)>1 = hO(nv k- 1)euen + hO(ns k))l

= ho(n — 1,k — 1)oda + ho(n — 1, k),
since we can delete 1 from each object enumerated by ho(n, k)1, and then
subtract 1 from every term of each (resulting) object enumerated by ho(n, k—

1)even or by ho(n, k)s1.
Expanding ho(n — 1,k) by the last relation, we have

ho(n,k) = ho(n—1,k—1)odd + ho(n — 2,k — 1)odq + ho(n — 2, k)
= ho(n—1,k —1)odd + ho(n — 1,k — 1)even + ho(n — 2, k),

which gives the following result (the boundary condition h¢(n,0) = 2 is
conventional).

ho(n, k) = ho(n -1,k —1) + ho(n — 2,k), 2<k<n, (2)
ho(n,1) = n, ho(n,0) = 2.

By extending Equation (2) we can prove the following theorem (4;; is
the Kronecker delta).

Theorem 2 If n,k,r are integers such that n > k > r > 1, then
h(n,k,7) =h(n—1,k—1,7) + h(n — 2,k,7) + h(n — 2,k — 1,7 — 1), (3)
h(n,0,7) = 289y, h(n,1,r) = ndor, h(n,k,0) = ho(n, k), k > 1.

Proof. By the proof of (2) the number of elements of H(n, k,7) in which
n or n — 1 do not belong to a succession is given by h(n — 1,k — 1,7) +
h(n - 2,k,7).

An element A € H(n,k,r) in which n or n — 1 belongs to a succession
is obtained as follows: for each X € H(n — 2,k — 1,7 — 1), if maz(X) =
n — 2 (mod 2), then put n into X, else put n — 1 into X. This gives

79



h(n—2,k—1,r — 1) elements of H(n, k,r). The boundary values are clear.
]

The following identity can be established by showing that it satisfies
(3). But we give a direct combinatorial proof.

Theorem 3 1
h(n,k,r) = ( : )ho(n - rk). (4)

Proof Let A € H(n,k,r). We transform A into a member of H(n —
,k,0). If A has m succession blocks uy,...,um, then each u; has the
form u; = 2q1,2q2,...,2q;; or u; = 2q1 — 1,22 — 1,...,2q;; — 1, where
1<q1<ge<+<qy, 1<t;<r+land (f1 =1+ +({tm—1)=r

Now apply the following transformation successively to the blocks
uy,...,Um. Assuming that u; = 2q1,2¢q, ..., 2q:;, replace u; by 2q;,2q2 —
1,...,2g,; —tj + 1, and subtract ¢; — 1 from each integer larger than 2g¢.;.
Note that the first element of the next block u;;1 namely 2u + 1, u >
q¢;, is transformed into 2u + 2 — t; which has opposite parity with the
last element of the image of u;. The result is a t;-element alternating
subset of a k-combination whose last element is maz(A) —t; + 1. It is
clear that this procedure yields the same type of set if we start with a
block with odd elements. Hence A corresponds to a unique member of
Hn—-(t1-1)—--+ — (tk-r — 1),k,0) = H(n — ,k,0).

Conversely, given X = (z1,...,zx) € H(n—r,k,0), we must reverse the
above procedure, but only if we know which elements of X should change
parities. To find out we determine the pattern of the succession blocks in
some inverse image A € H(n, k,r) by choosing r of the first k¥ — 1 elements
of X in (k:l) ways. This may be represented as a (k — 1)-vector of 0’s
and 1’s having r 1’s, say (€1,...,€x—1). Then to specify A we reverse the
procedure described in the previous paragraph by changing the parity of
each element x;;; whenever ¢; = 1, such that a sequence of £ consecutive
1’s, starting from position j, corresponds to the succession block of length
£+ 1, with first member z;. O

Corollary 1 The number of k-combinations of [n] consisting of r parity
successions (i.e, r pairs of adjacent elements of the same parity) is given

T = (D) () o

Observe that if X € H(n,k,r) consists of b succession blocks then
b = k — r (since if the blocks have lengths u,,...,up, then r = (u; — 1) +
v+ (up — 1) = k — b). Substituting k — 7 = b in (5), we obtain the
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alternating subsets analogue of the classical result on combinations and
blocks of consecutive integers (see Remark 4 below):

Corollary 2 The number f(n,k,b) of k-combinations of [n] consisting of
b alternating succession blocks (i.e, b separate sequences of elements of the
same parity) is given by

o= () () () o

Remark 4 The enumeration of combinations according to the number of
pairs of consecutive integers, also called successions, originated with the
works of Kaplansky and Riordan in the 1940’s (see [6, 9]). Abramson
and Moser [1] seem to be the first to consider enumeration by the number
of arbitrary sequences of consecutive elements, and proved the basic result
that the number of k-combinations of [n] with ezactly r blocks of consecutive

integers is
k-1N\/n-k+1
r—1 r )

Note that by the proof of (1) we have the following convenient decom-
position according to the parity of least elements.

ot (), sn= () ().

Example 5 f(8,6,4) = 10 enumerates the following combinations:
(1,2,3,4,6,8),(1,2,3,5,6,8),(1,2,3,5,7,8),(1,2,4,5,6,8),(1,2,4,5,7,8),
(1,3,4,5,6,8),(1,3,4,5,7,8),(1,3,4,6,7,8),(1,3,5,6,7,8),(1,2,4,6,7,8).

It is clear from (6) and (4) that the enumerator of k-combinations ac-
cording to b succession blocks of specified type is f(n, &, b)/ (’;:;) , denoted
by 2(n, k,b). The last remark suffices to deduce the next result, stated in
our notation for brevity.

Corollary 3 ({(a, B)-alternating subsets)
The number of (o, B)-alternating k-combinations of [n] is given by

z(n, k, 2k—c)/(a+pB)+1), 0<c<q, (7)
z(n, k, 2(k —c)/(a+B)+2), a<c<a+p.
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Proof. By modifying Euclid’s algorithm we have k = (a + 8)q + ¢, where
0 < ¢ < o+ f and ¢ is a positive integer. So the number of blocks
be {2¢+1,29+2}. Ifc< a,thenb=29+1=2(k—-c)/(a+0)+1;
otherwise b=2(k —c)/(a+B)+2fora<c<a+p. a

We conclude this section with a discussion of the parity analogue of
detached successions which was introduced in [7] in connection with pairs
of consecutive integers as successions. A combination is said to consist
of detached successions if it contains only sequences of v consecutive el-
ements, where v € {1,2}. More generally, detached t-successions, when
u € {1,t},t > 2, were considered. However, the former case suffices to
understand the idea.

A parity succession z;,zi4+1 in (z1,...,2x) will be called detached if
neither z;_1,T; nor 41, Tiy2 is a parity succession in (z;,...,Zx).

Let D(n,k,r) denote the subset of H(n,k,r) containing r detached
parity successions, and |D(n,k,r)| = d(n, k,r). For example, of the three
objects (1,3,4,5,9),(2,4,5,7,8),(1,2,3,5,7) € H(9,5,2), the first two be-
long to D(9,5,2) while (1,2,3,5,7) ¢ D(9,5,2).

Proposition 1 We have
d(n, k,r) = (" - r) ho(n — 7, k). (8)

Proof. This is proved the same way as (4) except that, in the reverse
transformation, we select only nonconsecutive r of the first £ — 1 elements,
obtaining (*~177*1) = (*77), where we have used the fact that the num-

ber of nonconsecutive k-combinations of [n] is given by ("~F*Y). a

The following relation holds.
) (k - l)f‘d(n’kir) = (k - T)rh(na k, T)'l
where (N), = N(N =1)---(N —r+1), (N)o = 1.

The detached version of (5) may now be written, and we have

Corollary 4 The number g(n, k,b) of k-combinations of [n] consisting of
b alternating succession blocks, each of length 1 or 2, is given by

wrn= () (P () o
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We state a useful extension of (8).

Theorem 6 The number dy(n,k,b) of k-combinations of [n] consisting of
r succession blocks of length t, and k — tr units, is given by

di(n,k,r) = ('“ - (’;‘ 1)’") ho(n — (t —1)r k), 2<t<k. (10)

Proof.  Suitably modify the proof of (8); choose r tuples (v1,...,yr)
from [k —t + 1] such that y; — yi—y > t,2 < i < 7, in as many ways as
(k t+1- (t—l)(r-—l)) = (k—(t-l)r) O

3 Circular Combinations

We consider analogous results for circular combinations (y1,...,¥x), when
the elements are arrayed on a circle and y,y; are treated as adjacent.
A bar is placed over each previous notation to distinguish corresponding
enumerators of circular combinations.

Theorem 7 The number f(n,k,b) of circular k-combinations of [n] con-
sisting of b alternating succession blocks is given by

- _ ) f(n,k,b) + f(n,k,b+ 1), ifb is even,
Fln,k,b) = { 0, if b is odd. (12)

Proof. Let X = (z1,...,2x) = (B1,...,Bp) be an object enumerated
by f(n,k,b). If b is even, then f(n,k,b) corresponds to two summands
namely f(n,k,b), since the blocks B, and B; have opposite parities, and
f(n,k,b+ 1) since the odd number b+ 1 of blocks implies the merging of
By+1 and B,, when the elements are arranged on a circle. On the other
hand, an odd number of blocks is impossible since the block parities must
alternate around the circle. 0

Example 8 f(8,6,4) = 20, the enumerated objects being the 10 in Ezam-

ple § and the following:
(1l21374’5,7)’ (1,2) 31 4’ 677)! (1,21 3’ ’6 7) (17 ¥ 7 16’7) (1) 3?415l 617)’
(2,3,4,5,7,8),(2,3,4,6,7,8),(2,3,5,6,7,8),(2,4,5,6,7,8), (2, 3,4,5,6,8).

Substituting (6) in Theorem 7 and simplifying give

Corollary 5 If b is an even number, then
resn= () (%) (757 -2(55)
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Theorem 9 The number §(n, k,b) of circular k-combinations of [n] con-
sisting of b alternating succession blocks, each of length 1 or 2, is given

by

. g(n, k,b) + & g(n +1,k,b), ifb is even,
k,b) =
§(m k.0) { 0, if b is odd. (12)

Proof.  As in the proof of Theorem 7, we find g(n,k,b) only when b
is even. The contribution from g(n, k,b) is clear. It remains to account
for the contribution from objects enumerated by g(n, k, b+ 1). We want to
isolate combinations (1, za,. .., Zk-1,Zk) in which z; # z2, Tx_; # zx and
z; = z) (mod 2), such that each contains b circular blocks or » detached
circular successions (b = k—r). Thus, referring to the proof of (8), we must
select 7 — 1 nonconsecutive of the (k —1) —2 = k — 3 eligible elements in as
many ways as (("c 8- (""l)“) = (k'l") So the total number of objects
is (*71 7 ho(n -7 +1, k) = (*Tho(n — 7+ 1,k) = g5d(n + 1,k,7),
which is equivalent to £ g(n + 1,k,b). O

Example 10 3(8,6,4) = 12 enumerates the following objects (cf. Example
8): (1,2,3,5,6,8),(1,2,4,5,6,8),(1,2,4,5,7,8),(1,3,4,5,6, 8),
(1,3,4,5,7,8),(1,3,4,6,7,8),(2,3,4,6,7,8),(1,2,3,4,6,7),(1,2,4,5,6,7),
(2,3,4,5,7,8),(1,2,3,5,6,7),(2,3,5,6,7,8).

Corollary 6 If b is an even number, then

sk = () (5(UF) + (M) + 552 ().

Note the succession versions of the above results:

- d(n,k,r) + t5d(n+1,k,7), ifk—r is even,
d(n’k”")'_'{ ( )0 el ) if k —r is odd (13)
h(n,k,r) + h(n,k,r —1), ifk—r iseven,
4
hn k.7 { 0, if k—r is odd. (14)

Thus in particular,

- ho(n, k), if k is even,
ho(n, k) =
o(n, k) { 0, if k is odd. (15)

Equation (15) clarifies an expression for ho(n, k) in [2], found through a
different approach, namely ho(n, k) = ho(n, k), which is silent on the parity
of k.
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4 An Application

We apply the above results to the enumeration of bit strings (sequences of
0’s and 1’s). Denote by ho(k) the number of k-bit strings with no adjacent
0’s and no adjacent 1’s, and let the notation for the number of k-bit strings
containing r parity successions be h(k,r). Other analogous notations are

employed below.
Then it is immediate from (1) that ho(k) = 2. Hence by (5) and (6) we
obtain the equivalent results:

h(k,r)=2(k;l), F(k,b) = 2(’” :)

Similarly, we have:

dik,r) = 2("7’), g(k,b) = 2(k b b).

To enumerate cyclic bit strings it is convenient to mark one bit as the
starting point of circular traversion. This way cyclic strings may be dis-
played on a line and two objects (€1, €2,. .., €x), (V1, V2, ..., Vk), are distinct
provided ¢; # v; for some i € [k].

The following results are deduced from corresponding ones in Section
3. We set the number of blocks b = 2¢ iq a posmve mteger) As an
illustration, Theorem 7 gives: f(k,2q) = 2(;_} )+ 2( = 2(2q)

The number of cyclic k-bit strings containing 2¢ succession blocks is
given by:

f(k,2q) = 2(2’;), k>2.

The number when the length of a succession block < 2 is:

Thus all cyclic &-bit strings containing only detached successions are
enumerated by 3 -, g(k,2g). This is the number of cyclic &-bit strings that
avoid the substrmgs 000 and 111, in the formulation of Argur, Fraenkel
and Klein [3], who obtained the same result in connection with a problem
of genetic engineering.

Finally, by extending the derivation of the last result, it can be shown
that the number of cyclic k-bit strings containing 2g succession blocks, each
of length 1 or ¢, is given by:

gg(k2q)——(2 +LIc 2"1)(l§ﬂ), 2<t<k.
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