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Abstract

In this paper, we prove that the connectivity and the edge connec-
tivity of the lexicographic product of two graphs G, and G are equal
to k1v2 and min{\1vZ, 62 + 61v2}, respectively, where 4;, ki, A; and v;
denote the minimum degree, the connectivity, the edge-connectivity
and the number of vertices of G;, respectively. We also obtain
that the edge-connectivity of the direct product of K; and a graph
H is equal to min{2},28, minj_»{j + 26;}}, where 3 is the mini-
mum size of a subset F C E(H) such that H — F is bipartite and
B; = min{B(C)}, where C takes over all components of H — B for
all edge-cuts B of size j > A = A(H).
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1 Introduction

Throughout this paper, a graph G = (V, E) always means a finite undi-
rected graph without self-loops or multiple edges, where V = V(G) is the
vertex-set and E = E(G) is the edge-set. The symbol K|, denotes a com-
plete graph with n vertices. For two disjoint subsets X and Y in E(G), the
symbol Eg(X,Y’) (sometimes [X,Y] for short) denotes the set of edges in
G with one end-vertex in X and the other in Y. For the graph theoretical
terminology and notation not defined here, we refer the reader to [15].
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It is well-known that when the underlying topology of an interconnec-
tion network is modelled by a connected graph G = (V, E), where V is
the set of processors and FE is the set of communication links in the net-
work, the connectivity x(G) and the edge-connectivity A(G) of G are two
important measurements for fault-tolerance of the network. In general, the
larger k(G) or A(G) is, the more reliable the network is. It is well-known
that £(G) < A(G) < 8(G), where §(G) is the minimum degree of G. A con-
nected graph G is called to be k-mazimal and A-mazimal if £K(G) = §(G)
and A(G) = §(G), respectively.

Product graphs have always been a good method to construct large
graphs from small ones, thus it also has many applications in the design
of interconnection networks (see [14]). There are many ways to define
products of two graphs, the most widely used one may be the Cartesian
product, first introduced by Sabidussi [9]. In the same paper, Sabidussi
also proposed another kind of product, the strong product. It has been
known for a long time that the connectivity and the edge-connectivity of
the Cartesian product of two graphs are at least the sum of the connectivity
and the edge-connectivity of the two factor graphs, respectively (see [1, 10,
13]). Recently, the authors [16, 17] have determined the connectivity and
edge-connectivity of the Cartesian product of two graphs in terms of the
minimum degree, connectivity, edge-connectivity and vertex number of the
factor graphs. The connectivity of the strong product of graphs has been
studied by Sun and Xu in [11}].

In this paper, we study the connectivity of another two kinds of prod-
uct graphs, the lexicographic product and the direct product. Let G; =
(V4, E1) and Gy = (Va,E;) be two graphs. The lericographic product
Gy 0 G3 has V; x V, as its vertex-set, and two vertices =22 and y,y» are
adjacent if and only if either z,y; € Ey, or 1 = ¥1 and zay2 € E2. Accord-
ing to [6], the lexicographic product is first defined by Hausdorff [4]. Many
graph theoretical invariants of lexicographic product of graphs have been
studied in the literature, see [7, 8] for example. The direct product G, x G
also has the vertex-set V4 x V5. T'wo vertices z1z2 and y,y2 are adjacent
if and only if ;31 € E; and zoy2 € E;. The direct product sometimes
appears in the literature with other names, such as the cross product [2, 3|,
the categorical product [12], the cardinal product [5] and so on.

Note that in the sense of isomorphism the direct product satisfies the
commutative law, while the lexicographic product does not. The lexico-
graphic product and the direct product, together with the Cartesian prod-
uct (OJ) and the strong product (&), are the main four standard products
of graphs that is being treated in the monograph [6]. The monograph de-
votes to all aspects related to these products. The graphs shown in Figure
1 illustrate the differences of these four kinds of products.

In Section 2, we determine the connectivity and the edge-connectivity
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Figure 1: Four kinds of products of K3 and P,

of the lexicographic product G; o G, of two graphs G; and G, that is,
k(G10G3) = K1v2 and A(G10G2) = min{\1v2, §2+81v2}. And in Section 3,
we study the edge-connectivity of the direct product of K5 and an arbitrary
connected graph H and obtain that A(K2 x H) = min{2), 283, minj=,‘{j +
28;}}. All throughout this paper, d;, £, A; and v; will denote the minimum
degree, the connectivity, the edge-connectivity and the number of vertices
of the graph G;(i = 1, 2), respectively; while the parameters 8 and 8; will
be defined in Section 3.

2 Lexicographic product
Lemma 1 Let G, and G be two graphs, then §(Gy o G3) = 82 + 6,vs.

By simple observation, G; o G2 is connected if and only if G, is con-
nected.

Theorem 1 Let Gy and Go be two graphs. If G; is non-trivial, non-
complete and connected, then

K,(Gl (o] Gg) = K1Us.

Proof. By the hypothesis that G; is a non-complete graph, there are
separating sets in G; and Gy o G2. Let Sy be a minimum separating set of
G1. Then, by the definition, S; x V; is a separating set of G; o G5 and so
R(Gl o Gg) S |.S'1 X Vzl = K1V2.

Now, let S be any separating set of G; o G;. We need to show that
|S| 2 K1va. It is easy to see that there exist two vertices z1y; and zays
in G o G — S such that they are in distinct components of Gy 0 G2 — S



and z; # z2. Then z; and z, are not adjacent in G, otherwise ;3
and z,y, are adjacent in G; o G2, which means that S can not separates
7191 and z2y2 in Gy 0 Ga, a contradiction. So there are k; internal-disjoint
(a:l,:z:g)-paths P,PB,... ’Pm in G,.

Let P; = (z1,t1,t2,...,tk,x2). If for each j = 1,2,...,k there exists a
z; € Vo such that t;2z; ¢ S, then the (z1y1, z2y2)-path (2191, t121,. . ., trzk,
Zoyz2) avoids S in G; o Gz, which contradicts to our hypothesis that S
separates z1¥1 and zzy2 in Gy o Go. Thus, for each i = 1,2,..., k;, there
is at least one internal vertex t* in P; such that {t'} x V2 C S. It follows
that

K1
5] 2 Y I{t'} x Vo)l = K102
i=1

The proof is complete. a

By similar argument, it is easy to see that kK(K, 0 G2) = (n — 1)va + k2,
where G; = K,. So, G o G is k-maximal if and only if G, is a complete
graph and G is k-maximal.

Theorem 2 Let Gy and G2 be two non-trivial graphs, and G is connected,

then
AGyo Gz) = min{/\lvg, do + 51‘02}.

Proof. We only need to prove that A(Gy0G2) > min{A1v2, 6, +6,v} since
the reversed inequality is obvious by finding two edge-cuts of size A;v2 and
J2 + 81v2, respectively. Let G = Gy 0 Gy. For z € W, let G5 denote the
subgraph of G induced by {z} x V,. It is clear that G5 is isomorphic to
G,. Let B be a minimum edge-cut in G. Then G — B has exactly two
components (see, for example, the exercise 4.3.2 in [15]), denoted by C,
and Cg.

Let X = {z € V(G,) : zy € V(C,) forsomey € V(G3)} and ¥ =
{z € V(Gi1) : zy € V(C3) for some y € V(G2)}. Then X #Q and Y # 0,
clearly.

It XNY =0, then {X,Y} is a partition of V(G,). Thus

1Bl D |Ec(V(G5), V(G = |Ec,[X,Y][v] = Mo
zy€Eg, (X.,Y)

We assume X NY # P below and let 20 € X NY. Note that for each
neighbor z of zo, the graph that consists of the vertex-set V(G3°) UV (G3)
and the edge-set E¢(V(G3°), V(G%)) is isomorphic to a complete bipartite
K, v,, denoted by G[23°"], has edge-connectivity v;. Let Bz, = BN
Ec(V(G3°),V(G%)). Then |Bz,z| 2 ve for each neighbor z of zo, otherwise



G3° — B is connected through G%, a contradiction. Next we claim that
|Bzoz| + [Bzo| 2 62 + va, (1)

where B;, = BN E(G3°) and z is a neighbor of zo. Let D = V(G3°) N
V(C1), F = V(G3°) N V(C;), and assume that |D| < |F|. If D] = 1,
then (1) holds since |Bz,| > 82. If |D| 2 2, we will find |D]v, edge-disjoint
(D, F)-paths in G‘;M’]. Let D = {u1,u2,...,u:} and {wy,wa,...,we} C F.
Then for each #(1 < ¢ < t), there are vy edge-disjoint (u;,w;)-paths in
Gg””]: (ui,z2,w;) with 2 € V(G2). So all together, we find |D|v; edge-
disjoint (D, F)-paths. In order to disconnect D from F, we must have
|Bzo,z| 2 |D|va 2 2vp > 83 + v and (1) also holds. Let z;,z9,...,z5 be
&1 neighbors of z¢ in Gy, then

&1
|Bl > (IBzowei| + 1Bzol) + D 1Buo,al
=2

= Ga+va+ (81 —1)vg
= &+ 01va.

This completes the proof. O

3 Direct product
Lemma 2 Let Gy and Gy be two graphs, then §(G; x G2) = 6,6,.

Lemma 3 Let Gy and G2 be two non-trivial connected graphs, then G, x
G, is connected if and only if at least one of Gy and G2 is non-bipartite.

Proof. First assume both G; and G are bipartite graphs with partite sets
V(G:1) = (A, B) and V(G,) = (C,D). Then there are no edges between
the sets of vertices (A x C)U (B x D) and (B x C)U (A x D) in G; x G2,
hence G; x G3 is disconnected.

Conversely, we suppose, without loss of generality, that G5 is non-
bipartite. Then G> contains odd cycles certainly. To show that G x G2
is connected, it is sufficient to prove K2 X G is connected since G, is con-
nected. Let V(K3) = {a,b}. Let u and w be two vertices of K3 x G2, then
we have to show there is a (u, w)-path in K3 X G3. There are four cases: (i)
v = ez and w = ay; (ii) v = br and w = by; (iii) v = az and w = by and
(iv) v = bz and w = ay, where = and y are two arbitrary vertices in G5. The
first two cases are symmetric, and the last two cases are also symmetric.
In case (iii) » has a neighbor v’ = bz’ in K3 X G2, where =’ € Ng,(z), thus
case (iii) can be reduced to case (ii). So we only need to show that there is



an (az, ay)-path in K x G, namely case (i). Since G2 is connected, there
is an (z,y)-path in G,. If there is an (z,y)-path (z,z1, 29,..., 22k—1,%)
of even length in G3, then (az,bz;,az2s,...,bz:k-1,ay) is an (az, ay)-path
in K3 X G2, and so the lemma follows. Suppose below that there is no
(z,y)-path of even length in G.

Suppose that at least one of = and y, say z, lies in an odd cycle Cp =
(z,wy,w2,..., wa,z) in G2 and let Q = (y,2z1,22,...,2k) be a shortest
path from y to Cp in G2. Then V(Q) N V(Cy) = zr. If zx # =z, then
Q can be extend to an (z,y)-path G2 along Cp to z such that it is of
even length since Cp is an odd cycle, which contradicts to our hypothesis.
Thus, z; = z and Q is of odd length. Let & = 2m + 1, then Q can
be extended to an (z,y)-trail @* = (z,wa, ..., W2, W1, T, 22m, . . ., 22, 21, Y)
in G,. Therefore, (az,bws,...,bws, awy, bz, az2m,...,az22,bz1,ay) is an
(az,ay)-path in Ks x Ga.

Suppose now that neither z nor y lies in any odd cycle in G2. Let
C), be an arbitrary odd cycle in Go. Choose a shortest path P, from z
to Cy and a shortest path P, from y to Cp in G such that they have
as many common vertices as possible. If P; and P, have no vertices in
common, then they can be joint through Cj to form an even (z, y)-path in
G,, which contradicts to our hypothesis. Thus, P; and P, have vertices in
common. We assume that z; is the first common vertex of P; and P,. Let
(z,z1,--.,Zr,21) be the section of P; from z to z; and (y,¥1,...,¥s, 21)
be the section of P, from y to z;. By our hypothesis, r 4+ s is odd cer-
tainly. By the choice of P, and P,, we can suppose that a common sec-
tion of P; and P, from z; to zx is (21,22,...,2k). So, without loss of
generality, assume r = 2m, s = 2h + 1 and k = 2n (the case that k is
odd is similar). Let C§j = (wy,ws,..., w41, w1) Where wy = 2¢. Then
(a$, b$l, o v ey QT2m, bZ]_, v00y @220, b’LU2, <., QW2t41, szm ...,a2y, by2h+1’ ey
byy, ay) is an (az, ay)-path in K2 x G2. The proof of the lemma is complete.
O

Lemma 4 Let G be a connected graph, and H be a spanning bipartite
subgraph of G with mazimum number of edges, then H is connected.

Proof. Let {X,Y} be a bipartition of H. Suppose to the contrary that H
is not connected. Then H can be view as the union of two disjoint bipartite
graphs H; and H, with partitions {X;, Y1} and {X2, Y2}, respectively, such
that X = X; UX; and Y =Y; UY,. Then there is neither (X}, Y3)-edges
nor (X2, Y;)-edges in G since H has maximum number of edges. But G is
connected, so there is at least one edge e in G but not in H, linking H;
and H;. So e must be an (X}, X3)-edge or a (Y1,Y2)-edge. Let H' be the
spanning bipartite graph of G induced by the bipartition {X;UY3, XoUY1}.
Note that all edges of H still lie in H’, and H’ has at least one more edge
e, a contradiction. ]



Lemma 5 Let H be a connected bipartite graph and Ky be a complete graph
with vertez-set {a, b}, then Ko x H has ezactly two components. Moreover,
for each x € V(H), ax and bz are in distinct components of K2 x H.

Proof. Let {X,Y} be a bipartition of H. By Lemma 3, K, x H is not
connected. The subgraph induced by ({a} x X)U ({6} x Y) is isomorphic
to H, hence is connected and is one component of K5 x H. The other
component is the subgraph induced ({§} x X) U ({a} x Y). Thus the

lemma follows. 0

Note that especially, Lemma 5 is true for H = K, which is a degen-
erated bipartite. Let 8(G) be the minimum number of edges in a subset
F C E(QG) such that G- F is bipartite (including the degenerated bipartite
K,). It follows immediately from the definition that 3(G) = 0 if and only if
G is bipartite. For each j > A, let 8;(G) = min{B(C) : C is a component
of G— B for an edge-cut B consisting of j edges in G}, where the minimum
is taken over all components of G — B for any edge-cut B consisting of j
edges in G. We omit the graph G in the parenthesis of § and 8; when the
underlying graph G is clear by context. Obviously, for a given graph G,
Bi+1 < max{B; — 1,0}, B; < B forall j > A, and B5 = 0 (we view K; as a
degenerated bipartite, so 3(X;) = 0).

Theorem 3 Let H be a non-trivial connected graph of edge-connectivity
A, minimum degree 8, 8 = B(H) and B; = B;(H). Then

Az x H) = min{2), 26, min{s + 26;}). )

Proof. If H is bipartite, then the lemma holds by Lemma 3 and the fact
that 8 = 0. So in the rest of the proof, we assume H is non-bipartite. We

first prove
]
A(K2 x H) < min{2A, 28, 13111}\1{] + 2651} 3)

To do this, let By be a minimum edge-cut of H. Then B = {(az, by),
(bx,ay) : zy € By} is an edge-cut of K2 x H and |B| = 2|By| = 2), which
implies A(Ky x H) < 2A.

Let F be a set of edges consisting of 3 edges in H such that H — F' is
bipartite. Then B = {(az, by), (bz,ay) : zy € F} is an edge-cut of K3 x H
and (B = 2|F| = 2@ since K x H — B = K3 x (H — F) is the direct
product of two bipartite graphs. This fact shows A(K; x H) < 26.

Now, for each A < j < 4, let B; be an edge-cut consisting of j edges of
H, and C; a component of H — B; with 3(C;) = ;. Hence there is a set
of edges F; of C; such that |F;| = §; and C; — Fj is bipartite. Let

B' = {(az, by), (bz,ay) : zy € F;}.



Then (K3 x C;) — B’ = K3 x (C;j — Fj) is the direct product of two bipartite
graphs and, hence, disconnected. By Lemma 4, C; — F; is a connected
bipartite graph and, hence, by Lemma 5, K3 x (C; — Fj) has exactly two
components and az and bz are in distinct components for each z € V(Cj).
Let C be a component of (K2 x C;)— B’. Define a injection mapping ¢ from
Bj to E(K2 x H) as follows: for each edge e = zy € B; with z € V(C;),
p(e) = (az,by) if ax € V(C); and p(e) = (bz,ay) if ax ¢ V(C)(which
implies bx € V(C)). Let
B" = ¢(By).

Then B’ U B” is an edge-cut of K, x H since C is a component of (K2 x
H) - (B'UB"). And |B'UB"| = |B'| +|B"| = 2|Fj| + |B;| = j + 2B;,
which implies that A(K2 x H) < min_,{j + 26;}, and so the inequality
(3) follows.

Next, we will show
5

Let B = [S, 5] be & minimum edge-cut of K2 x H. Partition the vertex-
set V(H) into four parts:

P={zeV(H):aze85bzxecS}, Q={zeV(H):az€ S bze S},
R={zeV(H):aze€S,bzeS}, T={zeV(H):aze S, bzeS}

And let Z = RUT. We prove the inequality (4) by considering the following

four cases, respectively.
Case 1: Z =0, then P# 0 and Q # 0. Hence

|B| 2 2|[P, Q]| = 2X.

Case 2: Z # 0, P # 0 and Q # 0. Without loss of generality, we may
assume |Ey(P,Z)| < |Eu(Q, Z)|. Note that [P,Q U Z] is an edge-cut of
H, so |[P,QU Z]| > X For each edge =y € [P, Q], we can see that both the
edges (az,by) and (ay, bz) are in B. For each zy € [P, Z] or xy € [Q, Z],
exactly one of (az, by) and (ay, bz) is in B. Thus,

| Bl 2|(P, Q] + I[P, Z]| + 1@, Z]|
2|[P, Q) + 2|7, Z]]
2I[pQuUZ)

2X.

Vil Vv

Case 3: Z # 0, P=Q = 0. Then for each edge zy € E(G[R]) or
zy € E(GI[T)), both the edges (az,by) and (ay,br) are in B. Note that

10



H — (E(G(R]) U E(G[TY])) is bipartite, hence
|Bl = 2(|E(G[R])| + |E(G[T])]) > 28.

Case 4: Z # 9, and exactly one of P and Q is empty. By the symmetry,
we may assume that P # @ and Q = 0. Let C be a maximally connected
subgraph of H such that V(C) C Z, and let R" = RNV(C) and T" =
TNnV(C). Finally let X = Ny(C), then X C P by the maximality of C.

Then
|B| 2 |[X, V(O)l + 2(|E(G[S))] + | E(GT))))- (5)
Let k£ =|[X,V(C)]|. If k > 4, then by (5),

5
[BI > 8 = 6+ 205 > min{j +26;}.
If £ < 4, by (5) we have
)
|B] > k+ 26k > IJI}_}Q{j +28;}.

Thus, the proof of the theorem is complete. O

We conclude by mention that each item of the right side of equation (2)
cannot be omitted, since it is possible to find a graph with one item, say
28, strictly less than other items. Such examples are easy to construct so
we do not give them here.
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