ON THE AVERAGE CROSSCAP NUMBER OF A GRAPH
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ABSTRACT. The average crosscap number of a graph G is the ex-
pected value of crosscap number random variable, over all labeled
2-cell non-orientable embeddings of G. In this study, some experi-
ment results for average crosscap number are obtained. We calculate
all average crosscap number of graphs with Betti number less that 5.
As a special case, the smallest ten values of average crosscap number
are determined. The distribution of average crosscap number of all
graphs in R is sparse. Some structure theorems for average crosscap
number with a given or bounded value are provided. The exact values
of average crosscap number of Cacti and Necklaces are determined.
The crosscap number distributions of Cacti and Necklaces of type
(r,0) are proved to be strongly unimodal, and the mode of embed-
ding distribution sequence is upper-rounding or lower-rounding of its
average crosscap number. Some open problems are also proposed.

1. INTRODUCTION

The average genus Y,04(G) of a graph G is the expected value of genus
random variable, over all labeled 2-cell orientable embeddings of G, using
the uniform distribution. This concept is investigated by various authors,
the contributions include (1, 2, 3, 4, 6, 11, 16, 19, 20, 23, 24, 25] and [25].
In [16], Gross, Klein and Rieper investigated average genus of an individual
graph and asked for an analogous theory about non-orientable embeddings
of G. The average crosscap number is little known, compared to the average
genus. In this paper we will investigate the average crosscap number of
individual graphs.

It is assumed that the reader is at least somewhat familiar with the
basics of topological graph theory, as found in Gross and Tucker [18]. A
graph G = (V(G), E(G)) is permitted to have loops and multiple edges.
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A surface is a compact 2-dimensional manifold, without boundary. In
topology, surfaces are classified into the orientable surfaces O4, with g
handles (g > 0), and the non-orientable surfaces Ni, with k crosscaps (k >
0). The graph embeddings under discussion here are cellular embeddings.
For any spanning tree of a graph G, the number of co-tree edges is called
the Betti number of G, or the cycle rank of G, and is denoted by B(G).

1.1. General rotation system. A rotation at a verter v of a graph G isa
cyclic ordering of all the edge-ends (or equivalently, the half-edges) incident
with v. A pure rotation system p of a graph G is the collection of rotations
at all the vertices of G. An embedding of G into an orientable surface S
induces a pure rotation system as follows: the rotation of the edge-ends at v
is the cyclic permutation corresponding to the order in which the edge-ends
are encountered in an orientation-preserving tour around v. Conversely,
by the Heffter-Edmonds principle, every rotation system induces a unique
embedding (up to homeomorphism) of G into some oriented surface S. The
bijectivity of this correspondence implies that the total number of oriented
embeddings is [],c(dv — 1)!, where d, is the degree of vertex v.

A general rotation system for a graph G is a pair (p, ), where p is a pure
rotation system and X is a mapping E(G) — {0,1}. The edge e is said to
be twisted (respectively, untwisted) if A(e) = 1 (respectively, A(e) = 0). It
is well-known that every oriented embedding of a graph G can be described
by a general rotation system (p, ) with A(e) = 0, for all e € E(G).

1.2. Average crosscap number. By allowing A to take non-zero values,
we can describe the non-orientable embeddings of G. For any fixed spanning
tree T, a T-rotation system (p,A) of G is a general rotation system (p, A)
such that AMe) = 0, for all e € E(T). Any two embeddings of G are
considered to be the same if their T-rotation systems are combinatorially

equivalent.
Let ®Z denote the set of all T-rotation systems of G. It is known that

8% = 25O [T (dv —1)!
veV(G)

This implies that the number of non-orientable embeddings of G is

@ -1 J] @ -

veV(G)

Suppose that among these |®%| embeddings of G, there are a; embeddings,
fori=0,1,..., into the orientable surface S;, and there are b; embeddings,
for j = 1,2,..., into the non-orientable surface N;. We call the bivariate
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polynomial

[ o] oo

IZ(z,y) =D as* + ) by
i=0 i=1

the T'-distribution polynomial of G.

By the total embedding distribution polynomial of G, we mean the bi-
variate polynomial I¢(z,y) = I%(z,y), for any given spanning tree T. We
call the first and second parts of Ig(z,y) the genus polynomial and the
crosscap number polynomial of G, respectively, and we denote them by
96(z) = T oo aiz’ and fo(y) = Yoo, biy', respectively. Thus, Ig(z,y) =
96(z) + fe(y).

Definition 1.1. The average crosscap number ((or ACN in short)¥aug(G)
of a graph G is the ratio of the sum of all crosscap numbers of the non-
orientable embeddings over the number of the non-orientable embeddings

of G.

1.3. Joint tree method. By a polygon with r edges, we shall mean a
2-cell which has its circumference divided into r arcs by r vertices. In fact,
a surface can be obtained by pairing the edges of a polygon and identifying
the two edges in each pair. The following three operations [21] on a cyclic
string representing such a polygon do not change genus of such a surface.

Operation 1: Aaa™ ~ A,

Operation 2: AabBab ~ AcBe,

Operation 3: AB ~ {(Aa),(a”B)},
where A and B are all linear order of letters.

We have the following relations [21].

Relation 1: AaBbCa~Db—E ~ ADCBEaba™b".

Relation 2: AxzBzC ~ AB~Czz,

Relation 3: Azzyzy~ 2~ ~ Azxyyzz.

Relation 1 is also called handie normalization, Relation 2 and Relation
3 are called crosscap normalization. In three relations, A, B and C are
permitted to be empty. B~ is the inverse of B. By Relations 1, 2 and
3, we can obtain the normal form of a surface as one, and only one, of:
Oo = aa~, O = [Tie, aibia; b7 (m > 0), N, = [T'., a:ai(n > 0).

The joint-tree approach [21] is an alternative to the Heffter-Edmonds
algorithm for calculating the genus of the surface associated with a giv-
en rotation system. The rotation system is what combinatorializes the
topological problem; a joint tree can be regarded as the combination of
a spanning tree and a rotation system. Given a T-rotation system (P, A)
of G, the associated joint tree, denoted by Gr, which is obtained by the
following two cases: If A(e) = 0 for a co-tree edge e, we split e into two
semi-edges e and e, otherwise A(e) = 1, we split e into two semi-edges
e and e. Then we travel along the rotations, all semi-edges of G form a
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polygon A with B(G) pairs of edges. Finally, we apply Relations 1, 2 and
3 and Operations 1, 2 and 3 to normalize the polygon A and get the genus
or crosscap number of the embedding. Based on joint trees, the topologi-
cal problem for determining embeddings of a graph is transformed into a
combinatorial problem. For more details, we can also refer to [27, 28].

Example 1. Given graph G=(V, E), V = {v1,v2,v3, %4}, E = {a,b,¢,d, ¢, f},
a,band d are edges on T, ¢, e and f are co-tree edges. The rotation system
R at each vertex is counterclockwise: v;(dea), va(afb), vz(bec), va(cfd).
We travel along on Gt according to the rotation system and obtain the
polygon c~cfef~"e~ ~ fef~e~, which is an embedding of G into torus
(See Figure 1).

FIGURE 1. The graph G and it’s joint tree Gr.

If we associate the graph G with the T-rotations (P, A) as follows: A(c) =
1, and A(e) = 0, for all e € E — {c}. In this case, we have ccfef~e~ ~
ccf fee (Relation 3) ~ Nj. In other words, the T-rotations (P, A) corre-
sponding to an embedding into N3.

The outline of this study is as follows. In Section 2, a theorem on the
ACN of a bar-amalgamation of two graphs G and a splitting theorem for
ACN are provided. In Section 3, all ACN for graphs with Betti number
less that 5 are given, and structures for the ACN of G with a given or
bounded value are provided. In Section 4, we show that the distribution
of ACN of all graphs is sparse in R. Different examples are constructed to
demonstrate that a single value of ACN can be shared by arbitrarily many
different graphs are discussed in Section 5. In Section 6, we investigate
the relationship between the ACN and the mode of embedding distribution
of general graphs. Finally, in Section 7 we mention some problems which
further research on this topic might follow and a table of the average genus
and ACN is present.

2. STRUCTURE FOR A GRAPH WITH ACN

2.1. The ACN of bar-amalgamation of two disjoint graphs. A bar-
amalgamation of two disjoint graphs H and G is obtained by running
an edge between a vertex of G and a vertex of H. Gross and Frust [17}
proved the genus polynomial for the bar-amalgamation of two disjoint
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rooted graphs (G,u) and (H,v) is a constant multiple of the product of
the genus polynomial for graph G and H. The constant factor equals the
valence of z in G times the valence of v in H.

Theorem 2.1. (See [17]) gce.u(z) = do(u)dr(v)ge(z)gu ().
By Theorem 2.1, we have:

Corollary 2.2. (See [4]) Yavg(G Pe H) = Yavg(G) + Yavg(H).
We have:

Theorem 2.3. foo.u(y) = do(u)dn(v) [fa(y)fy(y) T fol)an(?®) +

9c(¥?) fu(v)|, where dg(u) is the vertex degree of u in G and dg(v) is
the vertex degree of v in H.

Proof. Let Pc (Py) be the pure rotation systems of the graph G (H).
Then every pure rotation system Pgg g can be obtained by inserting the
edge uv and taking the union of the two adjusted systems.

Since the total genus polynomial of a graph is independent of the choice
of its spanning tree, we arbitrarily choose a spanning tree Tg (Tx) of G
(H). For a general rotation system (Pg,A) of G (H) such that A(e) =
0,Ve € E(Tc) ((Py, ) such that A(e) = 0,Ye € E(Ty)) . Then, replace
each edge not of T (Ty) by two semi-edges with the same letter. we label
the same letter with the same or distinct indices according to A(e) = 1
or A(e) = 0. So we get the joint tree Gy(H)) of G(H). It is evident that
the tree Tg ®. Ty is a spanning tree of G &, H. So we get the general
rotation system (Pgg, f, ) of G ®. H where Ae) = 0,Ve € E(Tg ®e TH)
and \e) = 1,if A(e) = 1 in (Pg, A) or (Py, ). Similarly, we replace each
edge not of Tg ®. Ty by two semi-edges with the same letter. we label
the same letter with the same or distinct indices according to A(e) =1 or
A(e) = 0. So we get a joint tree (G ®. H), of G @, H.

From above discussion and according to that rotation, all lettered semi-
edges of G1(H;) form a polygon A(B) with 8(G)(B(H)) pairs of edges.
From the definition of (G ®. H);, we similarly get the polygon AB with
B(G &, H) pairs of edges. Now let’s consider how to construct the em-
bedding into a non-orientable surface of the bar-amalgamation that corre-
sponds to that of general rotation system.

Case 1 The original G general rotation system corresponds to an em-
bedding of G into the surface Ny and that the original H general rotation
system corresponds to an Np. Or equivalently

k h
A~ ] aia; and B~ []b:b

i=1 i=1
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By Relation 2

k h k+h
AB ~ H a;Q; H bib,' ~ H a;a;
i i=1 i=1

So the crosscap number of this resulting surface on which the graph G®. H
embeds is k + h.

Case 2 The original G general rotation system corresponds to an em-
bedding of G into the surface O and the original H general rotation system
corresponds to an embedding of H into the surface Np. Or equivalently

k h
A~ J]abiarb; (k>0) or A~aa~(k=0) and B~ ] bib;

i=1 i=1

By Relations 3 and Operation 1
2k+4-h

k
AB ~ [] asbia]b; be ~ H a;a;

=1

or
h 2x0+h
AB ~ aa” Hbibi ~ H a;a;
i=1 =1

So The crosscap number of this resulting surface on which the graph G, H
embeds is 2k + h.

Case 3 The original G general rotation system corresponds to an em-
bedding of G into the surface N and the original H general rotation system
corresponds to an embedding of H into the surface On. By symmetry and
Case 2, we know the crosscap number of this resulting surface on which the
graph G @. H embeds is k + 2h.

a
Corollary 2.4.
~ 28(H) _ -
'Yavg(G e ) 7avg(G) + "/avg(H) + W— (270.1:9(0) - 'Yavg(G)>

28(G) _1 _
+ W (27"'"9(H) - ‘7aug(H)> ‘

Proof. Since F,44(G) = 72%’ by theorem 2.1, we have the following for-
mula

- 28(H)(28(G) _ 1) _ 28(G)(28(H) _ 1) _
Voua (G @ H) = Zgzgmmy—7 Yovs (C) + Sa@rraamy =7 Yove (H)
2(28(6) — 1) 2(28H) 1)

9B(CY+BH) — 1 2% (H) + 2B(CY+A(H) _ | Tove (©)-

which is equivalent to the formula of the corollary. O
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2.2. A splitting theorem for ACN of a graph.

Definition 2.5. Suppose the graph G = (V, E) is simple. Let u be a
vertex of G of valence d(u) = d+1 > 3 and v, v1, v, ...,v4 be its neighbors
(u € V). We denote the edge uv; by e;, for i =1,2,...,d, and the edge uv
by f. The graph G, ... ;, is called a k-degree proper splitting of G at u if it
can be obtained from G — u by adjoining v, v;,,...,v;, to a new vertex z,
adjoining all the other ex-neighbors of u to a new vertex y (; € {1,2,...,k},
forl=1,2,...,k and d > k > 1), and finally adjoining z and y.

The new vertex z is (k + 2)-valent for each G, .. i, and the new vertex
y is (d — k + 1)-valent. Let A be the set of all graphs G, ... i, then the
number of elements in A is (§). It is obvious that each graph Gi,,... s, has
the same the Betti number as that of G, and they can contract the new
edge zy to get the graph G. Figure 2 gives an example of a 2-degree proper
splitting of G at u.

G w o s
v
4
v v my  w ™
(DY vy Uy vy g
G2 G Gu
" R no )
L) LD 1y
t),; :v‘ v.; :», g
Gn G G

FIGURE 2. The 2-degree proper splitting of G at v with a
designate neighbor v

Lemma 2.6. [13] Let G be a connected graph with a vertex of valence d+1,
d >3, Giy g, ins 35 € {1,2,...,d}, be a graph obtained by k-degree properly
splitting at vertez u, and let A be the set of all such graphs Gi, i,,....i,. Then
we have

1
fo(z) = P Y. fei.s ().
Giyig,....ip EA

Theorem 2.7. Let G be a connected graph with a vertez u of valence
d+1(d > 3), and let Gi, i,,....i. (i; € {1,2,...,d}) be graphs obtained by
k-degree properly splitting at vertex u, and A be the sets of all the graphs

Gisia,...in- Then we have Faug(G) = 15 > Favg(Girigreia)-
Gi).ig ..... ikeA

Proof. 1t is directly from Lemma 2.6. |
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3. ACN FOR GRAPHS WITH BETTI NUMBER LESS THAT 5

3.1. 2-edge-connected graph with small average crosscap number.
Gross, Klein and Rieper [16] have studied 3-connected graphs with small
average genus. They proved K} is the only 3-connected graph of graphs less
than 1. Chen and Gross [4] characterized all 2-connected graphs of average .
genus less than 1. They also obtained the Kuratowski type theorems for
average genus. In [4], obtained the following result.

Theorem 3.1. (see [4]) The ACN of a graph is not less than the ACN any
of its subgraphs.

By Theorem 3.1, it is obvious that the number 1 is the smallest one. So
we turn to other the smallest positive numbers. It is should be noted that
all the computations are aided by a computer program.

Definition 3.2. Let G = (V,E) be a graph. A linear synthesis L =
[Po, P1,...,P;) of G is a partition of E into an ordered collection of edge
disjoint subgraphs Py, P, ..., P of G, such that P, is a subgraph, each P;
is a simple path for, ¢ = 1,...,r, and each endpoint of P;, : = 1,...,r, is
contained in some P;, with j < 1. The Ps,i=1,...,r, are called the paths
of L and r is called the length of L. We call L an open linear synthesis if all
paths P;, i =1,...,r, are not simple cycles. Otherwise we call L an closed

linear synthesis.
In [4], proved the following theorem.

Theorem 3.3. (see [4]) A graph G has a linear synthesis from a simple
cycle if and only if G is 2-edge-connected.

In this subsection, we will calculate the ACN of all 2-edge-connected
graphs with Betti number less than 5. By Theorem 3.3, we can begin our
process by adding a path to a simple cycle. Since adding a path to a graph
increase the cycle rank of the graph by 1 and the length of a linear synthesis
of a graph from a simple equals the dimension of its cycle subspace minus
1, we only need to add at most 3 path to a simple cycle in order to obtain a
graph of Betti number at most 4. Since the ACN is a topological invariant
under graph homeomorphism, we can suppose all the graphs in this section
with minimum degree at least 3.

Definition 3.4. We define the class of graphs Ci to be the classes of 2-edge
connected graphs with Betti number k.

It should be note that the class Ci; can be obtained from C, by adding
a path to the graphs which contained in Cg. It is obvious that the class C;
is the graph B; which homeomorphic to a simple cycle. In other words,

C,; = ¢ By ;. It is a routine task to compute the ACN of B; and we get
Vavg(B1) =1
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Now we obtain the classes of graphs which contained in C,. By Theorem
3.3, there are 2 nonhomeomorphic graphs that can be obtained by adding a
path to a simple cycle. One is adding an open path to the simple cycle, the
other is adding a closed path to a simple cycle. Actually they are graphs

B; and Dj3. In other words, we have C; = {Bz, D3} (See Figure 3). We
D B,

FI1GURE 3. Two graphs By and Dj

have: . )
?009(32)= 1=, '~Yavg(D3)= 15

©

Now we consider the graphs in C3. We first adding a path to the graph
D3. There are three nonhomeomorphic graphs that can be obtained by
adding an open path e to Dj3: if one end of e is connected to a vertex v of
D3, then the other end of e could be (1) connected to another vertex u of
D3, (2) connected to the middle of any edge of D3. If neither end of e is
connected to a vertex of D3, then either (3) two ends of e are connected
to middle of any two edges of three edges of D3, or (4) two ends of e
are connected to the middle of an edge of three edges of D3. There are
two nonhomeomorphic graphs that can be obtained by adding an closed
path f to Ds: (1) the vertex of f connected to the vertex of Ds, (2) the
vertex of f connected to the middle of an edge of D3 (Figure 4 lists all
these five graphs). We call these graphs Daj, D33, D33, D34, D3s, and Dsg,
respectively.

Dy, 503:. Dyg

FIGURE 4. Six graphs D31, .D32, D33, D34, D35, and Dsg
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It is routine task to compute the ACN of graphs Day, Dag, ..., D3g and
we get

~ 3 1 . 1
Yavg(D31) = 25 Tavg(D32) = 23 Favg(Das) = 23
~ 1 1 1
"Yavg(D.'M) B 2:1- Yavg (DSS) = 6 Yavg (D35) = 2Z

Now we consider the graph B and adding path to B;. There are three
nonhomeomorphic graphs that can be obtained by adding an open path e
to Ba: (1) one end of e is connected to the vertex v of By, the other end of e
the middle of an edge of any two edges of Ba, (2) one end of e is connected
to the middle of the edge e of B, the other end of e is connected to the
middle of the other edge f of B;. (3) the two ends of e are connected the
middle of the same edge of B;. There are two nonhomeomorphic graphs
that can be obtained by adding an closed path f to Ba: (1) the vertex of f
connected to the vertex of Bs, (2) the vertex of f connected to the middle
of an edge of Bs. Figure 6 lists all these five graphs. We call these graphs

Bs1, Baa, Bas, Ba,, and Bgs, respectively.

&S aond

FIGURE 5

It should be note that the graph Bs; is homeomorphic to the graph
D36 which has ACN 2;11-. The graph By, is homeomorphic to the graph Djs
which has ACN 2}. B3 is homeomorphic to the graph D33 which has ACN
2%. We have:

- 5 19
Yavg(B24) = 2@', Yavg(Bas) = 2@

In other words, we have C3 = {Dal, Dasa, ..., D3sg, Bay, Bgs}

Remark 3.6. By Theorem 2.7, we have Jaug(Ds2) = 3 (:Yaug(Bl ®e D34) +

2f“y'a.,g(D31)), Favg(Das) = 1 (w,wg(Bl ®. Ds) + 2%.,9(1334)), etc.

By Theorem 3.1, we have the following result.

Theorem 3.7. Let G be a 2-edge connected graph. Then G has ACN less
than or equal to 2 if and only if G is homeomorphic to By, Bs or Dj3.
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Theorem 3.8. A real number r in the half open interval [1,2) is a value
of ACN of a 2-edge connected graph if and only if r is equal to 1, 1%, or 1%.

In a similar discussion like above, we obtain all 2-edge connected graphs
with Betti number 4. See Figure 6.

AAANANAA

Dan Dy Dyia Dyya Days Dsse

D7 Dais Dy Dyzz Daas
Dazg D:soi Dyayg
Dy Dz Dsais Ds3ia D.ms

Dys Danr Daaso g Dyan 613.«11 Daara

DLEES58 L

Disya

E% g Dis14 Dysis i Dysie 9 Dasyz
Dazis Dyz1o E D:wwE Dsany Dsaia
Baa B2

FIGURE 6. 2-edge connected graphs with Betti number 4

The ACN of the graphs D31, Daig, ..., Dais be 336’ 3396101 30, 31;8

333, 38%, 33160, 3% respectively. The ACN of the graphs D3z, Dags,

D3o4, D3gs and Daog be 3376’ 332, 3970, 2%3;, 3 3 respectively. The AC-
N of the graphs Dasg, Daa3, Daas, Dazs, Dsaio, D3311, ..., Daa15 be 3%,

B .
35%,34,3L,35%,3%, 24,2188 313 respectively. 7The JIQCNlnl)g th(’e’ 1graq;sh;
s D3421 D344: D347, D3410, D3411, D3414 be 345) 3goa 3120, 2135 120° 2721 21 0

2 }21, ’ 355 1;0 The ACN of the graphs D359, D3514, D3515, D3519 be 327 y 2 }88 N

2357,243,2433 2228 922 respectively. The ACN of the graphs Dsgs, Dag1o,
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D3g11, D3s13 be 3,271, 351,242, respectively. The ACN of the graphs
B341, B2az, Baas, Bass be 2331,2283 o413 21578,

Remark 3.9. By Theorem 2.7, we have Yayg(D311) = %(‘%ug(ng) +
27aug(D314)), Yavg(D312) = %("Yavg(Dsls) + 2’Y'aog(D314)), Yavg(D313) =

§ (Tews(Dots) + Foug (Dira)) et
By Theorem 3.1 and the above discussion, we have the following result.

Theorem 3.10. Let G be a 2-edge connected graph. Then G has ACN
less than or equal to 3 if and only if G is homeomorphic to By, By, Dy,
Day, ..., Das, Baa, Bas, Dazs, Dasi2, Das1a, Daaro, D3d11, Daarz, Dagis,
Dss7, Dse10, D313, B2as, or Bogs.

Theorem 3.11. A real number r in the open interval (2,3) is a value of
ACN of a 2-edge connected graph if and only if r is equal to 23%, 2%, 2%,

1 9l 93 0289 5301 0d3 0223 oll3 o157 oll o139 olI3 odd o7l
2 ’ 23’ 28’ 2405’ 2405’ 254’ 2270’ 2135’ 2180’ 212’ 2150’2120’ 255’ 272’

134 1573
2@, or 21-5%
3.2. 1-edge-connected graphs with small average crosscap num-

ber. In this subsection, we will calculate the graphs with ACN not larger
than 3.

Definition 3.12. Defined E; to be the set of all 1-edge-connected graphs
with Betti number ¢ (i > 2).

The graphs of E; can be obtained by the bar-amalgamation of two dis-

joint graphs with smaller Betti number. Since C; = {B1 }, C, = { B, D3}

and C3 = Da1,D32,---,Dss,Bszzs}, we have E; = C; . Cy, E3 =

Ci®PCrand E4 =C; b C3 UC2 ®e C2
In [4], calculated the following:

1 1 7
7‘109(31) = 0 7:1119(32) = § 'Yavg(DS) = 5’ 'Yavg(DSI) = §
5 5 3 2
’7uvg(D32) = 3 'Yavg(D33) = I 'Yavg(D34) = 1 ’Yavg(D35) = 3
9 5 2
'Yaug(D36) = Z 'Yaug(B24) = § 'Yavg(B25) = §

Let G%, be the graph of bar-amalgamation of G and G. For n > 3, we
define Gg_ be the graph of bar-amalgamation of G and Gga:l. By Corollary
2.4, we have
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Fos(BrOB) = 13 Gag(Bi@cBa)= 1
Favg (B1 ®e Ds) = 2 Fug(Br@cDu)= 2
Fave(B1 ©c D3g) = 2% Favg(B1 e Dis) = 2%
FawoBr @ Dss) = 27z Feu(Bi@c D)= 23
Yavg(B1 ®e D3g) = 2% Yavg (B1 ®e Bag) = 2-1-%
Yavg(B1 ®e Bas) = 2-;—‘21% Yavg(B2 ® Bz) = 2;‘-3-2-
Tog(Be®D3)= 235 FwsDs®Ds)= 2
Tava(Blg,) = 1; Favg(Blo, ®e B2) = 21_2
Touo(Bly, @ Ba) = 2on  Faug(Bl, @.Da)= 2
Favg (B3, ®¢ Bs) = 2%‘? Fovg(BL, ) = 2135
Favg (B, ) = 2%?

By the above discussion, we have

Theorem 3.13. Let G be a 1-edge connected groph. Then G has ACN
less than or equal to 2 if and only if G is homeomorphic to B, , B}, or
B, ®. Bo.

Theorem 3.14. A real number r in the closed interval [1,2] is a value of
ACN of a 1-edge connected graph if and only if r is equal to 1%, 1-.5;, 1% or
2.

Theorem 3.15. A real number r in the open interval (2,3) is a value of

. : . 2 16 7
ACW of o 1-edge connected graph if and only if 7 is equal fo 253, 235, 215,
231 2138 27050 2350 25250 235 2150 235 2579, 2350 215 257
Theorem 3.16. The smallest ten values of ACN are 1, 13, 1§, 13, 18,

19 5 2 19
1311 2, 263, 2175, and 2y
4. THE DISTRIBUTION OF ACN

By Corollary 2.2, for every positive integer k, there exists a graph G
which has average genus equals to k. We know that Y.0e(B1) = 1, and
Yavg(B1 @ D3) = 2. However, by Section 3, we know that 3 is not a value
of ACN for a graph.
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Theorem 4.1. Not all integers are values of ACN for graphs.

Theorem 4.2. (see [7]) Let G be a connected graph which is not a tree,

then
98(6)-1

WB(G) < Favg(G) < B(G).
Furthermore the bounds are best possible.

Corollary 4.3. Let G = (V, E) be a connected graph with minimum degree
at least 3, then Yo (G) > Jﬁle—ﬂ.
Proof. Since 6(G) 2> 3, we have 2|F| = Z d(v) = 3|V|. Thus,
veV
BG) _|EI-IVI+1_ |E[-3IE|+1 _ |E|+2
2 2 - 3 6

Favg(G) >
(]

By Corollary 4.3, we have:

Theorem 4.4. Let r be a finite number. the number of non-homeomorphic
graphs whose ACN is bounded by or equal to  is finite.

By the above theorem, the distribution of ACN is sparse in R: within
any finite real interval, there are at most finitely many different numbers
are values of average crosscap number of graphs.

A sequence {G;} (¢ = 1,2,...) of graphs is called strictly monotone
sequence if each G; is homeomorphic to a subgraph of G;;1 and no graphs
in the sequence are homeomorphic. For average genus of a graph, Chen and
Gross [4] have proved that adding to a single edge many ears is essentially
the only way to obtain a limit point of average genus. While for the ACN
of a graph, it is may not true.

Theorem 4.5. Let {G;} (i = 1,2,...) be a strictly monotone sequence of
graphs, Then the ACN of the sequence {G;} does not exist limit points.

Proof. By Theorem 3.1, Yaug(Gi) > Fovg(Gi-1) (i > 2). By Theorem 4.2,
the theorem follows O

5. SHARED VALUEs oF ACN

We know that ACN is an homeomorphic invariance of a graph. Thus,
two isomorphic graph may share the same values of ACN. But a natural
question is posed: Whether two non-homeomorphic graphs have the same
ACN or not. Of course, the answer is affirmative. We can easily find some
graphs in section 3 and section 4. For example: the graph Ds3; and Dj3
have ACN 2%. D34 and D3g have ACN 2%, etc. Now, we use three different
methods to construct many non-homeomorphic graphs which share the
same ACN.

120



5.1. Adding ears serially to an edge of a graph. Let G be a graph and
e € E(G), if we insert two vertices u and v and double the edge between
them, we say we attach an open ear to the interior of e. Similarly, if the
vertices u = v, then we say we attach a closed ear to the interior of e. The
two vertices u and v are called the ends of the ear. We say r open ears and
s closed ears are attached serially to the edge e, if all ends of the ears are
distinct. Now we add r closed ears and s open ears to an edge of a graph
G. we denote the set of result graphs by G, ;. It is easy to see that any two
non-homeomorphic graphs G; and G2 of G, have the same total genus
polynomial. Of course, they share the same ACN.

Example 2. A cactus and a necklace can be obtained by adding a series
of closed ears and open ears to a single edge or a cycle graph, respectively.
All cacti (necklaces) have the same ACN.

5.2. Using the operation of bar-amalgamation. Let G;, fori=1,2, and
H;, for i=1,2, be connected graphs. By Theorem 4.3, if 8(G;) = B(G2),
ﬁ(Hl) = ﬂ(HZ)) Wavg(Gl) = ﬁavg(G2) and ﬁaug(Hl) = ?aug(H2)’ we have
;7avg(G1 De Hl) = :Yravg(GZ De H2)

5.3. Using the technique of vertex-splitting. A fan graph F(; ) is
defined as the graph K; + P,, where K is the empty graph on one vertex
and P, is the path graph on n vertices. A fan-type graph Fj, s, ... is
defined as the graph K connect t; edges to the vertex v; of Py, t; > 1,
j=1,2,...,n. Adipole graph D,, is a multigraph consisting of two vertices
connected with n edges. Figure 7 presents the graphs F{; n), F22,...,2 and
D,. By Theorem 2.7, :Y'avg(Dn) = qavg(F’(l,n)) = iwg(FZ,z,...ﬂ)-

FIGURE 7

6. THE ACN AND THE MODE OF THE NON-ORIENTABLE EMBEDDING
DISTRIBUTION
n
A real polynomial f(z) = Z a;z* is unimodal if its sequence of coeffi-
i=0
cients {a;} satisfies that for some 0 < j < n, there exists ap < a; < ... <
aj > aj4+1 = ... 2 Gn, such j is called a mode of the sequence and if the
sequence of coefficients satisfies that for any 1 < j < n — 1, there exists
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a;2 > aj—1aj41, then the polynomial (the sequence) is strongly unimodal.
Obviously, a strongly unimodal sequence is unimodal. The objection of
this section is to study the unimodality of the non-orientable embedding
distribution .

Many papers have been written in last twenty years concerning the genus
distribution of the embeddings of graphs. Most of the papers supported
the following conjecture.

Conjecture 6.1. (J. Gross) The genus distribution sequence of a graph is
strongly unimodal.

Remark 6.2. In [26], Stahl posed a stronger conjecture which states that
the zeros of genus polynomial are real. In [9, 10], the authors presented
some counter examples, however Gross’s conjecture is still open. In (8, 12],
obtained explicit formula for the total embedding distributions of necklaces,
closed-end ladders and cobblestone path. So far, none of the crosscap
number distribution for the classes of graphs are proved to be strongly
unimodal.

6.1. The ACN and the mode of the cacti. A cactus is the graph
obtained by the following way: start with a tree T, then replace some of
the vertices in T by simple cycle and connect the edges incident on each
such vertex to the corresponding cycle in an arbitrary way.

Theorem 6.3. Let G = (V,E) be a cactus with minimum degree at least
2. Then, the total embedding distribution polynomial of the cactus G is

Iz,y)= [] (d-11+y)"
veV(G)

Proof. We prove the theorem by induction on number B(G). If B(G) =
0, or 1, it is easy to check that the theorem is true. Since the cactus G
is 1-edge connected, we may suppose G = G ®. G2 where e = uv and
G; is a cactus, for ¢ = 1,2. By Theorem 2.1, we have the crosscap number

polynomial of G is

fe(y) = dg, (v)da, (v) (fcl W) fea(y) + fo,(®)96, (W) + g6, (¥?) fa, (y))
=dg, (u)dg, (v)[ H (dy — 1)1((1 +y)PE) 1) %

veV(Gy)
T @-va+ser-1)
veV(G2)
+ II (d,,—l)!<(1+y)ﬂ(c‘)—l) II @ -1y
veV(Gy) veV(G2)
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+ 11 (du—l)!(1+y‘3(G’) ) II @ —1)l]

veV(G2) veV(G,)

II @ —1)![(1+y)ﬂ(a) - 1]

veV(Q)
O

By Theorem 6.3, we have the following result.
Corollary 6.4. Let G = (V, E) be a cactus. Then, the ACN of the cactus
G is $8(G)-1
Faua(G) = 53757—A(O).
Theorem 6.5. The crosscap number dzstmbutzon of a cactus is strongly
unimodal.
Proof. 1t is directly from the theorem 6.3. 0

Theorem 6.6. The mode of the non-orientable embedding distribution se-
quence for a cactus G equals t0 |Yavg(G)] 07 [Yavg(G)]

Proof. By theorem 6.3, the following two cases can be easily derived.
Case 1: B(G) is even. The mode of the cactus is ﬂzgl which equals to

[Vavg(G)]-
Case 2: B(G) is odd. The mode of the cactus is 8 (G2)_1 or £ (G2)+1 which
equals to [Yavg(G)] or [Favg(G)], respectively. O

6.2. The ACN and the mode of the necklaces. A necklace N, , of
type (r,s) is a cycle where r disjoint edges are doubled and s self-loops
are added to s vertices which are not endpoints of a doubled edges. In [8],
obtained the following result.

Theorem 6.7. (see [8]) The total embedding distribution polynomial of
N, s is given by
In,,(z,y) = 227+ +13%92(1 4 y) o4
27+2(2 4+ 3y)*(1 — y)(1 + 2y)" ! + (4767 — 274°)(z — °).
By Theorem 6.7, we have the following result.
Corollary 6.8. The ACN of N, , is
Tosg(Ns) = 2+ 524 (TH 0T 4)2;3;;?22,’;: 3’35’ -2

‘Lemma 6.9. The polynomial In, ,(y) is strongly unimodal and for 2 <

T 5 14 or r is even, the mode is [g + 2], otherwise, the mode is [-.:; + 3] .
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Proof. From Theorem 6.7, we have Iy, (y) = 271921 + y)" + 27(1 +
42

¥ —2y2)(1 +2y)" — (4" — 27)y>. Let In,,(y) = ZC(i)yi, then we obtain

i=1
that C(1) =2"(2r +1), C(2) =27(2r2 +2" - 1),and for 3 < k <7 +1,
Clk) = 2r5("¢") — 2+ 1 (1) + 22741 (,T).
A short computation shows that (C(k)? — C(k —1)C(k +1) > 0,k > 2
which means that the non-orientable embedding distributions of the neck-

lace Ny is strongly unimodal.
Case 1: For » = 2n, where n = 2,3,..., we have that

(it Din +2)! ';jn)g;;,’ 2! [C(n +1)-Cln+ 2)]

=2n+1(n+1)(-n+6) - (n+1)(n+2)2"* <0.
Consequently, we obtain C(n + 1) < C(n + 2). By the same consideration,
(n+ 3)!(n+2)!
23n+1(2n)!
Thus C(n + 2) > C(n + 3), from the unimodality of the sequence {C(2)},
we obtain the mode [Z] + 2 when r is even.
Case 2: For r =2n+1, wheren=1,2,..., we have
(n+ 1)Y(n +2)!
23n+1(2n + 1)!
Consequently, we obtain C(n +2) > C(n + 1). By the same consideration,
(n+2)Y(n +3)!
23n+2(2n + 1)!
It is easy to check that for 1 <n < 7,n?2 —7Tn —6 < 0, then C(n + 3) <
C(n+2)and forn>8,n% -7 —6>0, then C(n+3) > C(n+2).
In addition, by a similar computation, we can verify that for Yn € N+,
(n+ 4)/(n + 3)!
28n+3(2n + 1)!
which means that C(n + 3) > C(n + 4). From the unimodality of the
sequence {C(i)} and the above result, we obtain the mode {§] + 3 when r

is odd with r > 17, and the mode [§] 4+ 2 when 7 is odd with 3 < r < 15.
Combining the results discussed above, which leads to the corollary. O

[C(n +2)-C(n+ 3)] >0.

[C(n +2)-C(n+ 1)]: (2n+2)(n—=3)+2"3(n+1)>0.

[C(n +3)-C(n+ 2)]= (2n 4+ 2)(n? — Tn — 6)

[C(n +3)=Cn+ 4)]2 0

Theorem 6.10. The mode for the crosscap number distribution of a neck-
lace N, is the upper-rounding or lower-rounding of its ACN.

Proof. According Corollary 6.8 and Lemma 6.9, the theorem follows. O
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By using Mathematic, we show that for small values of (r, s), the polyno-
mial Iy, ,(y) is unimodal. And if r 4 s is even, the mode of Iy, ,(y) equals
(242 + 2]; otherwise r + s is odd, the mode of I, ,(y) equals [} 4 3).

Conjecture 6.11. The non-orientable genus distribution of N, ; is strong
unimodal. Furthermore, If r+s is even, the mode of I, , (y) equals [=2+2].
Otherwise the mode equals [7£2 + 3].

7. CONCLUSIONS

Now we give a picture of average genus and ACN. See Table 1

TABLE 1

| | Average genus ACN |

Heredity Yavg(H) < Yavg(G) Yavg(H) < Favg(G)
if H C G [2-4,15] ifHCG
Distribution Sparse in R Sparse in R
for CF-graphs [2,11]  for all graphs
Limit points Exists for No
non-sxmple graphs (3]
The smallest values | 0, 3, 2, (9] 1, %, 19§, ey
Lower bound Al(’%({% [6,11] 22;};’_1 B(G) [7)
Random graph Close to ym(G) (11] ?

By Corollary 2.4, we know that Jaug(G ®e H) < Favg(G) + Favg(H) if
and only if 29549 (G) < Yavg(G) and 274 (H) < Favg(H). By some sample
calculations, we verified that Fa.g(G ®e H) < Yavg(G) + Yavg(H). Thus we
pose the following problem.

Problem 7.1. Let G be a connected graph, do we have 2v,,(G) <
Favg(G)?
In Section 6, we showed that the mode of the embedding distributions

for G is connection with its ACN. With the help of a computer program,
we verified this is true for all graphs with Betti number less than 5.

Problem 7.2. Let G be a graph and m(G) be a mode of it’s non-orientable
embedding distribution, do we have m(G) = [Yayg(G)] or m(G) = [Favg(G)}?

The calculation of ACN seems more difficult than average genus. With a
compute program, we have computed the ACN of graphs with Betti number
less than 5. In [13, 14], the authors obtained explicit formula for the total
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embedding distribution for some types of graphs like closed-end ladders,
Ringle ladders etc, it seems that the exact value or asymptotic value of
ACN can be obtained for these type of graphs.

Problem 7.3. Calculate the exact value or asymptotic value of ACN of
other interesting classes of graphs like closed-end ladders, Ringel ladders,
complete graph K, complete bipartie graph K, ., etc.

In (7], obtained tight bounds for the ACN. It seems that the ACN of
graph is more closer to its maximum non-orientable genus than to its non-
orientable genus for most graphs. Using stahl’s result [24], Lee {20] proved
that the average genus of a graph G is asymptotic to the maximum genus
if |E(G)| asymptotic to c|V(G)|*+° (where c and a are positive constants).

Problem 7.4. Does the average crosscap number of the complete graph
K, ( complete bipartite graph K, », etc.) asymptotic to its maximum
non-orientable genus. Moreover, Do we have Lee type result for ACN?
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