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Abstract

It is shown that r(Ki,mk, Kn) £ (k—1+40(1)) (m:;n)m+1 for
any two fixed integers k > m > 2 and n — oo. It is obtained by the
analytic method and using the function fn(z) = 01 gﬁé_g:—ﬁ,x >
0,m > 1 on the base of the upper bounds for »(Km, , K.) which
were given by Y. Li and W. Zang. Also, (¢ — o(1)) (ﬁ)ns <
r(Ws, Kn) £ (140(1)) (h’g‘—ﬂ-)3 (as n — o). Moreover, we give
(Kt + Kmky Kn) < (K — 1+ 0(1)) (r;;—‘;)""m for any two fixed inte-
gers k > m 2> 2(as n — o0).
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1 Introduction

Let H be a graph without isolates. The Ramsey number r(H, K,,) is the
smallest integer IV such that for any graph G with N vertices, either G
contains H as a subgraph or G (the complement of G) contains K, as a
subgraph. As usual, let K, x stand for the m x k complete bipartite graph.
The join of graphs K and H, Denoted by K + H, is the graph obtained by
starting with vertex disjoint copies of X and H and adding uv to the edge
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set for every v € V(K) and v € V(H). In[l] Caro et al. proved that for
k>2and n — oo,

n

2
r(Ko Kn) < (k=14 (1) (E‘n') .

In [6] Li and Zang expanded the above results into the following Lemma 1.
Lemma 1 [6] For any fized integers k > m > 2, as n — oo,

m
n
(Km ke, Kn) < (k—1+40(1)) (iog_n) . (1)
Up to now it is the best asymptotic upper bounds for K, x: complete graph
Ramsey numbers. Naturally, we want to know what the upper bounds for
K m,: complete graph Ramsey numbers are, where K, x denotes the
s X m x t complete 3-partite graphs, and how can we get it. However, it
depends on the appearance and application of some new techniques. In
this paper, we only consider the case when s = 1 and give the asymptotic
upper bounds for 7(K; mk, Kn) by the essential identical proof techniques
to those of Li and Zang in [6]. By the definition of join, we know that
Kimx = Ky + Kmyi. So we can follow up with the asymptotic upper
bounds for 7(K; + Km x, Kn).
On the other side, we need to know the asymptotic lower bounds for
Ki,m,k: complete graph Ramsey numbers. Chvétal has proved the follow-
ing Lemma 2.

Lemma 2 [2] Let m,n > 2, then for every tree T, of order m we have
r(Tmy Kp) =1+ (m—1)(n-1). 2)

It gives us the simple but fundamental result that, for any n, all trees are
K, -good. Whether there is the possibility that 7(Ki mk, K») is a linear
function of n? This issue has long been answered by Erdés et al. [3]. That
is, for an arbitrary graph F, as n — oo,

n
logn

(e(F)=1)/(m=-2)
r(F,Kn) > (c - o(l))( ) .

This result shows that for any connected graph G, r(G, K,) is a linear
function of n, if and only if G is a tree. In Section 3 we will introduce a
generalization[6] of above lower bounds and give the asymptotic relation-
ship between (K, m,k, Kn) and r(Km,k, Kn). So the issue facing us at the
present time is how to narrow the gap between the upper bounds and lower
bounds and reach the asymptotic order of 7(Ky,m i, Kn). So far, we know
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that (K3, K,,) has order of magnitude n?/logn in [4], and know very little
about the results of other graphs: complete graph Ramsey numbers.

Now, let us introduce the proof techniques used in this paper. Clearly,
to obtain an upper bound of r(H, K,), one may turn to establish a lower
bound of the independence number(the maximal size of some indepen-
dent set) of any H-free graph with a fixed number of vertices. A clas-
sical theorem of Turén asserts that the independence number a(G) of any
graph G with N vertices and average degree d satisfies a(G) > N/(1 + d).
In case G is triangle-free, Shearer[8] verified that a(G’) > N f(d), where
fz) = ‘—”—l%ﬂ—y‘ﬁil which is asymptotically equal to —-5-—- as  — oo. Li,
et al(5] generalized Shearer’s inequality in terms of the upper bound of the
average degree of any neighborhood induced subgraph(see Lemma 3). So
we can get the inequality on n and N = r(H, K,;) — 1, then resolve the
upper bounds of N +1 = r(H,K,). Throughout the remainder of this
paper, we shall let G, stand for the subgraph of a graph G induced by
the neighborhood of v. Now we enter the proof of the upper bounds for

7(K1,m k) Kn)-

2 Upper bounds for r(K1mk, Kn)

We will use the function fr(z)({5],[7]), defined as follows
1 _ #\1l/m
_ (1-¢t)/™dt
fm(2) = o m+(z—m)t’

which plays a central role. We introduce some basic properties of fr(z)
which are needed in this paper. Clearly, fm(x) satisfies the differential
equation

z>0, m2>1,

2(z — M) frr (2) + (z + 1) frn(2) = L.
Moreover, fm(z) is completely monotonic on (0, 00), that is, (—~1)* fm (k) (z) >
0 for all k > 0 and z > 0. In particular, f,, is positive, decreasing and

convex .
Since (1—¢)¥/™ > (1 —¢t) for 0 <t < 1 and m > 1, a simple calculation

gives
1 (-t __ zlog(z/m) —(z —m)

fm(z) 2

o m+(x—m)t (z —m)?
log (a:/xm) - 1’ z>m, 3)

where log  is the natural logarithmic function. [With (z/m) = 1 + u, the
last inequality is equivalent to (1 + 2u)log (1 + ) > u, which holds for all
u > 0 since log (1 + ) > u/(1 + u).]
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Also, see Ref.[5],
fm(x) 21/ +2x), if z>m. 4)

Lemma 3 [5] Let G be a graph with N vertices and average degree d (the
average degree of graph G of order n is defined to be 2¢(G)/n). If for any
vertez v of G, the average degree of G, is at most a, then a(G) > N f,41(d).

By combining the upper bounds for (K, x, K»n) in (1) and Lemma 3,
we shall manage to get the following upper bounds for 7(Kj m i, Kn)-

Theorem 1 For any two fized integers k > m > 2, as n — oo,

m-+1
r(Kmer Kn) < (k= 1+ 0(1)) (, ”n) . (5)

Proof. Let G be a graph of order N = (K1 mk, Kn) — 1 such that G
contains no Ky mi and a(G) < n —1. Then for each vertex v of G, we
have that the degree of v is at most 7(Kp x, Kn) — 1, and the maximum
degree and therefore the average degree of G, is at most 7(Kpm—1,k, Kn)—1.
Thus, it follows from Lemma 3 and the properties of f,(z) that

n> a(G) > Nfa(T(Km,k,Kn) - 1) 2 Nfa("'(KM,k’ Kﬂ))v (6)

where a = r(Km—1,k, Kp) < 7(Km,k, Krn). By means of replacing 7(Kp &, Kr)
in the last inequality by its upper bounds in (1) and applying the inequality
(3) we can get that as n — oo,

log (k—1+o(1)3‘(n/logn)"‘ -1 ( )

> - .
2 N1k 100 (7)) 2 VBT g

For m = 2, note that by Chvétal’s theorem(Lemma 2), a = r(K; x, Kp) =
k(n —1) + 1, So (7) becomes n > N =SSR which yields N <

241

(k= 1+0(1) ()

For m > 3, since a = 7(Kpm—1,k, Kpn) < (k— 1+ 0(1))(n\logn)™"1, (7)

m+1

becomes n > N d-elillen__ ghich yields N < (k—1+0(1)) (1%) :

1+40(1))(n/logn)™?
Therefore, as n — o0,

m+1
r(Kime, Kn)=N+1< (k—1+0(1)) (i:)_;_z;) .

This completes the proof of Theorem 1.
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3 The asymptotic bounds for some related
Ramsey numbers

In this section we will introduce the lower bounds for r(Kmx, Kn) and
7(K1,m,ky Kn), and give the asymptotic relationship between the two. In ad-
dition, we also introduce the upper bounds and lower bounds for wheel(Wy):
complete graph Ramsey number.

Lemma 4 [6] For any fized integer m > 3, constants § > 0 and a > 0,
if F is a graph on m vertices and G is a graph on n vertices with ¢(G) >
(6 — o(1))n?/(log n)* as n — oo, then there exists a constant ¢ = c¢(m, 6) >
0 such that

n

(e(F}-1)/(m-2)
"(F,6) 2 (e of0)  gomzrr ) .

By Lemma 4 we can get the following Corollary 1 and Corollary 2.

Corollary 1 For any two fized integers k > m > 2, there is a constant
¢ =¢(m, k) > 0 such that as n — oo,

mk—1

> (c— T

o K) 2 (0= o0) ()

Corollary 2 For any two fized integers k > m > 2, there is a constant
c=c(1,m, k) > 0 such that as n — oo,

n )14‘;&":{

e Ko) 2 (= o) (o

So we can see the gap between the upper bounds and the lower bounds

for r(K1,mk, Kn). I would like to know what the the asymptotic order of

7(K1,m,k, Kn) is, does the index of have relevance to k? These are all
the directions of our research.

]og n

Theorem 2 For any two fixed integers k > m?2 —3m +3, m > 2, as
n — oo, we have

m+k—2

k — (m? —3m+3)T(K'"’°’K "iogn

(8)

T(K1,m,ks Kn) < (1 +0(1)) logn

Outline of pmof The identical analysis with Theorem 1 shows that n >
r(Km k1 Kn)

log R gy -1
NZ ',,0'{':1"}( ) from (6) and (3). For the numerator on the right side

of the inequality we replace r(Km i, K»n) by its lower bounds in Corollary
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1 and replace (K- %, Ky) by its upper bounds in Lemma 1. Simple
asymptotic calculations show that (8) holds.

The role of Theorem 2 is that it inspired us to use mathematical induc-
tion to derive the asymptotic upper bounds for 7(K; + Kk, K,) on the
base of that of r(Km k, Kn) and 7(K1 + Km i, Kn) (See Section 4).

Let C,, stand for the cycle of length m and W,, for the wheel with
m spokes. That is, W, & K; + C,,. In addition, we noted that W, =
K, + K22 = K, 2.2. As an application of Theorem 1 and Corollary 2, we
can get the following Corollary 3.

Corollary 3 As n — oo, there erists a constant ¢ = ¢(1,2,2) > 0 such
that

n \7/3 n \3
- — < < _— .
o) (o) < rWarKn) < 0+ ot1) (o)
In [9] the writers have given that r(Wy, Ka) < (1 +0(1))e(4)(125)%
where c(4) = 3240v/3. So we know that Corollary 3 improves the upper
bounds for r(Wy, K,).

4 TUpper bounds for r(K; + Kk, K»)

In this section we give the upper bounds for 7(Kj+ K k, K»n), as an appli-
cation of which we give the upper bounds for 7(K; - 2e, K,,), where K; —2e
is formed from K| by deleting its two independent edges. So we know that

Ki—2e=2 K4+ K.

Theorem 3 Let m, k and |l be any three fized integers and k > m > 2,
1>0. Then, as n — oo,

n

4+m
K+ Koo K) < (= 1+00) () ©
Proof. We apply induction on I. For [ =0, (1) implies that (9) holds. For
l =1, (5) implies that (9) holds. Our statement follows.

Suppose the statement holds for 1,2, ...,I. We proceed to the induction
step. Let r(l,m, k;n) denote r(K; + K i, Kn) and let G be a graph of
order N = (I + 1,m, k;n) — 1 such that G contains no K41 + Kp, . and
that a(G) < n — 1. Then for each vertex v of G, we have that the degree
of v is at most r(l,m, k;n) — 1, and the maximum degree and therefore the
average degree of G, is at most (I — 1,m, k;n) — 1. Thus, by Lemma 3,
we have

n > a(G) = Nfo(r(l,m, k;n) — 1) > N fo(r(l, m, k; n)), (10)
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where a = r(l—1,m, k;n) < r(l,m, k;n). Now let € be an arbitrary number
with 0 < € < 1. Then, by (3) we know that there exists an M > 0 such
that fa(z) > (1 — €)log (z/a)/z whenever z/a > M. We decompose the
set of natural numbers into n' and n” such that

r(l,m,k;n )

"y1—e
i=LmEn) > M)
r(l,m, k; n') " e
< €,
r(l—1,mk;n") ~ (n')
Thus log -ﬂl—mk—"zr- > (1 —€)logn’. Without loss of generality, we may

r(l—1,m,k; n )
suppose that all 7', (n')3=9) > M. So from (10) it follows that

, , log Zbmkn) (1 _ 2N logn’
n > Nfa(r(l’ms kin )) 2 (1 - E)N r(l,m, k; n') 2 ,,.(l, m, k; n’) )

where a = 7({ — 1,m,k;n’). Hence N < -(I—ZLFM"—Z, and the desired

logn
1nequahty for r(I + 1,m, k;n’) follows from the inductive hypothesis on
r(l,m, k;n’). Recall the inequality (4), fo(z) > 1/(1 +z), if z > a. We get

n' > Nf,(r(l,m, kn' )) >N/ +r(l,m, kn )),
where a =r(l — 1,m,k;n") < r(l,m, k; n"). Hence,
N<n"(14r{l,mkn ) <n Q@+ @) -1,mkn")).

The desired inequality for r(l+1, ™ n') follows from the inductive hypoth-
esis on (I — 1,m, k; n") since (n")2~¢ < (n" /logn")? for sufficiently large
n
This completes the proof of Theorem 3.

By Lemma 4 and Theorem 3 we can get the following Corollary 4.

Corollary 4 Let ! be any fired integer and l > 4, then, as n — oo, there
erists a constant ¢ = c(l — 4,2,2) > 0 such that

(e=ot1) (om;)
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