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Abstract

Let G = {g1,...,9-} be a finite abelian group. Consider the
complete graph with the vertex set {g1,...,9n}. The G-coloring
of K, is a proper edge coloring in which the color of edge {gi, 9;}
is gi + g5, 1 £i < j £ n. We prove that in the G-coloring of the
complete graph K, there exists a multicolored Hamilton path if G is
not an elementary abelian 2-group. Furthermore, we show that if n is
odd, then the G-coloring of K, can be decomposed into multicolored
2-factors and there are exactly — multicolored r-uniform 2-factors
in this decomposition where !, is the number of elements of order r in
G, 3 < r < n. This provides a generalization of a recent result due to
Constantine which states: For any prime number p > 2, there exists
a proper edge coloring of K, which is decomposable into multicolored

Hamilton cycles.
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1. Introduction

Let G be a graph. A spanning subgraph of a graph G is a subgraph H
with V(H) = V(G). A Hamilton cycle, Hamilton path in G is a spanning
cycle, spanning path in G, respectively. A subgraph in an edge colored
graph is called multicolored if all its edges receive distinct colors. A proper
k-edge coloring of a graph G is a mapping from E(G) into a set of colors
{1,...,k} such that incident edges of G receive distinct colors. The edge
chromatic number of a graph G is the minimum number k for which G
has a proper k-edge coloring. A k-regular graph is a graph all of whose
degrees are k. A k-factor of a graph G is a spanning k-regular subgraph
of G. An r-uniform 2-factor is a 2-factor all of whose cycles have length r.
Throughout this paper K, and K, , denote the complete graph of order
m and the complete bipartite graph with partite sets of sizes m and n,
respectively. It is well-known that the edge chromatic number of K, is m,

if m is odd and m ~ 1, if m is even. [15, p.15]

Let the edges of Ks,, be properly colored by 2m — 1 colors. We say that
the complete graph Ko, admits a multicolored tree decomposition (MTD)
if all edges can be decomposed into m isomorphic multicolored spanning

trees.

The following are two interesting conjectures on the'decomposition of
edge colored complete graphs into multicolored spanning trees.

Brualdi-Hollingsworth Conjecture [5]. If m > 2, then in any proper
edge coloring of Koy, with 2m — 1 colors, all edges can be partitioned into

m multicolored spanning trees.
Constantine’s Conjecture (7). If m > 2, then any proper edge coloring

of Kopm with 2m — 1 colors admits an MTD.

It was proved in [3] that a complete graph on 2m (m # 2) vertices, Ko,
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can be properly edge colored with 2m — 1 colors in such a way that the
edges of K2, can be decomposed into m multicolored isomorphic spanning
trees. In [1], the existence of multicolored spanning trees in an edge colored
complete graphs (coloring is not necessary proper) are studied.

Let G be a finite abelian group of order n. In this paper using the group
G, we properly color all edges of the complete graph K, with n colors (the
elements of G) and prove that if G is not an elementary abelian 2-group,
then K, contains a multicolored Hamilton path. For odd n, we prove that
all edges of K, can be decomposed into multicolored 2-factors and there are
exactly — multicolored r-uniform 2-factors in this decomposition where I,

is the number of elements of order rin G, 3 <r < n.
2. Harmonious and Semi-Harmonious Groups

Let G = {g1,...,9n} be an abelian group of order n. Consider the
complete graph K, with the vertex set {g1,...,gn}. Color the edge {gi,9;}
by gi + g;, for 1 < 4,5 < n,i # j. Obviously, we obtain a proper edge
coloring. We call this edge coloring of K, the G-coloring of K,. A group
G is called harmonious if the elements of G can be listed as g;,...,9, SO
that G = {91+ 92,92+ 93,-- . ,9n—1 + gn, gn + g1 }. The sequence g;,...,95
is called a harmonious sequence. We say that G is semi-harmonious if the

elements of G can be listed as g1, ..., gn so that g1 +g2,92+93,...,gn-1+9n
are distinct. The sequence g1, ..., gn is called a semi-harmonious sequence.

Let G be an abelian group of order n. Then in the G-coloring of K, a
harmonious and a semi-harmonious sequence of G are corresponding to
a multicolored Hamilton cycle and a multicolored Hamilton path, respec-

tively.

The following interesting theorems were proved in [4].

Theorem 1. Let G be a group of odd order. Then G is a harmonious.
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Theorem 2. If G is a finite non-trivial abelian group, then G is harmo-
nious if and only if G has a non-cyclic or trivial Sylow 2-subgroup and G

is not an elementary abelian 2-group.
Theorem 3. Let n be a natural number. Then Z, is semi-harmonious.

Proof. If nis odd, then the result follows from Theorem 1. If n is even,

then we consider the following sequence: az;—1 = ¢,a2; = § +14, for ¢ =

1,...,%. Thus we have azi—1 +a2i = 2+2i and az; +azi+1 = §+2i+1for
i=1,2,...,% -1and a,-; +a, = §. Clearly, these numbers are distinct
and so Z, is semi-harmonious. O

Corollary 1. Letn be an even number. Then Z,, has two semi-harmonious
sequences 1 = ay,az,...,8, =0, such that 3+1 € {a1+az,02+a3,...,an_1+
an} end %-i-l =by,ba,....,bn = %, -2'3+1 & {b1+b2,ba+b3,...,0ny +bn}.

Proof. The first sequence is that sequence given in the proof of Theorem

3. For the second one we note that if ¢;,...,9n is a semi-harmonious
sequence, then clearly for any a € G, g1 +a, ..., gn+a is a semi-harmonious
sequence too. Now, define b; = a; + §, for i = 1,...,n. The proof is
complete. a

Lemma 1. Let n be an even number. If H is a group of odd order, then
Z, x H is a semi-harmonious sequence.

Proof. Letai,...,a, and by,...,b, be those sequences given in Corollary
1. Let |H| = m. By Theorem 1, there exists a harmonious sequence
hi,...,hy in H. Consider the following sequence:

(al, hl)’- . ’(an)hl)l (bla h2)t ve ')(bnah2)) (alth)a ey (an: h3)’

(b17h4))' ey (bmh4); R (blihm—l)) RS 7(bﬂ’hm—l)’(al’hM)’ R ’(an,hm)'

Since |H| is odd, we have H = {2h | h € H}. Therefore it is not hard to
see that the above sequence is a semi-harmonious sequence. a
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Theorem 4. Let G be a finite abelian group. If G is not an elementary
abelian 2-group, then G is semi-harmonious.

Proof. If G has odd order, then G is semi-harmonious by Theorem 2.
By Theorem 3 and Theorem 2 it is enough to prove the theorem for the
abelian groups of the form Zy» x H, where H is an abelian group of odd
order. Now, Lemma 1 completes the proof. O

The following corollary is an immediate consequence of Theorem 4.

Corollary 2. Let G be a finite abelian group of order n which is not an
elementary abelian 2-group. Then the G-coloring of the complete graph K,
contains ¢ multicolored Hamilton path.

Let G be a finite group of order n. A transversal of the Cayley group
table of G is a set of n cells which are in distinct rows and columns such
that these cells contain n different elements. The following theorem was

proved in [11}.

Theorem 5. Let G be a finite solvable group of order n such that the Sylow
2-subgroups of G are trivial or non-cyclic. Then the Cayley group table of

G has a transversal.

Theorem 6. Let G be a finite abelian group of odd order n. Then the G-
coloring of K, can be decomposed into multicolored 2-factors. Furthermore,
if I is the number of elements of order r in G, 3 < r < n, then in this
decomposition, there are ezactly L,f multicolored r-uniform 2-factors.

Proof. Let C be the Cayley group table of G. Since n is odd, the main
diagonal of C is a transversal. Let e be the identity of G. We claim that
C has n mutually disjoint transversals Cy, g € G in which C, is the main
diagonal of G. For any g € G, in the ith row of G, 1 < ¢ < n, choose the
element g + 2g;. Clearly, it is a transversal since G = {g + 2g;|g; € G}.
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Let this transversal be C,. Since g + 2g; = g’ + 2g; implies that g = ¢/,
we conclude that {Cylg € G} are n disjoint transversals which cover all
cells of C. On the other hand, since C is symmetric, thus if a transversal
contains the ijth cell of C, it cannot contain the jith cell of C. Thus
every transversal except C. is corresponding to a multicolored 2-factor.
Let g € G. The transversal C; should have g + 2g; from the ith row,
where 1 < i < n. But this element is in the (g;,¢ + g:)th cell of C. Now,
consider the (g + g;)th row of C. The transversal corresponding to this
row should have 3g + 2g;. But this entry is in the (g + gi,2g + g;)th cell of
C. By continuing this procedure we reach to a multicolored cycle with the
vertices,
9i9 + 9i,29 + gis - .-, 0(9)9i + 9i = i,

1 < i < n, which has length o(g). Therefore the transversal corresponding
to g is actually a multicolored o(g)-uniform 2-factor. Also, if we repeat
the procedure for —g instead of g, we obtain a multicolored cycle with the
vertices,

9ir—9 +9i, =29 + gi,. .., —0(9)g + 9 = gi

that is the multicolored cycle corresponding to C—4. Indeed the transpose
of C, in the Cayley group table of G is C_,. This completes the proof. O

Constantine proved that for any prime number p > 2, there exists a
proper edge coloring of K, that is decomposable into multicolored Hamil-
ton cycles, see [8]. Also recently it was proved that for any odd =, there
exists a proper edge coloring of K, which is decomposable into multicol-
ored Hamilton cycles, see [10]. Now, as a corollary of Theorem 6, we obtain

Constantine’s result.

Corollary 3. Let p > 3 be a prime number. Then the Z,-coloring of K,
can be decomposed into multicolored Hamilton cycles.
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3. Stong Colorings of Complete Graphs

Let G be a finite group of order n with a generating set {2 such that for
each a € Q, o(a) is even. Stong used the group G to introduce a proper
edge coloring for Cayley(G, ) as follows(see [13]).

Let g € G and a € Q. Assume that o(a) = 2k, where k£ > 1 is natural
number. Consider the cycle Cay on the vertices g, ga, ga?, ..., ga**~!. Now,
color the edges {ga‘,ga’*'} by a for i = 0,2,...,2k — 2 and by a™! for
i=13,...,2k—1. Let S = G\ {9,9a,90%...,9a%"1}. If S # 0, then
choose g’ € S and repeat the argument for ¢’ instead of g. We continue
this procedure until all elements of G are covered. Using this we obtain
a (2k)-uniform 2-factor such that all edges of every cycle in this 2-factor
alternatively colored by a and a=!. Now, consider b € Q \ {a,a"'} and
repeat the procedure for b instead of a. Therefore we obtain another 2-
factor for G containing even cycles of length o(b) such that all edges of
each even cycle alternatively colored by color b and b~!. Continuing this
algorithm we find a proper edge coloring of G with colors in Q. If k =1,
then we find a 1-factor {{g, ga}|g € G}, all of whose edges have color a.

Note that this kind of coloring is not unique. If we start by ga instead
of a, then we obtain a coloring in which the color of the edge {ga, ga®} is
a. Indeed if § has I; elements of order ¢, 1 < i < n, then the number of
these colorings is 2%i=s 5

We call any coloring obtained by this method a Stong G-coloring, or
shortly an SG-coloring for G. Note that if G is a group of order 2 and
Q =G\ {e}, then Kon = Cayley(G, ). Now, we have two conjectures.

Conjecture 1. Let G = Zy» and n > 3 be a natural number. If the edge
coloring of Kon is an SG-coloring, then Kan admits an MTD.

Conjecture 2. Let G be a group of order 2", n > 3. If the edge coloring
of Kan is an SG-coloring, then Kaon admits an MTD.
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We show that these conjectures are equivalent. Before stating the proof
we need a result from group theory.

Lemma 2. Let G be a finite group of prime power order such that all of
whose mazimal subgroups are cyclic. Then G is either cyclic or isomorphic

to the quaternion group of order 8.

Proof. By Theorem 4.1 and Theorem 4.2 Part (iii) of [14], we are done.
O

Theorem 7. Conjecture 1 and Conjecture 2 are equivalent.

Proof. Let G be a group of order 2”. It is enough to show that if Con-
jecture 1 is true and the edge coloring of K3 is an SG-coloring, then Kzn
admits an MTD. The proof is by applying induction on n. For n = 3,
|G| = 8. By [6), for any proper 7-edge coloring, Kg admits an MTD and
so that the assertion holds. Now, suppose that G is a group of order 2%,
n > 3. If G is a cyclic group, then there is nothing to prove. Thus by
Lemma 2 we may assume that G has a non-cyclic subgroup H such that
|H| = 27—, If we consider the induced subgraph on H, then we obtain an
SH-coloring for Kzn-1. We note that the colors used in the edge coloring
of H are the elements of H. Thus by induction hypothesis, H admits an
MTD with 22 spanning trees.

Let G = HJaH, where H and aH are distinct left cosets of H in
G. Similarly, the induced subgraph on aH, is isomorphic to Ky.-1, which
is edge colored by the colors in H, and so it admits an MTD with 272
spanning trees. Now, we claim that all edges of the complete bipartite graph
Kyn-1 921 with part sets (H,aH) can be decomposed into multicolored
perfect matchings. Since H is a solvable group, by Theorem §, the Cayley
group table of H is decomposable into disjoint transversals. Thus the
table aH x H and so the table of Ha~! x H is decomposable into disjoint
transverals. But the color of every edge with an end point in H and other
end point in aH is one of the elements appeared in the table Ha™! x H.
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Therefore we can decompose all edges of Kza-1 20-1 into 2"~! multicolored
perfect matchings with colors in aH. Attach each of multicolored perfect
matchings to exactly one of the spanning trees of H or aH. Each edge in
the complete graph Kan-19n-1 has a color of the set aH. Therefore Kz~
can be decomposed into 2"~} multicolored spanning trees and the proof is

complete. O

There are six non-isomorphic edge colorings of Ks, see [5]. We prove
that K3 with edge coloring (a) has no multicolored Hamilton path (see
Theorem 9). In the following we give a decomposition into multicolored
Hamilton paths for the edge colorings (b), (c) and (e) in [5]. By a computer
search by E. Ghorbani we noted here that by the two colorings (d) and (f),
Ky cannot decompose into multicolored Hamilton paths.

PP PP PP B P
1: 23 45 67 01 1: 67 23 01 45
2: 46 02 57 13 2: 46 02 13 57
3: 03 47 12 56 3: 12 56 47 03
4: 15 26 04 37 4: 04 15 36 27
5: 14 36 05 27 5: 05 37 24 16
6: 25 17 34 06 6: 17 06 25 34
7: 07 35 16 24 7: 35 14 07 26

(b) (©

PP PP PP PP
1: 23 01 45 67 1: 01 23 45 67
2: 57 46 02 13 2: 13 02 57 46
3: 14 27 03 56 3: 47 56 03 12
4: 04 16 25 37 4: 04 37 26 15
5: 26 34 17 05 5: 27 05 14 36
6: 06 35 47 12 6: 35 17 06 24
7: 15 07 36 24 7: 16 34 25 07

(@) ()
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01
46
47
27
05
37
07

N O Gt AW N

Consider the following SZg-coloring for Kg. Then Kg admits an MTD. To see
this consider the complete graph Ky with the vertex set {0,...,7}. The following
table gives a proper edge coloring of Kg with colors 1,...,7 and its decomposition
into multicolored Hamilton paths. The ith row of this table contains all edges
with color 7, for ¢ = 1,...,7. Each column denotes all edges of a multicolored

Hamilton path.

Consider the following SQs-coloring for K3. Then K admits an MTD. To see
this consider the complete graph Kg with the vertex set {1, +i,+j,£k}. The
following table gives a proper edge coloring of Kg with colors {—1, £¢, 5, +k} and
its decomposition into multicolored Hamilton paths. The zth row of this table
contains all edges with color . Each column denotes all edges of a multicolored

Hamilton path.

23
02
56
35
17
14
24

45
57
03
16
26
25
36

(@

~N O AW N -

2

13
12
04
34
06
15

P

07
24
36
15
03
17
45

P

56
57
14
37
16
02
23
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12
13
05
04
25
46
67

01
36
15
37
34
12
07

23
02
46
25
17
47
24

(f)

45
57
03
16
26
35
56

67
14
27
04
05
06
13



P i) B i)
-1: {i,—i} {4, -3} {-k, k} {-1,1}
i {-sk} {-1,-i} {1,4} {3, -k}
—-i: {-j,—k} {4k} {1,-i} {-1,4}
i+ {-i,—k} {i, k} {-1,-35} {1,7}
=i+ {-L,j} {1, -7} {s, —k} {-i,k}
k: {1,k} {-1,-k} {-i,3} {i, -7}
—k: {i, 4} {1, -k} {-1L,k} {-i, -4}

Consider the following SDj-coloring for Kgs, where Dy =< a,b | a* = b =
1,bab = @® >. Then K3 admits an MTD. To see this consider the complete
graph Ks with the vertex set {e,a,a? a®b,ab,a®b,a%}. The following table
gives a proper edge coloring of Ks with colors {a,a?,a3,b,ab,a%b,a®b} and its
decomposition into multicolored Hamilton paths. The ith row of this table con-
tains all edges with color i. Each column denotes all edges of a multicolored
Hamilton path.

By P B Py

a: {a®h,a%} {b,ab} {a%,a®} {e,a}
a? {a,a%} {e,a?}  {b,a’b} {ab,a®b}
a®:  {e,a®} {a®b,ab} {a,d’} {b,a%)}
b: {e,6}  {a?,a%} {a,a%} {a® ab}
ab:  {a%a%} {a,b} {e,ab} {a®a%}
a’: {a,ab} {a®a%} {e,a’®} {a?b}
a®h: {a%,ab} {e,a®d} {a,b} {a,a}

It can be checked that in every S(Zs4 X Z2)-coloring and $(Z2)-coloring of
K3 the union of all edges with two given colors is a 4-uniform 2-factor. So by
[9], K& with these Stong colorings admits an MTD but no multicolored Hamilton
path, see Theorem 9 in next section.
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4. The Uniqueness of Decomposition of
Ky into Commuting Perfect Matchings

In 2] it has been proved that two perfect matchings of Ky, commute if and only
if their union is a 4-uniform 2-factor. Also K3z» is decomposable into commuting
perfect matchings if and only if n is a 2-power. We recall that two 1-factorizations
of a graph are isomorphic if there exists an automorphism such that it induces a
permutation between the sets of 1-factors of two 1-factorizations. The following
result was proved in [12]. In the following we give another proof.

Theorem 8. Let n be a natural number. Then every two edge decompositions of

Koan into commuting perfect matchings are isomorphic.

Proof. Let c¢; and c2 be two edge decompositions of K2» into commuting perfect
matchings. Each of c¢; and c. induces a proper edge coloring. By induction on
n we prove the theorem. For n = 2 the assertion is obvious. Thus assume that
n 2> 3. By Lemma 2 of [9], ¢; and ¢z contain cliques H; and H3, respectively
such that Hy o~ Hy =~ K,.-1, and the number of colors used in edge colorings
of H, and Haz is 2"~! — 1. Without loss of generality assume that the set of
all colors used in the edge colorings of Hy and Hp is L = {1,...,2""! ~1}. Set
H; = Ky \V(H;), for i = 1,2. Since for each v € V(K2n), we have d(v) = 2" -1,
thus the set of colors used in the edges between H; and Hj is {1,...,2" —~1}\ L,
for i = 1,2. Hence the set of colors in edge colorings of H; is L, for i = 1,2,

Note that H; =~ Hj ~ K,a-1. Since any two colors in K2» commute, thus any
two colors in H; and H| commutes, for i = 1,2. Now, by induction hypothesis
the 1-factorization of H; and the 1-factorization of H; are isomorphic. The same
holds for H} and Hj. Thus we may assume that in two edge colorings of ¢, and
c2, the edges with colors in L are the same.

Now, let e = wv, u € V(H)), v € V(H}) and ¢i(e) = i, where i € {1,...,2" —
1} \ L. We know that for any j, j € L, there are two edges uz and vy, such
that z € V(H1), y € V(H3) and c1(uz) = c1(vy) = j. Since the decomposition
is commuting by a theorem of [2], the edges with colors ¢ and j in coloring
c1 form a 4-uniform 2-factor. Thus c¢i(zy) = i. This implies that for any i,
i€{l,...,2" —1}\ L, the edges with color ¢ uniquely determined in the coloring
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of ¢1. Since j is arbitrary, so all 1-factors uniquely determined and the proof is
O

complete.
Now, by Lemma 1 of [2], we have the following corollary.

Corollary 4. Let G be the elementary abelian group of order 2*. Then up to
isomorphism there ezists an SG-coloring. Furthermore, in o proper edge coloring
of Kan the union of any two colors form a 4-uniform 2-factor if and only if the

proper edge coloring i3 an SG-coloring.

Conjecture 3. Let G be a group of order 2° and H be the elementary abelian
group of order 2™. If an SG-coloring of Kan 13 not isomorphic to the SH -coloring,
then Koan contains a multicolored Hemilton path.

Conjecture 4. Let G be a group of order 2" and H be the elementary abelian
group of order 2™. If an SG-coloring of Kon is not isomorphic to the SH -coloring,
then Kan can be decomposed into multicolored Hamilton paths.

Theorem 9. Suppose that Kan can be properly edge colored such that the union
of any two colors forms a 4-uniform 2-factor. Then Kpn has no multicolored

Hamilton path.

Proof. Let c be a proper edge coloring of K2» with given property. By Corollary
4, this coloring is just an SG-coloring, where G is the elementary abelian 2-group
of order 2". By the definition of SG-coloring one may see that if G = {0 =
g1,92,...,92n }, then the color of edge with end points g; and g; is g; + g;. Now,
if we have a multicolored Hamilton path P, then each non-zero element of G has
been appeared on the edges once. Clearly, for any i, the number of elements
in (Z2)" whose the ith components equal 1 is 2"~!. Hence if two end points
of P are g; and g;, then by sum of all colors on the edges of P, we obtain
9i+9;+23,4; ; 9r = 0. Thus g; = g;, a contradiction. The proof is complete.0)
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