Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences

Refik Keskin and Bahar Demirtürk Sakarya University, Faculty of Science and Arts,

Department of Mathematics, 54187, Sakarya/TURKEY demirturk@sakarya.edu.tr, rkeskin@sakarya.edu.tr

August 6, 2010

Abstract

In this study, we deal with some Diophantine equations. By using the generalized Fibonacci and Lucas sequences, we obtain all integer solutions of some Diophantine equations such as $x^2 - kxy - y^2 = \mp 1$, $x^2 - kxy + y^2 = 1$, $x^2 - kxy - y^2 = \mp (k^2 + 4)$, $x^2 - (k^2 + 4)xy + (k^2 + 4)y^2 = \mp k^2$, $x^2 - kxy + y^2 = -(k^2 - 4)$, and $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = k^2$. Some of the results are known but we think that our proofs are new and different from the others.

Keywords: Fibonacci number; Lucas number; Binet formula; Diophantine equation.

MSC: 11B37, 11B39,11B50,11B99

1. Introduction

For our purpose, we introduce two kinds of generalized Fibonacci and Lucas sequences $\{U_n\}$, $\{V_n\}$ and $\{u_n\}$, $\{v_n\}$. The generalized Fibonacci sequence $\{U_n\}$ with parameter k, is defined by $U_0=0$, $U_1=1$ and $U_n=kU_{n-1}+U_{n-2}$ for $n\geq 2$ and the generalized Lucas sequence $\{V_n\}$ is defined similarly by $V_0=2$, $V_1=k$, and $V_n=kV_{n-1}+V_{n-2}$ for $n\geq 2$ where $k\geq 1$, is an integer. Also, $U_{-n}=(-1)^{n+1}U_n$ and $V_{-n}=(-1)^nV_n$ for all $n\in\mathbb{N}$. Moreover, the generalized Fibonacci sequence $\{u_n\}$ with parameter k, is defined by $u_0=0$, $u_1=1$ and $u_n=ku_{n-1}-u_{n-2}$ for $n\geq 2$ and the generalized Lucas sequence $\{v_n\}$ is defined similarly by

 $v_0 = 2, v_1 = k$, and $v_n = kv_{n-1} - v_{n-2}$ for $n \ge 2$ where $k \ge 3$, is an integer. Also $u_{-n} = -u_n$ and $v_{-n} = v_n$ for all $n \in \mathbb{N}$. It can be shown that $V_n = U_{n-1} + U_{n+1}$ and $v_n = u_{n+1} - u_{n-1}$ for all $n \in \mathbb{Z}$. For more information about generalized Fibonacci and Lucas sequences one can consult [12], [13], [14].

2. Main Theorems

The characteristic equation of the recurrence relation of the sequence $\{U_n\}$ is $x^2-kx-1=0$ and the roots of this equation are $\alpha=\left(k+\sqrt{k^2+4}\right)/2$ and $\overline{\alpha}=\beta=\left(k-\sqrt{k^2+4}\right)/2$. It is clear that $\alpha\beta=-1$, $\alpha^2=k\alpha+1$, and $\alpha+\beta=k$. Now for $a,b,c,d\in\mathbb{Z}$, we define two binary operations in $\mathbb{Z}\times\mathbb{Z}$ by

$$(a,b)(c,d) = (kac + ad + bc, ac + bd)$$
 and $(a,b) + (c,d) = (a+c,b+d)$. (2.1)

It can be easily seen that

$$(a,b)(c,d) = (kac + ad + bc, ac + bd) = (kca + cb + da, ca + db) = (c,d)(a,b).$$

Furthermore the identity element is (0,0) for the + operation, and (0,1) for the multiplication operation as defined in (2.1). Then it is seen that $\mathbb{Z} \times \mathbb{Z}$ is a commutative ring with unit element (0,1).

Let $\mathbb{Z}[\alpha] = \{a\alpha + b : a, b \in \mathbb{Z}\}$. Then it can be seen that $\mathbb{Z}[\alpha]$ is a subring of the algebraic integer ring of the real quadratic field $\mathbb{Q}(\sqrt{k^2 + 4})$ and $\mathbb{Z}[\alpha]$ is equal to the algebraic integer ring of the real quadratic field $\mathbb{Q}(\sqrt{k^2 + 4})$ when $k^2 + 4$ is square free. We define a function $\phi : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}[\alpha]$, given by

$$\phi((a,b)) = a\alpha + b.$$

In view of the fact that $(a\alpha+b)(c\alpha+d)=\alpha^2ac+\alpha(ad+bc)+bd=(k\alpha+1)ac+\alpha(ad+bc)+bd=(kac+ad+bc)\alpha+ac+bd$ and $(a\alpha+b)+(c\alpha+d)=(a+c)\alpha+b+d$ for $a,b,c,d\in\mathbb{Z}$, it is easy to see that ϕ is a ring homomorphism. Moreover, since ϕ is bijective, ϕ is an isomorphism.

If $\alpha x + y$ is a unit in $\mathbb{Z}[\alpha]$, then it can be shown that

$$-x^2 + kxy + y^2 = (\alpha x + y)(\overline{\alpha}x + y) = \pm 1.$$

Theorem 2.1. The set of the units of $\mathbb{Z}[\alpha]$ is $\{\pm \alpha^n \mid n \in \mathbb{Z}\}$.

Proof. To prove the theorem, it is sufficient to show that every unit $\omega \ge 1$ is of the form α^n for some $n \ge 0$. Firstly, we show that there is no unit ω such that

 $1 < \omega < \alpha$. Assume that $\omega = \alpha x + y$ is a unit in $\mathbb{Z}[\alpha]$ such that $1 < \omega < \alpha$. Thus since $\alpha x + y$ is a unit, $-x^2 + kxy + y^2 = (\alpha x + y)(\overline{\alpha}x + y) = \pm 1$ and therefore $|\alpha x + y||\overline{\alpha}x + y| = 1$. Since $|(\alpha x + y)(\overline{\alpha}x + y)| = 1$ and $1 < \alpha x + y$, it is seen that $|\overline{\alpha}x + y| < 1$. Therefore $-1 < \overline{\alpha}x + y < 1$. Then it follows that $0 < x(\alpha + \overline{\alpha}) + 2y$, i.e., 0 < kx + 2y.

On the other hand, since $-1<-\overline{\alpha}x-y<1$ and $1<\alpha x+y$, we see that $0<(-\overline{\alpha}x-y)+(\alpha x+y)=(\alpha-\overline{\alpha})x=(\sqrt{k^2+4})x$. Therefore 0< x. Since x is an integer, we get $1\leq x$. By the fact $1<\alpha x+y<\alpha$, we obtain $y<\alpha-\alpha x=\alpha(1-x)$. Since $1\leq x$, we get $1-x\leq 0$. Thus it follows that $y<\alpha(1-x)\leq 0$. That is, y<0. Moreover, since $-x^2+kxy+y^2=\mp 1$ and $1\leq x$, we have $kxy+y^2=\mp 1+x^2\geq 0$. Then it follows that $(kx+y)y=kxy+y^2\geq 0$. Since y<0, we get $kx+y\leq 0$. By the facts 0< kx+2y and $kx+y\leq 0$, we obtain

$$y = (kx + 2y) - (kx + y) > 0.$$

But this contradicts with the fact that y < 0.

Now let $\omega > 1$ be a unit and $\omega \neq \alpha$. If $\omega \neq \alpha^n$ for every integer $n \geq 2$, then it follows that $\alpha^m < \omega < \alpha^{m+1}$ for some $m \in \mathbb{N}$ with $m \geq 2$. Thus $1 < \omega/\alpha^m < \alpha$ and ω/α^m is a unit in $\mathbb{Z}[\alpha]$. But this is impossible. Therefore $\omega = \alpha^n$ for some $n \geq 2$. This shows that if $\omega \geq 1$ is any unit, then $\omega = \alpha^n$ for some $n \geq 0$.

Since the units of the ring $\mathbb{Z}[\alpha]$ are of the form $\pm \alpha^n$ for some $n \in \mathbb{Z}$, all units of $\mathbb{Z} \times \mathbb{Z}$ are in the form $\phi^{-1}(\pm \alpha^n)$.

From the definition of the function ϕ , it is seen that $\phi((1,0)) = 1 \cdot \alpha + 0 = \alpha$ and then we get $\phi^{-1}(\alpha) = (1,0)$. Therefore we obtain

$$\phi^{-1}(\pm \alpha^n) = \pm \phi^{-1}(\alpha^n) = \pm (\phi^{-1}(\alpha))^n = \pm (1,0)^n.$$

Thus all units of $\mathbb{Z} \times \mathbb{Z}$ are in the form $\pm (1,0)^n$ for some $n \in \mathbb{Z}$. It can be seen that $\alpha x + y$ is a unit in $\mathbb{Z}[\alpha]$ if and only if $x^2 - kxy - y^2 = \mp 1$.

Theorem 2.2. $(1,0)^n = (U_n, U_{n-1})$ and $(1,0)^{-n} = ((-1)^{n+1}U_n, (-1)^nU_{n+1})$ for all $n \in \mathbb{N}$.

Proof. To prove this theorem we use mathematical induction. For n = 1 it is clear that $(1,0) = (U_1,U_0)$. Let $(1,0)^m = (U_m,U_{m-1})$. Then

$$(1,0)^{m+1} = (1,0)^m (1,0) = (U_m, U_{m-1})(1,0) = (kU_m + U_{m-1}, U_m) = (U_{m+1}, U_m)$$

and therefore we obtain $(1,0)^n = (U_n, U_{n-1})$ for all $n \in \mathbb{N}$.

As we did above, we use mathematical induction again to prove

$$(1,0)^{-n} = ((-1)^{n+1}U_n, (-1)^nU_{n+1}).$$

For
$$n = 1$$
, $(1,0)^{-1} = (1,-k) = (U_{-1}, U_{-2})$. Now let
$$(1,0)^{-m} = ((-1)^{m+1} U_m, (-1)^m U_{m+1}).$$

Then it follows that

$$(1,0)^{-(m+1)} = (1,0)^{-m} (1,0)^{-1} = ((-1)^{m+1} U_m, (-1)^m U_{m+1}) (1,-k)$$

$$= ((-1)^m U_{m+1}, (-1)^{m+1} (k U_{m+1} + U_m))$$

$$= ((-1)^m U_{m+1}, (-1)^{m+1} U_{m+2}).$$

As a result, we obtain

$$(1,0)^{-n} = ((-1)^{n+1}U_n, (-1)^nU_{n+1})$$

for all $n \in \mathbb{N}$.

According to Theorem 2.2, it is obvious that

$$(1,0)^{-n} = \left((-1)^{n+1} U_n, (-1)^n U_{n+1} \right) = (U_{-n}, U_{-n-1})$$

for all $n \in \mathbb{N}$. Therefore $(1,0)^n = (U_n, U_{n-1})$ for all $n \in \mathbb{Z}$.

Theorem 2.3. $U_n^2 - kU_nU_{n-1} - U_{n-1}^2 = (-1)^{n+1}$ for all $n \in \mathbb{Z}$.

Proof. If n = 0, then the assertation is correct. Now let n > 0 and x = (1,0). By using $x^n = (1,0)^n = (U_n, U_{n-1})$ and $x^{-n} = (1,0)^{-n} = ((-1)^{n+1} U_n, (-1)^n U_{n+1})$, we get immediately

$$(0,1) = x^n x^{-n} = (U_n, U_{n-1})((-1)^{n+1} U_n, (-1)^n U_{n+1})$$

= $((-1)^n (-kU_n^2 + U_n U_{n+1} - U_n U_{n-1}), (-1)^n (-U_n^2 + U_{n-1} U_{n+1})).$

It follows that $U_n^2 - U_{n-1}U_{n+1} = (-1)^{n+1}$. Furthermore, if we use the fact that $U_{n+1} = kU_n + U_{n-1}$, then we see that

$$U_n^2 - kU_nU_{n-1} - U_{n-1}^2 = (-1)^{n+1}. (2.2)$$

If n < 0, then by using the definitions of U_n and U_{n-1} it can be shown that $U_n^2 - kU_nU_{n-1} - U_{n-1}^2 = (-1)^{n+1}$.

Lemma 1. $\alpha^n = \alpha U_n + U_{n-1}$ and $\beta^n = \beta U_n + U_{n-1}$ for all $n \in \mathbb{Z}$. Furthermore $U_n = (\alpha^n - \beta^n) / \sqrt{k^2 + 4}$ and $V_n = \alpha^n + \beta^n$.

Proof. Since $\phi((1,0)) = \alpha$, it is obvious that $\phi((1,0)^n) = (\phi((1,0)))^n = \alpha^n$. Also from the definition of ϕ we see that

$$\phi((1,0)^n) = \phi((U_n, U_{n-1})) = \alpha U_n + U_{n-1}.$$

Therefore it follows that

$$\alpha^n = \alpha U_n + U_{n-1}. \tag{2.3}$$

Since $\alpha\beta = -1$, we get

$$\beta^{n} = (-\alpha^{-1})^{n} = (-1)^{n} \alpha^{-n} = (-1)^{n} (\alpha U_{-n} + U_{-n-1})$$
$$= (-1)^{n} (\alpha (-1)^{n+1} U_{n} + (-1)^{n} U_{n+1}) = -\alpha U_{n} + U_{n+1}$$

so that,

$$\beta^n = -\alpha U_n + U_{n+1} \tag{2.4}$$

and if we use $\alpha = k - \beta$, then we see that

$$\beta^n = \beta U_n + U_{n-1}. \tag{2.5}$$

From (2.3), (2.4) and (2.5), we obtain $V_n = \alpha^n + \beta^n$ and $U_n = (\alpha^n - \beta^n) / \sqrt{k^2 + 4}$. \blacksquare Since $V_n = \alpha^n + \beta^n$ and $U_n = (\alpha^n - \beta^n) / \sqrt{k^2 + 4}$, it follows that $V_n = U_{n-1} + U_{n+1}$ for all $n \in \mathbb{Z}$.

Corollary 1. $V_n^2 - (k^2 + 4)U_n^2 = 4(-1)^n$ for all $n \in \mathbb{Z}$.

Proof. From Theorem 2.3, we have

$$U_{n+1}^2 - kU_{n+1}U_n - U_n^2 = (-1)^n (2.6)$$

and multiplying both sides of (2.6) by 4, we get $(2U_{n+1} - kU_n)^2 - (k^2 + 4)U_n^2 = 4(-1)^n$. Since $2U_{n+1} - kU_n = V_n$ we obtain

$$V_n^2 - (k^2 + 4)U_n^2 = 4(-1)^n. (2.7)$$

Lemma 2. Let x = (1,0). Then $(2,-k)x^n = (V_{n,}V_{n-1})$ for all $n \in \mathbb{Z}$.

Proof. Since $x^{n+1} + x^{n-1} = (U_{n+1}, U_n) + (U_{n-1}, U_{n-2}) = (V_n, V_{n-1})$ and $x^{n+1} + x^{n-1} = x^n(x+x^{-1}) = x^n((1,0) + (1,-k)) = (2,-k)x^n$, the proof follows.

Theorem 2.4. $V_n^2 - kV_nV_{n-1} - V_{n-1}^2 = (-1)^n(k^2 + 4)$ for all $n \in \mathbb{Z}$.

Proof. Since $(2, -k)x^n = (V_n, V_{n-1})$ and

$$(2,-k)x^{-n} = (V_{-n},V_{-n-1}) = ((-1)^n V_n, (-1)^{n+1} V_{n+1}),$$

it follows that

$$(0,k^2+4) = (2,-k)x^n(2,-k)x^{-n} = (V_n,V_{n-1})(V_{-n},V_{-n-1})$$

= $(V_n,V_{n-1})((-1)^nV_n,(-1)^{n+1}V_{n+1}) = (0,(-1)^n(V_n^2-V_{n+1}V_{n-1})).$

That is, we get $k^2 + 4 = (-1)^n (V_n^2 - V_{n+1} V_{n-1})$. Taking $V_{n+1} = k V_n + V_{n-1}$, we see that $V_n^2 - k V_n V_{n-1} - V_{n-1}^2 = (-1)^n (k^2 + 4)$. Therefore

$$V_n^2 - kV_nV_{n-1} - V_{n-1}^2 = (-1)^n(k^2 + 4)$$
 (2.8)

for all $n \in \mathbb{Z}$.

Theorem 2.5. All integer solutions of the equation $x^2 - kxy - y^2 = \mp 1$ are given by $(x,y) = \mp (U_n, U_{n-1})$ with $n \in \mathbb{Z}$.

Proof. It is seen from (2.2) that $(x,y) = \mp (U_n, U_{n-1})$ verifies the equation $x^2 - kxy - y^2 = \mp 1$. Now assume that $x^2 - kxy - y^2 = \mp 1$. Then $\alpha x + y$ is a unit in $\mathbb{Z}[\alpha]$. Therefore there exists some $n \in \mathbb{Z}$ such that $\alpha x + y = \mp \alpha^n$. Thus $(x,y) = \phi^{-1}(\alpha x + y) = \phi^{-1}(\mp \alpha^n) = \mp (\phi^{-1}(\alpha))^n = \mp (1,0)^n = \mp (U_n, U_{n-1})$.

Corollary 2. All integer solutions of the equation $x^2 - xy - y^2 = \pm 1$ are given by $(x,y) = \pm (F_n, F_{n-1})$ with $n \in \mathbb{Z}$.

Corollary 3. All nonnegative integer solutions of the equation $x^2 - kxy - y^2 = \pm 1$ are given by $(x,y) = (U_n, U_{n-1})$ with $n \ge 0$.

Proof. Assume that x and y are nonnegative integers and $x^2 - kxy - y^2 = \mp 1$. Then $\alpha x + y \ge 1$ and since $\alpha x + y$ is a unit, it follows that $\alpha x + y = \alpha^n$ for some $n \ge 0$. Then $\alpha x + y = \alpha^n = \alpha U_n + U_{n-1}$ and therefore the proof follows.

Theorem 2.6. All nonnegative solutions of the equation $u^2 - (k^2 + 4)v^2 = \mp 4$ are given by $(u, v) = (V_n, U_n)$ with $n \ge 0$.

Proof. If $(u, v) = (V_n, U_n)$, then from Corollary 1, it follows that $u^2 - (k^2 + 4)v^2 = \pm 4$. Assume that x and y are nonnegative integers and $u^2 - (k^2 + 4)v^2 = \pm 4$. Then $u^2 - k^2v^2$ is an even integer and therefore u and kv have the same parity. Thus if we take x = (u + kv)/2 and y = v, then we get

$$x^{2} - kxy - y^{2} = \frac{(u + kv)^{2} - 2kv(u + kv) - 4v^{2}}{4} = \frac{u^{2} - (k^{2} + 4)v^{2}}{4} = \mp 1.$$

This shows that $x = (u + kv)/2 = U_{n+1}$ and $v = y = U_n$ with $n \ge 0$. Thus $u = 2x - kv = 2U_{n+1} - kU_n = V_n$. That is, $(u, v) = (V_n, U_n)$.

Theorem 2.7. Let $k^2 + 4$ be a square free integer. Then all integer solutions of the equation $x^2 - kxy - y^2 = \mp (k^2 + 4)$ are given by $(x, y) = \mp (V_n, V_{n-1})$ with $n \in \mathbb{Z}$.

Proof. If $(x,y) = \mp (V_n, V_{n-1})$, then by (2.8) it follows that $x^2 - kxy - y^2 = \mp (k^2 + 4)$. Now assume that $x^2 - kxy - y^2 = \mp (k^2 + 4)$. Then $(2x - ky)^2 - (k^2 + 4)y^2 = \mp 4(k^2 + 4)$. Since $(k^2 + 4)$ is square free, it is seen that $(k^2 + 4)(2x - ky)$. Similarly we see that $(k^2 + 4)(2y + kx)$. Therefore if we take

$$u = (2y + kx)/(k^2 + 4)$$
 and $v = (2x - ky)/(k^2 + 4)$, (2.9)

we get $u^2 - kuv - v^2 = \pm 1$. Then, by Theorem 2.5, we obtain

$$(u,v) = \mp (U_n, U_{n-1})$$
 (2.10)

From (2.9) and (2.10), it is seen that $(x,y) = \mp (V_n, V_{n-1})$.

Corollary 4. All integer solutions of the equation $x^2 - xy - y^2 = \mp 5$ are given by $(x,y) = \mp (L_n, L_{n-1})$ with $n \in \mathbb{Z}$.

Corollary 5. Let $k^2 + 4$ be a square free integer. Then all nonnegative integer solutions of the equation $x^2 - kxy - y^2 = \mp (k^2 + 4)$ are given by $(x, y) = (V_n, V_{n-1})$ with $n \in \mathbb{N}$.

Using Theorem 2.3 and the identities $U_n = (2U_{n+1} - V_n)/k$ and $U_{n+1} = (V_{n+1} - 2U_n)/k$, respectively, we can give the following corollary.

Corollary 6.

$$V_n^2 - (k^2 + 4)V_nU_{n+1} + (k^2 + 4)U_{n+1}^2 = (-1)^{n+1}k^2$$

and

$$V_{n+1}^2 - (k^2 + 4)V_{n+1}U_n + (k^2 + 4)U_n^2 = (-1)^n k^2$$

for all $n \in \mathbb{Z}$.

Proof. For the proof of the first identity, we will use the identity (2.2) given in Theorem 2.3 and the identity $U_n = (2U_{n+1} - V_n)/k$. Since

$$U_n^2 - kU_nU_{n-1} - U_{n-1}^2 = (-1)^{n+1}$$

we get

$$((2U_{n+1}-V_n)/k)^2-k((2U_{n+1}-V_n)/k)U_{n-1}-U_{n-1}^2=(-1)^{n+1}.$$

Thus it follows that

$$(-1)^{n+1}k^2 = 4U_{n+1}^2 - 4U_{n+1}V_n + V_n^2 - 2k^2U_{n+1}U_{n-1} + k^2V_nU_{n-1} - k^2U_{n-1}^2$$

= $4U_{n+1}^2 - 4U_{n+1}V_n + V_n^2 - k^2U_{n-1}(2U_{n+1} - V_n + U_{n-1}).$ (2.11)

Using the fact $U_{n-1} = V_n - U_{n+1}$ in (2.11), we obtain

$$(-1)^{n+1}k^{2} = 4U_{n+1}^{2} - 4U_{n+1}V_{n} + V_{n}^{2} - k^{2}(V_{n} - U_{n+1})(2U_{n+1} - V_{n} + V_{n} - U_{n+1})$$

$$= 4U_{n+1}^{2} - 4U_{n+1}V_{n} + V_{n}^{2} - k^{2}(V_{n} - U_{n+1})U_{n+1}$$

$$= 4U_{n+1}^{2} - 4U_{n+1}V_{n} + V_{n}^{2} - k^{2}V_{n}U_{n+1} + k^{2}U_{n+1}^{2}.$$

Then it is seen that

$$V_n^2 - (k^2 + 4)V_nU_{n+1} + (k^2 + 4)U_{n+1}^2 = (-1)^{n+1}k^2$$
.

For the proof of the second identity, we will consider the equation (2.6). Using the fact $U_{n+1} = (V_{n+1} - 2U_n)/k$ in (2.6), we get

$$(-1)^n = ((V_{n+1} - 2U_n)/k)^2 - k((V_{n+1} - 2U_n)/k)U_n - U_n^2.$$

Thus it follows that

$$(-1)^n k^2 = V_{n+1}^2 - 4V_{n+1}U_n + 4U_n^2 - k^2 V_{n+1}U_n + 2k^2 U_n^2 - k^2 U_n^2$$

That is,

$$V_{n+1}^2 - (k^2 + 4)V_{n+1}U_n + (k^2 + 4)U_n^2 = (-1)^n k^2$$
.

Corollary 7. All integer solutions of the equation $x^2 - (k^2 + 4)xy + (k^2 + 4)y^2 = \pm k^2$ are given by $(x, y) = \pm (V_{n+1}, U_n)$ with $n \in \mathbb{Z}$.

Proof. If $(x,y) = \mp (V_{n+1}, U_n)$, then

$$x^{2} - (k^{2} + 4)xy + (k^{2} + 4)y^{2} = V_{n+1}^{2} - (k^{2} + 4)V_{n+1}U_{n} + (k^{2} + 4)U_{n}^{2} = (-1)^{n}k^{2} = \mp k^{2}.$$

Now assume that $x^2 - (k^2 + 4)xy + (k^2 + 4)y^2 = \mp k^2$ for some integer x and y. Then it follows that $k^2|(x-2y)^2$, i.e., k|(x-2y). Let u = (x-2y)/k and v = y. Then it can be seen that $u^2 - kuv - v^2 = \mp 1$. Therefore by Theorem 2.5, we get $u = \mp U_{n+1}$ and $v = \mp U_n$. Thus the proof follows.

Let m be an odd integer and $k = L_m$. Then by using $L_m^2 - 5F_m^2 = -4$, we see that

$$\alpha = (k + \sqrt{k^2 + 4})/2 = (L_m + \sqrt{5}F_m)/2 = ((1 + \sqrt{5})/2)^m$$

 $\beta = (k - \sqrt{k^2 + 4})/2 = (L_m - \sqrt{5}F_m)/2 = ((1 - \sqrt{5})/2)^m$.

Thus it follows that $U_n = F_{mn}/F_m$ and $V_n = L_{mn}$. Now we can give the following corollaries easily. The proofs of the corollaries follow from Theorem 2.3, Theorem 2.5, and Theorem 2.4, respectively.

Corollary 8. Let m be an odd integer. Then

$$F_{mn}^2 - L_m F_{mn} F_{m(n-1)} - F_{m(n-1)}^2 = (-1)^{n+1} F_m^2$$

for all $n \in \mathbb{Z}$.

Corollary 9. Let m be an odd integer. Then all integer solutions of the equation $x^2 - L_m xy - y^2 = \mp 1$ are given by

$$(x,y) = \mp (F_{mn}/F_m, F_{m(n-1)}/F_m)$$

with $n \in \mathbb{Z}$.

Corollary 10. Let m be an odd integer. Then

$$L_{mn}^2 - L_m L_{mn} L_{m(n-1)} - L_{m(n-1)}^2 = (-1)^n 5 F_m^2$$

for all $n \in \mathbb{Z}$.

Now we turn to the sequences $\{u_n\}$ and $\{v_n\}$. The characteristic equation of the recurrence relation of the sequence $\{u_n\}$ is $x^2 - kx + 1 = 0$ and the roots of this equation are $\alpha = \left(k + \sqrt{k^2 - 4}\right)/2$ and $\overline{\alpha} = \beta = \left(k - \sqrt{k^2 - 4}\right)/2$. It is clear that $\alpha\beta = 1$, $\alpha^2 = k\alpha - 1$, and $\alpha + \beta = k$.

Now for $a, b, c, d \in \mathbb{Z}$, we define two binary operations in $\mathbb{Z} \times \mathbb{Z}$ by

$$(a,b)(c,d) = (kac + ad + bc, -ac + bd)$$
 and $(a,b) + (c,d) = (a+c,b+d)$.

It can be easily seen that

$$(a,b)(c,d) = (kac+ad+bc, -ac+bd) = (kca+cb+da, -ca+db) = (c,d)(a,b).$$

Furthermore the identity element is (0,0) for the + operation, and (0,1) for the multiplication operation. Then it is seen that $\mathbb{Z} \times \mathbb{Z}$ is a commutative ring with unit element (0,1).

Let $\mathbb{Z}[\alpha] = \{a\alpha + b : a, b \in \mathbb{Z}\}$. Then it can be seen that $\mathbb{Z}[\alpha]$ is a subring of the algebraic integer ring of the real quadratic field $\mathbb{Q}(\sqrt{k^2 - 4})$ and $\mathbb{Z}[\alpha]$ is equal to the algebraic integer ring of the real quadratic field $\mathbb{Q}(\sqrt{k^2 - 4})$ when $k^2 - 4$ is square free. We define a function $\phi : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}[\alpha]$, given by

$$\phi((a,b)) = a\alpha + b.$$

In view of the fact that $(a\alpha+b)(c\alpha+d)=\alpha^2ac+\alpha(ad+bc)+bd=(k\alpha-1)ac+\alpha(ad+bc)+bd=(kac+ad+bc)\alpha-ac+bd$ and $(a\alpha+b)+(c\alpha+d)=(a+c)\alpha+b+d$ for $a,b,c,d\in\mathbb{Z}$, it is easy to see that ϕ is a ring homomorphism. Moreover, since ϕ is bijective, ϕ is an isomorphism.

It can be shown that $x + \alpha y$ is a unit in $\mathbb{Z}[\alpha]$ if and only if $x^2 + kxy + y^2 = \mp 1$. Now we give a theorem, which is important for solutions of some Diophantine equations.

Theorem 2.8. Let k > 3. Then the set of the units of $\mathbb{Z}[\alpha]$ is $\{ \mp \alpha^n : n \in \mathbb{Z} \}$.

Proof. The proof of the theorem is similar to that of Theorem 2.1. It can be shown easily that if $\alpha x + y$ is a unit and $1 < \alpha x + y < \alpha$, then x > 0 and y < 0. Firstly, we show that there is no unit $\alpha x + y$ such that $1 < \alpha x + y < \alpha$. On the contrary, assume that there exist some units $\alpha x + y$ such that $1 < \alpha x + y < \alpha$. We consider the smallest positive integer x such that $1 < \alpha x + y < \alpha$ and $\alpha x + y$ is a unit. Since $1 < \alpha x + y < \alpha$, $\overline{\alpha} < x + \overline{\alpha}y < 1$ and $\overline{\alpha}(\alpha x + y) = x + \overline{\alpha}y$ is also a unit. This shows that $1/(x+\overline{\alpha}y)$ is a unit in $\mathbb{Z}[\alpha]$ and $1<1/(x+\overline{\alpha}y)<1/\overline{\alpha}=\alpha$. Let $\varepsilon=$ $(x + \overline{\alpha}y)(x + \alpha y)$. Then we have $\varepsilon = \mp 1$ and $1 < (x + \alpha y)/\varepsilon < \alpha$. Assume that $\varepsilon = 1$. Then $1 < x + \alpha y < \alpha$, which implies that y > 0. But this is a contradiction, since y < 0. Therefore $\varepsilon = -1$ and this shows that $1 < -x + \alpha(-y) < \alpha$. Thus it follows that $x \le -y$. Then we see that $-x + \alpha x \le -x - \alpha y < \alpha$, which implies that $x(\alpha-1) \le \alpha$. Since k > 3, it follows that $\alpha = (k + \sqrt{k^2 - 4})/2 > (3 + \sqrt{5})/2 > 2$ and therefore $x \le \alpha/(\alpha - 1) = 1 + 1/(\alpha - 1) < 2$. Thus x = 1. Since $-1 = \varepsilon = (x + \overline{\alpha}y)(x + \alpha y) = x^2 + kxy + y^2$, it is seen that $-1 = 1 + ky + y^2$ and therefore y(k+y) = -2. This shows that y|2 and thus y = -2 or y = -1, which implies that k = 3. This contradicts with the hypothesis. The proof of the theorem then follows.

Note that theorem is not correct when k=3. In this case, $\alpha=(3+\sqrt{5})/2=\left[(1+\sqrt{5})/2\right]^2=1+(1+\sqrt{5})/2$ and therefore $(1+\sqrt{5})/2\in\mathbb{Z}[\alpha]$. Moreover $(1+\sqrt{5})/2\neq\left[(1+\sqrt{5})/2\right]^{2n}=\alpha^n$ for every $n\in\mathbb{Z}$.

Theorem 2.9. $(1,0)^n = (u_n, -u_{n-1})$ and $(1,0)^{-n} = (-u_n, u_{n+1})$ for all $n \in \mathbb{N}$.

Proof. Since the proof of this theorem is similar to that of Theorem 2.2, we omit it.

Since $(1,0)^{-n} = (-u_n, u_{n+1}) = (u_{-n}, -u_{-(n+1)})$ and $(1,0)^n = (u_n, -u_{n-1})$ for all $n \in \mathbb{N}$, it follows that $(1,0)^n = (u_n, -u_{n-1})$ for all $n \in \mathbb{Z}$.

Theorem 2.10. $u_n^2 - ku_nu_{n-1} + u_{n-1}^2 = 1$ for all $n \in \mathbb{Z}$.

Proof. Theorem is correct for n = 0. Assume that $n \in \mathbb{N}$. Then

$$(0,1) = (1,0)^{n}(1,0)^{-n} = (u_{n},-u_{n-1})(-u_{n},u_{n+1}) = (0,u_{n}^{2}-u_{n-1}u_{n+1})$$

and therefore $1 = u_n^2 - u_{n-1}u_{n+1}$. Since $u_{n+1} = ku_n - u_{n-1}$, it follows that $u_n^2 - ku_nu_{n-1} + u_{n-1}^2 = 1$. If $n \in \mathbb{Z}$ and n < 0, then using the definition of u_n and u_{n-1} , it can be shown that $u_n^2 - ku_nu_{n-1} + u_{n-1}^2 = 1$.

Lemma 3. $\alpha^n = \alpha u_n - u_{n-1}$ and $\beta^n = \beta u_n - u_{n-1}$ for all $n \in \mathbb{Z}$. Furthermore $u_n = (\alpha^n - \beta^n) / \sqrt{k^2 - 4}$ and $v_n = \alpha^n + \beta^n$.

Proof. From the definition of ϕ , we see that $\alpha u_n - u_{n-1} = \phi((u_n, -u_{n-1})) = \phi((1,0)^n) = (\phi((1,0)))^n = \alpha^n$ and $\beta^n = \alpha^{-n} = \alpha u_{-n} - u_{-n-1} = -\alpha u_n + u_{n+1} = (\beta - k)u_n + u_{n+1} = \beta u_n - u_{n-1}$. Since $\alpha^n = \alpha u_n - u_{n-1}$ and $\beta^n = \beta u_n - u_{n-1}$, it is seen that $u_n = (\alpha^n - \beta^n)/\sqrt{k^2 - 4}$ and $v_n = \alpha^n + \beta^n$.

From the above lemma it follows that $v_n = u_{n+1} - u_{n-1}$. By using the identity $u_n^2 - ku_nu_{n-1} + u_{n-1}^2 = 1$, we can give the following corollary.

Corollary 11. $v_n^2 - (k^2 - 4)u_n^2 = 4$ for all $n \in \mathbb{Z}$.

Lemma 4. Let x = (1,0). Then $(2,-k)x^n = (v_n,-v_{n-1})$ for all $n \in \mathbb{Z}$.

Proof. Since $x^{n+1} - x^{n-1} = x^n(x - x^{-1}) = x^n((1,0) - (-1,k)) = (2,-k)x^n$ and $x^{n+1} - x^{n-1} = (u_{n+1}, -u_n) - (u_{n-1}, -u_{n-2}) = (v_n, -v_{n-1})$, it follows that $(2, -k)x^n = (v_n, -v_{n-1})$.

Theorem 2.11. $v_n^2 - kv_nv_{n-1} + v_{n-1}^2 = -(k^2 - 4)$ for all $n \in \mathbb{Z}$.

Proof. Multiplying $(2, -k)x^n = (\nu_n, -\nu_{n-1})$ and $(2, -k)x^{-n} = (\nu_{-n}, -\nu_{-n-1}) = (\nu_n, -\nu_{n+1})$, we get

$$(0,k^2-4) = (\nu_n, -\nu_{n-1})(\nu_n, -\nu_{n+1})$$

= $(0, -\nu_n^2 + \nu_{n-1}\nu_{n+1}) = (0, -\nu_n^2 + k\nu_n\nu_{n-1} - \nu_{n-1}^2).$

From this, it follows that

$$v_n^2 - kv_nv_{n-1} + v_{n-1}^2 = -(k^2 - 4)$$

for all $n \in \mathbb{Z}$.

Theorem 2.12. Let k > 3. Then all integer solutions of the equation $x^2 - kxy + y^2 = 1$ are given by $(x, y) = \mp (u_n, u_{n-1})$ with $n \in \mathbb{Z}$.

Proof. It is obvious from Theorem 2.10 that if $(x,y) = \mp (u_n, u_{n-1})$, then $x^2 - kxy + y^2 = 1$. Now assume that $x^2 - kxy + y^2 = 1$. Then $\alpha x - y$ is a unit in $\mathbb{Z}[\alpha]$. Therefore there exists some $n \in \mathbb{Z}$ such that $\alpha x - y = \mp \alpha^n$. Consequently, we obtain

$$(x,-y) = \phi^{-1}(\alpha x - y) = \phi^{-1}(\mp \alpha^n)$$

= $\mp (\phi^{-1}(\alpha))^n = \mp (1,0)^n = \mp (u_n, -u_{n-1}).$

Then the proof follows.

Corollary 12. Let k > 3. Then all nonnegative integer solutions of the equation $x^2 - kxy + y^2 = 1$ are given by $(x, y) = (u_n, u_{n-1})$ with $n \ge 1$.

Corollary 13. Let k > 3. Then all nonnegative integer solutions of the equation $u^2 - (k^2 - 4)v^2 = 4$ are given by $(u, v) = (v_n, u_n)$ with $n \ge 1$.

Proof. It is obvious from Corollary 11 that if $(u,v) = (v_n,u_n)$, then $u^2 - (k^2 - 4)v^2 = 4$. Now assume that $u^2 - (k^2 - 4)v^2 = 4$. Then $u^2 - k^2v^2 = 4 + 4v^2$ and therefore $u^2 - k^2v^2$ is an even integer. Thus u and kv have the same parity. Let x = (u + kv)/2 and y = v. Then it follows that

$$x^{2} - kxy + y^{2} = \frac{(u + kv)^{2} - 2kv(u + kv) + 4v^{2}}{4} = \frac{u^{2} - (k^{2} - 4)v^{2}}{4} = \frac{4}{4} = 1.$$

By Corollary 12, $x = u_{n+1}$ and $y = u_n$ for some $n \ge 0$. That is, $u + kv = 2u_{n+1}$ and $y = v = u_n$. From this, it is seen that $u = v_n$ and $v = u_n$.

Theorem 2.13. Let k > 3 and $k^2 - 4$ be a square free integer. Then all integer solutions of the equation $x^2 - kxy + y^2 = -(k^2 - 4)$ are given by $(x, y) = \mp (v_n, v_{n-1})$ with $n \in \mathbb{Z}$.

Proof. From Theorem 2.11, it is seen that if $(x,y) = \mp (\nu_n, \nu_{n-1})$, then $x^2 - kxy + y^2 = -(k^2 - 4)$. Now let $x^2 - kxy + y^2 = -(k^2 - 4)$. Then $(2x - ky)^2 - (k^2 - 4)y^2 = -(k^2 - 4)y^2 = -($

 $(2y-kx)^2-(k^2-4)x^2=-4(k^2-4)$. Since (k^2-4) is square free, it follows that $(k^2-4)|(2x-ky)$ and $(k^2-4)|(2y-kx)$. Let

$$u = \frac{kx - 2y}{k^2 - 4}$$
 and $v = \frac{2x - ky}{k^2 - 4}$.

Then it is seen that

$$u^{2} - kuv + v^{2} = \frac{(kx - 2y)^{2} - k(kx - 2y)(2x - ky) + (2x - ky)^{2}}{(k^{2} - 4)^{2}}$$
$$= \frac{-(k^{2} - 4)(x^{2} - kxy + y^{2})}{(k^{2} - 4)^{2}} = \frac{-(k^{2} - 4)(-(k^{2} - 4))}{(k^{2} - 4)^{2}} = 1.$$

According to Theorem 2.12, $(u,v) = \mp (u_n,u_{n-1})$. A simple computation shows that $(x,y) = \mp (v_n,v_{n-1})$.

Corollary 14. Let k > 3 and $k^2 - 4$ be a square free integer. Then all nonnegative integer solutions of the equation $x^2 - kxy + y^2 = -(k^2 - 4)$ are given by $(x, y) = (v_n, v_{n-1})$ with $n \in \mathbb{Z}$.

Using Theorem 2.10 and the identities $u_n = (2u_{n+1} - v_n)/k$ and $u_{n+1} = (v_{n+1} + 2u_n)/k$, respectively, we can give the following.

Corollary 15.

$$v_n^2 - (k^2 - 4)v_n u_{n+1} - (k^2 - 4)u_{n+1}^2 = k^2$$

and

$$v_{n+1}^2 - (k^2 - 4)v_{n+1}u_n - (k^2 - 4)u_n^2 = k^2$$

for all $n \in \mathbb{Z}$.

Now we can give the following corollary. The proof of the corollary is similar to that of Corollary 7.

Corollary 16. Let k > 3. Then all integer solutions of the equation $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = k^2$ are given by $(x, y) = \mp (v_{n+1}, u_n)$ with $n \in \mathbb{Z}$.

Let *m* be an even integer different from zero and $k = L_m$. Then by using $L_m^2 - 5F_m^2 = 4$, we see that

$$\alpha = (k + \sqrt{k^2 - 4})/2 = (L_m + \sqrt{5}F_m)/2 = ((1 + \sqrt{5})/2)^m$$

 $\beta = (k - \sqrt{k^2 - 4})/2 = (L_m - \sqrt{5}F_m)/2 = ((1 - \sqrt{5})/2)^m$

Thus it follows that $u_n = F_{mn}/F_m$ and $v_n = L_{mn}$. Now we can give the following corollaries easily. The proofs of the corollaries follow from Theorem 2.10, Theorem 2.12, and Theorem 2.11, respectively.

Corollary 17. Let m > 2 be an even integer. Then

$$F_{mn}^2 - L_m F_{mn} F_{m(n-1)} + F_{m(n-1)}^2 = F_m^2$$

for all $n \in \mathbb{Z}$.

Corollary 18. Let m > 2 be an even integer. Then all integer solutions of the equation $x^2 - L_m xy + y^2 = 1$ are given by

$$(x,y) = \mp (F_{mn}/F_m, F_{m(n-1)}/F_m)$$

with $n \in \mathbb{Z}$.

Corollary 19. Let m > 2 be an even integer. Then

$$L_{mn}^2 - L_m L_{mn} L_{m(n-1)} + L_{m(n-1)}^2 = -5F_m^2$$

for all $n \in \mathbb{Z}$.

Theorem 2.14. Let k > 3. Then the equation $x^2 - kxy + y^2 = -1$ has no integer solutions.

Proof. Assume that $x^2 - kxy + y^2 = -1$ for some integers x and y. Then

$$(\alpha x - y)(\overline{\alpha}x - y) = -1$$

and therefore $\alpha x - y$ is a unit in $\mathbb{Z}[\alpha]$. Thus $\alpha x - y = \mp \alpha^n$ for some $n \in \mathbb{Z}$. Then it follows that $(x,y) = \mp (u_n, u_{n-1})$. This shows that

$$-1 = x^2 - kxy + y^2 = u_n^2 - ku_nu_{n-1} + u_{n-1}^2 = 1,$$

which is a contradiction.

We can give the following two corollaries.

Corollary 20. Let k > 3. Then the equation $u^2 - (k^2 - 4)v^2 = -4$ has no integer solutions.

Proof. Assume that $u^2 - (k^2 - 4)v^2 = -4$ for some integers u and v. Then $u^2 - k^2v^2 = 4v^2 - 4$ and therefore $u^2 - k^2v^2$ is an even integer. Thus u and v have the same parity. Let x = (u + kv)/2 and y = v. Then it follows that

$$x^{2} - kxy + y^{2} = \frac{(u + kv)^{2} - 2kv(u + kv) + 4v^{2}}{4} = \frac{u^{2} - (k^{2} - 4)v^{2}}{4} = -1,$$

which is impossible by Theorem 2.14.

Corollary 21. Let k > 3 and $k^2 - 4$ be a square free integer. Then $x^2 - kxy + y^2 = k^2 - 4$ has no integer solutions.

Also the following corollary can be given.

Corollary 22. Let k > 3 and k be an odd integer. Then there are no integer solutions of the equations $u^2 - (k^2 - 4)v^2 = -16$ and $x^4 - kx^2y^2 + y^4 = -4$.

Proof. Assume that $u^2 - (k^2 - 4)v^2 = -16$ for some integers u and v. Then u and v have the same parity. Since $k^2 - 4 \equiv -3 \pmod{8}$, it follows that $u^2 + 3v^2 \equiv 0 \pmod{8}$. This shows that u and v are even integers. This implies that $(u/2)^2 - (k^2 - 4)(v/2)^2 = -4$, which is impossible by Corollary 20. Therefore there is no solutions of the equation $u^2 - (k^2 - 4)v^2 = -16$. Now assume that $x^4 - kx^2y^2 + y^4 = -4$ for some integers x and y. Then $(2x^2 - ky^2)^2 - (k^2 - 4)y^4 = -16$, which is a contradiction.

Corollary 23. Let k > 3. Then there are no integer solutions of the equation $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = -k^2$.

Proof. Assume $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = -k^2$ for some integers x and y. Then it is seen that $k^2|(x+2y)^2$. That is, k|(x+2y). Let u = (x+2y)/k and v = y. Then it follows that

$$u^{2} - kuv + v^{2} = \frac{x^{2} - (k^{2} - 4)xy - (k^{2} - 4)y^{2}}{k^{2}} = \frac{-k^{2}}{k^{2}} = -1,$$

which is a contradiction by Theorem 2.14.

Corollary 24. Let $k \ge 3$. Then there are no integer solutions of the equation $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = -1$.

Proof. Assume that k > 3 and $x^2 - (k^2 - 4)xy - (k^2 - 4)y^2 = -1$ for some integers x and y. Then $(kx)^2 - (k^2 - 4)kxky - (k^2 - 4)(ky)^2 = -k^2$, which is impossible by Corollary 23. Now assume that k = 3. Then the equation becomes $x^2 - 5xy - 5y^2 = -1$. Then $(2x - 5y)^2 - 5(3y)^2 = -4$ and therefore $|2x - 5y| = L_n$ and $3|y| = F_n$ for some odd integer n. Thus $3|F_n$ and this implies that 4|n, which is a contradiction. Recall that $F_m|F_n$ if and only if m|n where $m \ge 3$. (See [9]).

Corollary 25. Let $k \ge 2$. Then equations $x^2 - 4(k^2 - 1)xy - 4(k^2 - 1)y^2 = -k^2$ and $x^2 - 4(k^2 - 1)xy - 4(k^2 - 1)y^2 = -1$ have no integer solutions.

Proof. Assume that

$$x^{2}-4(k^{2}-1)xy-4(k^{2}-1)y^{2}=-k^{2}$$

for some integers x and y. Then we have

$$x^{2} - ((2k)^{2} - 4)xy - ((2k)^{2} - 4)y^{2} = -k^{2}.$$
 (2.12)

Multiplying (2.12) by 4, we get

$$(2x)^2 - ((2k)^2 - 4)(2x)(2y) - ((2k)^2 - 4)(2y)^2 = -(2k)^2,$$

which is impossible by Corollary 23.

Now assume that

$$x^{2} - 4(k^{2} - 1)xy - 4(k^{2} - 1)y^{2} = -1$$
 (2.13)

for some integers x and y. Then multiplying (2.13) by k^2 , we get

$$(kx)^2 - 4(k^2 - 1)(kx)(ky) - 4(k^2 - 1)(ky)^2 = -k^2,$$

which is also impossible.

When k=3, $k^2-4=5$, $u_n=F_{2n}$ and $v_n=L_{2n}$ and the equations $x^2-3xy+y^2=-1$, $x^2-3xy+y^2=5$ and $u^2-5v^2=-4$ have solutions. Also, Theorem 2.12, Theorem 2.13, Corollary 12, and Corollary 16 are correct. This follows from the following theorem.

Theorem 2.15. All integer solutions of the equation $x^2 - 3xy + y^2 = \mp 1$ are given by $(x,y) = \mp (F_{n+2},F_n)$ with $n \in \mathbb{Z}$ and all integer solutions of the equation $x^2 - 3xy + y^2 = \mp 5$ are given by $(x,y) = \mp (L_{n+2},L_n)$ with $n \in \mathbb{Z}$. Also, all nonnegative integer solutions of the equation $u^2 - 5v^2 = \mp 4$ are given by $(u,v) = (L_n,F_n)$ with $n \in \mathbb{N}$ and all integer solutions of the equation $x^2 - 5xy - 5y^2 = 9$ are given by $(x,y) = \mp (L_{2n+2},F_{2n})$ with $n \in \mathbb{Z}$.

Proof. Let u=x-y and v=y. Then $u^2-uv-v^2=(x-y)^2-y(x-y)-y^2=x^2-3xy+y^2=\mp 1$. Therefore by Corollary 2, we get $(u,v)=\mp(F_{n+1},F_n)$. That is, $x-y=\mp F_{n+1}$ and $y=\mp F_n$. It follows that $(x,y)=\mp(F_{n+2},F_n)$. Similarly, if $x^2-3xy+y^2=\mp 5$, then $u^2-uv-v^2=(x-y)^2-y(x-y)-y^2=x^2-3xy+y^2=\mp 5$. Thus $(u,v)=\mp(L_{n+1},L_n)$ by Corollary 4. That is, $x-y=\mp L_{n+1}$ and $y=\mp L_n$. This shows that $(x,y)=\mp(L_{n+2},L_n)$. Conversely, it can be shown by induction that $F_{n+2}^2-3F_nF_{n+2}+F_n^2=(-1)^n$ and $L_{n+2}^2-3L_nL_{n+2}+L_n^2=5(-1)^{n+1}$. By Theorem 2.6, it is seen that all nonnegative integer solutions of the equation $u^2-5v^2=\mp 4$ are given by $(u,v)=(L_n,F_n)$ with $n\in\mathbb{N}$. Moreover, all integer solutions of the equation $x^2-5xy-5y^2=9$ can be found similarly.

When k^2+4 or k^2-4 (in this case, k>3) are not square free, Theorem 2.7 and Theorem 2.13 are not correct. For instance, $x^2-4xy-y^2=20$ has a solution (x,y)=(7,1) but $(7,1)\neq (V_n,V_{n-1})$ for all $n\in\mathbb{Z}$. Also, $x^2-7xy+y^2=-45$ has a solution (x,y)=(1,11) but $(1,11)\neq (v_n,v_{n-1})$ for all $n\in\mathbb{Z}$. More generally, taking $k=L_m$, where $m\neq 0$, we can give the following theorem.

Theorem 2.16. All integer solutions of the equation $x^2 - L_m xy + (-1)^m y^2 = \mp 5F_m^2$ are given by $(x,y) = \mp (L_{m+n}, L_n)$ with $n \in \mathbb{Z}$.

Proof. Assume that $x^2 - L_m xy + (-1)^m y^2 = \mp 5F_m^2$. Then $(2x - L_m y)^2 - (L_m^2 - 4(-1)^m)y^2 = \mp 20F_m^2$ and therefore $(2x - L_m y)^2 - 5F_m^2 y^2 = \mp 20F_m^2$. Then it follows that $5F_m|(2x - L_m y)$. Similarly it is seen that $5F_m|(x + L_{m-1}y)$. Taking

$$u = (x + L_{m-1}y)/5F_m,$$

$$v = (2x - L_m y)/5F_m$$

and considering the identity

$$L_m^2 - L_m L_{m-1} - L_{m-1}^2 = 5(-1)^m$$

we see that

$$u^{2} - uv - v^{2} = \frac{(x + L_{m-1}y)^{2} - (x + L_{m-1}y)(2x - L_{m}y) - (2x - L_{m}y)^{2}}{25F_{m}^{2}}$$
$$= \frac{-5(x^{2} - L_{m}xy + (-1)^{m}y^{2})}{25F_{m}^{2}} = \mp 1$$

Then it follows from Corollary 2 that $(u, v) = \mp (F_{n+1}, F_n)$ for some $n \in \mathbb{Z}$. That is,

$$(x+L_{m-1}y)/5F_m = \mp F_{n+1}$$

and

$$(2x-L_m y)/5F_m=\mp F_n.$$

A simple computation shows that $(x,y) = \mp (L_{n+m}, L_n)$. Conversely, it can be shown that

$$L_{n+m}^2 - L_m L_{n+m} L_n + (-1)^m L_n^2 = (-1)^{n+1} 5F_m^2.$$

This completes the proof.

References

- [1] M. A. Alekseyev, On the intersections of Fibonacci, Pell, and Lucas numbers, Arxiv:1002.1679v1 [math.NT] 8 February 2010.
- [2] D. Andrica and T. Andreescu, An Introduction to Diophantine Equations, GIL Publishing House, Romania, 2002 (translation in Romanian).
- [3] K. Brandt and J. Koelzer, Diophantine Equations, Fibonacci Hyperbolas, and Quadratic Forms, Missouri Journal of Mathematical Sciences 18 (2006), 1-11.
- [4] V. E. Jr. Hoggatt, *Fibonacci and Lucas numbers*, Houghton Mifflin Company, Boston, 1969.
- [5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford University Press, USA, 1980.
- [6] M. E. H. Ismail, One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly 46-47 (2009), 167-180.
- [7] J. P. Jones, Representation of Solutions of Pell Equations Using Lucas Sequences, Acta Academia Pead. Agr., Sectio Mathematicae 30 (2003) 75-86.
- [8] D. Kalman and R. Mena, *The Fibonacci Numbers-Exposed*, Mathematics Magazine 76 (2003), 167 181.
- [9] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
- [10] T. Koshy, New Fibonacci and Lucas identities, The Mathematical Gazette 82 (1998), 481-484.
- [11] W. L. McDaniel, Diophantine Representation of Lucas Sequences, The Fibonacci Quarterly 33 (1995), 58-63.
- [12] R. Melham, Conics Which Characterize Certain Lucas Sequences, The Fibonacci Quarterly 35 (1997), 248-251.
- [13] P. Ribenboim, My numbers, My Friends, Springer-Verlag New York, Inc., 2000.
- [14] S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities, Applications of Fibonacci Numbers, Volume 6., Kluwer Academic Pub., Dordrect, The Netherlands, 1996, 389-408.
- [15] D. Savin, *About a Diophantine Equation*, An. St. University Ovidius of Constanta Ser. Mat., 17 (2009), f.3, 241-250.

- [16] K. Sutner, Recurrence equations, and Fibonacci numbers, http://www.cs.cmu.edu/~cdm/notes.html
- [17] S. Vajda, Fibonacci and Lucas numbers and the golden section, Ellis Horwood Limited Publ., England, 1989.
- [18] K.W. Yang, Fibonacci with golden ring, Mathematics Magazine 70 (1997), 131-135.
- [19] R. Knott, http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html