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Abstract

In this study, we deal with some Diophantine equations. By using the
generalized Fibonacci and Lucas sequences, we obtain all integer solutions
of some Diophantine equations such as x2 —kxy — )2 = F1, X2 by +y2 = 1,
2 —loy—y? =F(k2 +4), 2 — (R +4)xy+ (R +4)? = T2, 2 —kxy+)? =
—(k? - 4), and x? — (K2 — 4)xy — (K* — 4)y? = ¥2. Some of the results are
known but we think that our proofs are new and different from the others.
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1. Introduction

For our purpose, we introduce two kinds of generalized Fibonacci and Lucas se-
quences {U,},{V.} and {u,},{vs}. The generalized Fibonacci sequence {U,}
with parameter £, is defined by Up = 0,U) = 1 and Uy, = kUp—| + Up—2 forn > 2
and the generalized Lucas sequence {V,} is defined similarly by Vp = 2,/; =
k, and V, = kV,_1 + V,-2 for n > 2 where k > 1, is an integer. Also, U_, =
(=1)"*1U, and V_, = (—1)"V, for all n € N. Moreover, the generalized Fibonacci
sequence {u,} with parameter %, is defined by up = 0,4 = 1 and u, = ku,_; —
up—z for n > 2 and the generalized Lucas sequence {v,} is defined similarly by
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vo = 2,vi =k, and v, = kv,_) — vy, for n > 2 where k > 3, is an integer. Also
U-pn = —ty and v_, = v, for all n € N. It can be shown that ¥,, = U,— + U,,;; and
Vn = Up41 — Up—1 for all » € Z. For more information about generalized Fibonacci
and Lucas sequences one can consult [12], [13], [14].

2. Main Theorems

The characteristic equation of the recurrence relation of the sequence {U,} is x2 —
kx—1 =0 and the roots of this equation are o = (k+ Vi +4) /2and@=8=

k—¢k7+'4') /2. 1tis clear that @ = —1, @® = ka+ 1, and &t + B = k. Now
for a, b,c,d € Z, we define two binary operations in Z x Z by

(a,b)(c,d) = (kac + ad + be,ac + bd) and (a,b) + (¢,d) = (a+c,b+d). (2.1)
It can be easily seen that
(a,b)(e,d) = (kac + ad + be,ac + bd) = (kca+ cb+da,ca+ db) = (c,d)(a,b).

Furthermore the identity element is (0,0) for the + operation, and (0, 1) for the
multiplication operation as defined in (2.1). Then it is seen that Z x Z is a com-
mutative ring with unit element (0, 1).

Let Z[a] = {act+ b : a,b € Z}. Then it can be seen that Z [c] is a subring of
the algebraic integer ring of the real quadratic field Q(v/4? +4) and Z [e] is equal
to the algebraic integer ring of the real quadratic field Q(vk? +4) when k% +4 is
square free. We define a function ¢ : Z x Z — Z[a], given by

0((a,b)) = ac+b.

In view of the fact that (aa + ) (ca +d) = a®ac+ a(ad+bc) +bd = (ke + 1) ac+
a(ad + bc) + bd = (kac +ad + bc)o. +ac + bd and (ac + b) + (ca+d) = (a+
c)a+b+d for a,b,c,d € Z, it is easy to see that ¢ is a ring homomorphism.
Moreover, since ¢ is bijective, ¢ is an isomorphism.

If ax +y is a unit in Z[a], then it can be shown that

—x? +hxy+ ) = (ox+y) (Tx+y) = 1.
Theorem 2.1. The set of the units of Z |a] is {£a" | n € Z}.

Proof. To prove the theorem, it is sufficient to show that every unit > 1 is of
the form o" for some n > 0. Firstly, we show that there is no unit @ such that
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I < 0 < a. Assume that ® = ax+y is a unit in Z ] such that 1 < @ < . Thus
since ax+y is a unit, —x? + kxy +)* = (0x+y) (Gx+y) = 1 and therefore
|ax+y||@x+y| = 1. Since |(ax+y) (Tx+y)| =1 and 1 < ax+y, it is seen that
|[@x+y| < 1. Therefore —1 < @x+y < 1. Then it follows that 0 < x(a + @) + 2y,
ie,0<hkx+2y.

On the other hand, since —1 < —@x—y < 1 and 1 < ax+y, we see that
0 < (=@x—y)+(ax+y) = (@ —T)x = (Vk* +4)x. Therefore 0 < x. Since x is
an integer, we get 1 <x. By the fact | < ax+y < @, weobtainy < @ — otx =
a(l—x). Since 1 < x, we get 1 —x < 0. Thus it follows that y < a(1 —x) < 0.
That is, y < 0. Moreover, since —x? +lory+y2 =F1and 1 <x, wehave kxy+)? =
F1+x2 > 0. Then it follows that (Jx+y)y = kxy+y? > 0. Since y < 0, we get
kx+y < 0. By the facts 0 < kx+ 2y and kx +y < 0, we obtain

y=(kx+2y) - (kx+y)>0.

But this contradicts with the fact thaty < 0.

Now let @ > 1 be a unit and @ # a. If @ # & for every integer n > 2, then it
follows that &™ < @ < a™*! for some m € Nwithm > 2. Thus | < w/a™ < &
and @/a™ is a unit in Z[c]. But this is impossible. Therefore @ = a" for some
n > 2. This shows that if @ > 1 is any unit, then ® = " for some » > 0. W

Since the units of the ring Z [@] are of the form +¢” for some 7 € Z, all units
of Z x Z are in the form ¢! (+a").

From the definition of the function ¢, it is seen that ¢((1,0))=1-a+0=a
and then we get ¢! (@) = (1,0). Therefore we obtain

o~ (£a") = x¢7 (@) =+ (¢7 (&))" = £(1,0)".

Thus all units of Z x Z are in the form £(1,0)" for some » € Z. It can be seen
that aix +y is a unit in Z @] if and only if x — kxy —y? = F1.

Theorem 2.2. (1,0)" = (Un,Un—1) and (1,0)™" = ((=1)"'Up,(=1)"Ups1) for
allneN.

Proof. To prove this theorem we use mathematical induction. For n =1 it is clear
that (1,0) = (Uy,Up). Let (1,0)" = (Upn,Un-1). Then

(1,0™! = (1,0 (1,0) = (U, Un—1) (1,0) = (kUp + Un—1,Un) = (Uns1,Un)

and therefore we obtain (1,0)" = (Uy, U,-1) forallneN.
As we did above, we use mathematical induction again to prove

(]’0)—n = ((-l)nHUm("l)"Un-i-l) .
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Forn=1,(1,0)™" = (1,-k) = (U-;,U-7). Now let
(1,00 = ((=1Y™* Up, (—1)"Ups1) -
Then it follows that

(1,0)_(m+l) = (1,0)‘”‘(1,0)" = ((—l)m“Um,(—l)mUmH) (1,—k)
(=1)"Unst, (1" (kUnm1 + Un))
(=1)"Uns1,(=1)"  Uns2).

As aresult, we obtain
(1,0)™" = ((=1)"™'Up, (~1)"Ups1)

forallne N. W

According to Theorem 2.2, it is obvious that

(107" = (=1 Un, (=1)"Unt1) = (U U-n-1)

for all n € N. Therefore (1,0)" = (Uy,U,—-1) forall n € Z.
Theorem 2.3. U2 — kUpUp—y — U2, = (=1)"*! foralin e Z.
Proof. If n = 0, then the assertation is correct. Now let n > 0 and x = (1,0). By

using ¥ = (1,0)" = (Un,Up—1) and x™" = (1,0)~" = ((=1)"*' Up, (=1)" Upt1),
we get immediately

(0,1) = &%= UnUp-0)((=1)"" Un, (=1)"Ups1)
(("‘])" (—kU3 + UpUn+1 — UnUn—l) ’(_l)n ("‘U;? +Un—lUn+l)) .

It follows that U2 — Up_1Up41 = (—1)"*!. Furthermore, if we use the fact that
Up+1 = kU, + Uy, then we see that

U2 = kUpUpy ULy = (-1)™!, 2

If n < 0, then by using the definitions of U, and U, it can be shown that U? —
kUpUp-1 = UL, = (-1)""'. 1

Lemma 1. " = aU, + U,— and " = BU, + U,-, for all n € Z. Furthermore
Uy=(a"—B") V2 +4andV, = a" + B".
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Proof. Since ¢ ((1,0)) = a, it is obvious that ¢ ((1,0)") = (¢ ((1,0)))" = a".
Also from the definition of ¢ we see that

9 ((1,0)") =¢ ((UmUn—l)) = QUy + Up-1-

Therefore it follows that
a" = aUn‘*'Un._[. (2.3)

Since aff = -1, we get
B = (-a™)'=(-1y"a"=(-1)"(@U-n+U-n-1)
(=1)" (@(=1)"*" Up+(=1)"Unt1 ) = —aUp + Uns

so that,
B" = —0Un+Upti (2.4)
and if we use @ = k — 3, then we see that
B" = BUn+Up-1- (2.5)

From (2.3), (2.4) and (2.5), we obtain ¥, = "+ " and U, = (a" — ") /Vk* + 4.1

Since ¥, = " + B" and U, = (&" — B") / VK2 + 4, it follows that ¥, = U,_, +
Upy forallne Z.

Corollary 1. V2 — (k2 +4)U2 = 4(—1)" foralln€ Z.
Proof. From Theorem 2.3, we have
U2y — kUniUn = UE = (-1)" (2.6)

and multiplying both sides of (2.6) by 4, we get (2Up4; — kUp)? — (k2 + 4)U2 =
4(—1)". Since 2Up4; — kU, = V,, we obtain

V2 — (2 +4)U? =4(-1)". 2.7

[ ]
Lemma 2. Letx = (1,0). Then (2,—k)x" = (V,,Vu—1) foralln € Z.

Proof. Since x"+! +x"1 = (U,,.H,Un) + (Un_l,Un_z) = (Vn, V,,..]) and x"t! 4+
M =x"(x+x71) = x*((1,0) + (1,-k)) = (2,—k)x", the proof follows. B

Theorem 2.4, V2 —kV,V,_y — V2, = (=1)"(k*+4) foralln € Z.
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Proof. Since (2, —k)x" = (V,;,V-1) and
(2,=K)x™" = (Vp,Vp1) = (= 1)"Vy (1) V1),
it follows that

(0,2 +4) (2, =k)x"(2,—k)x™" = (Va, V1) (V=ps V=n-1)

Vs Vne1) (= 1) Wy (= 1) Wii1) = (0,(=1)" (V2 = V1 Vemt))-

That is, we get K2 +4 = ( l)"(V2 Vos1Vu1). Taking Vpyy = kVp + Vo), we
see that V2 — kV,V,_) — = (—1)"(k? +4). Therefore

V2= kVpVpoy = V2 = (=1)"( +4) 2.8)
forallneZ. N

Theorem 2.5. All integer solutions of the equation x* — kxy —y* = F1 are given
by (x,y) = F (Un,Up-1) withn € Z.

Proof. It is seen from (2.2) that (x,y) = F (Up, U,—) verifies the equation x2 —

kxy — y* = F1. Now assume that x> — kxy —* = F1. Then ax +y is a unit in

Z[a). Therefore there exists some » € Z such that ax +y = Fa". Thus (x,y) =
¢~ (ox+y) = ¢~ (Fa") = F (97 ()" = F(1,0)" = F(Un, Up-1).- B

Corollary 2. All integer solutions of the equation x> — xy —y* = F1 are given by
() = F (Fu,Fur) withn € Z.

Corollary 3. All nonnegative integer solutions of the equation x? — kxy — y? = F1
are given by (x,y) = (U, Uy—1) withn > 0.

Proof. Assume that x and y are nonnegative integers and x> — kxy — y? = F1. Then
ox+y > 1 and since ax+y is a unit, it follows that ax+y = " for some n > 0.
Then ax+y = a" = al, + U,— and therefore the proof follows. ll

Theorem 2.6. All nonnegative solutions of the equation u* — (k* +4)v* = F4 are
given by (u,v) = (Vy,,U,) withn 2> 0.

Proof. If (u,v) = (¥, Uy), then from Corollary 1, it follows that u? — (k% +-4)? =
F4. Assume that x and y are nonnegative integers and u? — (k* +4)v? = 4. Then
u? — k22 is an even integer and therefore v and 4v have the same parity. Thus if
we take x = (w4 kv)/2 and y = v, then we get

2 _ - 2 _
ch_Imy_y2=(z4+kv) ZkZ(u+kv) & _u (k:+4)v2=
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This shows that x = (u+kv)/2 = Up41 and v =y = U, with n > 0. Thus u =
2x — kv =2U,41 — kU, = V,. That is, (u,v) = (Va,U,). W

Theorem 2.7. Let k2 +4 be a square free integer. Then all integer solutions of the
equation x* — kxy — y? = F(k? +4) are given by (x,y) = F(V,Va-1) withn € Z.

Proof. If (x,y) = F(Vn, Va—1), then by (2.8) it follows that x? — kxy —y? = F(k* +
4). Now assume that x2 — kxy — )2 = F(k* +4). Then (2x— ky)? — (K> +4)y? =
F4(k2 +4). Since (k2 +4) is square free, it is seen that (k? +4)|2x — ky. Similarly
we see that (k2 +4)|2y + kx. Therefore if we take
u=(2p+kx) /(K2 +4) and v = (2x—ky) /(K* +4), 2.9)
we get w2 — kuv —v? = F1. Then, by Theorem 2.5, we obtain
(u, V) = :F(U",Un—]) (2.]0)

From (2.9) and (2.10), it is seen that (x,y) = F(Vy,Va—1). W

Corollary 4. All integer solutions of the equation x® —xy — y? = 5 are given by
(x,y) = F(Ln,Ln-1) withn € Z.

Corollary 5. Let k2 + 4 be a square free integer. Then all nonnegative integer
solutions of the equation x? — kxy — y* = F(k* +4) are given by (x,y) = (Va, Va—1)
withn € N,

Using Theorem 2.3 and the identities Uy, = (2Up+1 — V) /k and Up1 = (Vo1 —
2U,)/k, respectively, we can give the following corollary.

Corollary 6.
V2 — (12 + 4)WVUpsy + (B + U2, = (1)1 82

and
V21 = (B +4)Vnsr Un + (B + 4 U2 = (- 1)

forallne Z.

Proof. For the proof of the first identity, we will use the identity (2.2) given in
Theorem 2.3 and the identity U, = (2U,+1 — Va)/k. Since

U2 — kUpUp_y = U2, = (=1)"*1,
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we get
((2Uns1 = Va) [K)? = k((2Uns1 = Vi) [R) Upoy = UR_y = (=1)"*1,
Thus it follows that

(=12 = 4UR| = Upp Ve + V2 = 202Un s\ Upy + K2VoUno) — UL,
= AU —4Upp1 Vo + V2 = IPUn 1 QUas) = Vo +Upr). (2.11)

Using the fact U,—y = ¥y — Uy41 in (2.11), we obtain
(_1)n+lk2

QUL | = AUnir Vo + V7 = (Ve = Upt1)(2Uns1 = Vo + Vo = Uyt
= 4U%| — 48U Vo +VE = V= Ups1)Upsi
= QU2 = WUpi Vo + V2 = VUpy + U2, .

Then it is seen that

V2 = (2 4 4)VaUns1 + (B +4) U2, = (-1)"F 2,

For the proof of the second identity, we will consider the equation (2.6). Using
the fact Upy1 = (Vi1 — 2Uy) /k in (2.6), we get

(=1)" = ((Vas1 = 2Un) /6)* = b (Vi1 — 2Un) [R) U = U2
Thus it follows that
(=) = V2| — 4V Up + U2 = IV Uy + 22U - PU.

That is,
V2 — (B4 8V Up + (R + U2 = (—1)"2.

Corollary 7. All integer solutions of the equation x> — (k* + 4)xy + (k* + 4))? =
F&2 are given by (x,y) = F(Vns1,U,) withn € Z.

Proof. If (x,y) = F(Vu+1,Un) , then
2 = (B +4)xy+ (F +4)? =Vl ) — (B + ) pa Up + (B +4)U} = (—1)" = T4,

Now assume that x2 — (k2 + 4)xy + (k* + 4)y* = Fk* for some integer x and y.
Then it follows that k*|(x — 2y)?, i.e., k|(x—2y). Let u = (x—2y)/kand v=1y.
Then it can be seen that #> — kuv — v* = F1. Therefore by Theorem 2.5, we get
u = FUp4) and v = FU,. Thus the proof follows.
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Let m be an odd integer and k = L,,. Then by using L2, — 5F2 = —4, we see
that

o = (k+VET4) /2= Ln+V5Fn)/2= ((1+v5) 2)"
B = (k—Vi+3)/2=(Ln—V5Fn)/2= ((1-v5) /2)'".

Thus it follows that U, = F,/Fy, and ¥, = Ln. Now we can give the following
corollaries easily. The proofs of the corollaries follow from Theorem 2.3, Theo-
rem 2.5, and Theorem 2.4, respectively.

Corollary 8. Let m be an odd integer. Then

szn _Lman ‘m(n—1) —F"Z,("_l) = (—1)"+lF,3
foralln € Z.

Corollary 9. Let m be an odd integer. Then all integer solutions of the equation
x2 ~ Luxy —y* = F1 are given by

(x’.V) = :F(an/FmaFm(n—l)/Fm)

withn € Z.

Corollary 10. Let m be an odd integer. Then
ernn - LmLanm(n—l) - sz(n—l) = (— 1 )"5F,3

forallneZ.

Now we turn to the sequences {u,} and {v,}. The characteristic equation of
the recurrence relation of the sequence {u,} is x> —kx+1 = 0 and the roots of

this equation are @ = (k+ Vk§—4) /2 and@=f= (k— \/k7—4) /2. 1t is

clearthat af =1, 0’ =ka—1,and a+ B =k.

Now for a,b,c,d € Z, we define two binary operations in Z x Z by
(a,b)(c,d) = (kac+ ad + bc,—ac + bd) and (a,b) + (¢,d) = (a+c,b+d).

It can be easily seen that

(a,b)(c,d) = (kac+ad+bc,—ac+bd) = (kca+cb+da,—ca+db) = (¢,d)(a, b).
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Furthermore the identity element is (0,0) for the + operation, and (0, 1) for the
multiplication operation. Then it is seen that Z x Z is a commutative ring with
unit element {0, 1).

Let Z|a) = {aa+b:a,b € Z}. Then it can be seen that Z[¢] is a subring of
the algebraic integer ring of the real quadratic field Q(v'k? — 4) and Z[c] is equal
to the algebraic integer ring of the real quadratic field Q(vk? —4) when k2 —4 is
square free. We define a function ¢ : Z x Z — Z{a], given by

#((a,b)) = aa+b.

In view of the fact that (@ + b)(ca+d) = a®ac+ a(ad+bc) +bd = (ka — 1) ac+
a(ad + bc) + bd = (kac + ad + bc)a — ac + bd and (@ +b) + (ca.+d) = (a+
c)a+b+d for a,b,c,d € Z, it is easy to see that ¢ is a ring homomorphism.
Moreover, since ¢ is bijective, ¢ is an isomorphism.

It can be shown that x + ay is a unit in Z [ if and only if x +koxy+y? = F1.
Now we give a theorem, which is important for solutions of some Diophantine
equations.

Theorem 2.8. Letk > 3. Then the set of the units of Z{a) is {Fo" :n € Z}.

Proof. The proof of the theorem is similar to that of Theorem 2.1. It can be shown
easily that if ox+yisaunitand 1 < ax+y < @, then x > 0 and y < 0. Firstly,
we show that there is no unit ax + y such that 1 < ax+y < . On the contrary,
assume that there exist some units &tx +y such that 1 < ax+y < @. We consider
the smallest positive integer x such that 1 < ax+y < a and ax+y is a unit. Since
l<ax+y<a, @<x+0y<1and @(ax+y) =x+ 0y is also a unit. This
shows that 1/(x+0y) isaunitinZ[a]and1 < 1/(x+0y) < 1/@=a.Lete=
(x+0y)(x+ ay). Then we have € = F1 and 1 < (x+ ay) /e < &. Assume that
€=1.Then 1 < x+ ay < &, which implies that y > 0. But this is a contradiction,
since y < 0. Therefore € = —1 and this shows that 1 < —x+ a(—y) < a. Thus it
follows that x < —y. Then we see that —x+ ox < —x— ay < &, which implies that

x(a—1) < . Since k> 3, it follows that & = (k+ VIZ=3) /2> (3+V5)/2>2

and thereforex < a/(a@-1)=1+1/(a—1) <2. Thusx=1. Since ~1 = ¢ =
(x+Ty)(x + o) = x? + kxy + 2, it is seen that —1 = 1 + ky+)? and therefore
y(k+y) = —2. This shows that y|2 and thus y = —2 or y = —1, which implies
that & = 3. This contradicts with the hypothesis. The proof of the theorem then
follows. B

Note that theorem is not correct when k = 3. In this case, @ = (3++/5)/2 =
2
[(l +\/§)/2] = 1+ (1 ++/5)/2 and therefore (1 + v/5)/2 € Z|e]. Moreover

(1+V5)/2 4 [(l +\/§)/2]2n = " for every n € Z.
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Theorem 2.9. (1,0)" = (up,—uy—1) and (1,0)™" = (—up,tp41) foralln € N.

Proof. Since the proof of this theorem is similar to that of Theorem 2.2, we omit
it.

Since (1,0)™" = (~utn,Unt1) = (U=n, —U_(n41)) and (1,0)" = (sn, —un— ) for
all n € N, it follows that (1,0)" = (un, —un-1) for all n € Z.
Theorem 2.10. 12 — kuyup_ +u’_, =1 foralln€ Z.

Proof. Theorem is correct for n = 0. Assume that »n € N, Then
(01 l) = (1,0)"(1,0)_" = (um'-un—l)(—umun+l) = (O,ui - un—lun+l)

and therefore 1 = 42 — tiy1Ups1. SINCE Ui = kuty — un—y, it follows that u2 —
Ktintty—1 +u2_, = 1. 1f n € Z and n < 0, then using the definition of u, and uy-_,

it can be shown that u2 — kusup—1 +u2_, = 1.1

Lemma 3. " = Qu, — uy—| and " = Pup — un—) for all n € Z. Furthermore

up= (" —B") /VI2 -4 and v, = " + B".

Proof. From the definition of ¢, we see that Quy, — up—1 = @((un, —tn-1)) =
¢((1,0)") = (¢((1’0)))n = o and B” =07 = QU_p— Uy = —QUp+Upy) =
(B = k)uy + tiny1 = Btin — Uy . Since a" = Oup — up—y and " = Pup — up_y, it
is seen that u, = (" — ") /Vk2 —4and v, = a"+ B". B

From the above lemma it follows that v, = uy41 — up—1. By using the identity
uﬁ — kunqu,—y + uf,_, = 1, we can give the following corollary.

Corollary 11. v2 — (i —4)u? =4 foralin € Z.

Lemma 4. Letx = (1,0). Then (2,—k)x" = (Vn,—Vn—1) foralln e Z.

Proof. Since x**! —x"~! = x"(x —x~1) = x"((1,0) — (—1,k)) = (2,—k)x" and
1 = (U1, —uy) = (Upe1, —tin—2) = (Vn, —Va—1), it follows that (2, —k)x" =
(Vm"'vn—l)~.

Theorem 2.11. V2 — kv,v,_ +V2_| = —(k*—4) forallne Z.

Proof. Multiplying (2, —k)x" = (vp, —Vn—1) and (2,—k)x™" = (v_p,—V_p—1) =
(Vay =Vnt1 )a we get

(Oakz _4) = (Vm"vn—l)(vm "Vn+1)
(0; _szy +Vn—an+l) = (0,—V3,+kVnV,,_) -Vzn-l)-
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From this, it follows that

‘,2" — kvpvn—i +V2-1 = _(k2_4)
forallneZ. A

Theorem 2.12. Let k > 3. Then all integer solutions of the equation x* — kxy +
y* = 1 are given by (x,y) = F(tin,un—1) withn € Z.

Proof. It is obvious from Theorem 2.10 that if (x,y) = F(n,un—1), then x2 —
kxy +y? = 1. Now assume that x> — kxy+y? = 1. Then ax —y is a unit in Z[a].
Therefore there exists some » € Z such that ox —y = Fa". Consequently, we
obtain

x—y) = ¢ (ax—y)=9¢"'(Fa")
¥(¢—] (a))” = :F(I)O)" = :F(um—un-l)-

Then the proof follows. ll

Corollary 12. Let k > 3. Then all nonnegative integer solutions of the equation
x? —kxy+y? = 1 are given by (x,y) = (Un,un_1) withn > 1.

Corollary 13. Let k > 3. Then all nonnegative integer solutions of the equation
u? — (k? — 4)v? = 4 are given by (u,v) = (Vu,u) withn > 1.

Proof. It is obvious from Corollary 11 that if (u,v) = (v, u,), then u? — (k2 —
4)v? = 4. Now assume that u2 — (k2 — 4)v2 = 4. Then u? — k2 = 4+ 4 and
therefore 42 — k22 is an even integer. Thus « and kv have the same parity. Let
x=(u+kv)/2 and y = v. Then it follows that

2 — koy 7 = (u+kv)2—2k:;(u+/’cv)-%—4v2 _ 1:2—(15‘2‘—4)1»2 - g _1

By Corollary 12, x = u,4 and y = u, for some n > 0. That is, u + kv = 2u,,| and
y = v =uy,. From this, it is seen that u = v, and v=u,,. B

Theorem 2.13. Let k > 3 and k* — 4 be a square free integer. Then all integer so-
lutions of the equation x? — kxy +y* = —(k? — 4) are given by (x,y) = F(Va,Va—1)
withn € Z.

Proof. From Theorem 2.11, it is seen that if (x,y) = F(vs,Vp—1), then x? — kxy +
y? = —(k2 —4). Now let x? —kxy + 3?2 = —(k* —4). Then (2x — ky)? — (k2 — 4))2 =
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(2y — kx)? — (K2 — 4)x2 = —4(k? — 4). Since (k* —4) is square free, it follows that
(k2 — 4)|(2x — ky) and (k2 —4)|(2y — kx) . Let

_kx—-2 _x—-ky
U="33 andv= 24"

Then it is seen that
(kx — 2y)* — k(hx — 2y) (2x — ky) + (2x — ky)?
(@ -ay?
| —R-@-byty) _ —(B-H(-(R-4) _
- (k2 —4)2 (k2 —4)2 '
According to Theorem 2.12, (4,v) = F(un,un—1). A simple computation shows
that (x,y) = F(va,Vn—1). B

W — kuv+V*

Corollary 14. Letk > 3 and k* — 4 be a square free integer. Then all nonnegative
integer solutions of the equation x> — kxy + y* = —(k*> — 4) are given by (x,y) =
(VnyVn—1) withn € Z.

Using Theorem 2.10 and the identities u, = (2up41 — Va)/kand ups1 = (Vpy1 +
2up)/k, respectively, we can give the following.

Corollary 15.

V2= (B = 4)yttpr — (1 = )2, =
and .

V?r-}-l - (kz —4)Vn+lun - (kz —4)u§ =i
forallne Z.

Now we can give the following corollary. The proof of the corollary is similar
to that of Corollary 7.

Corollary 16. Let k > 3. Then all integer solutions of the equation x> — (k* —
4)xy — (k2 — 4)y? = k* are given by (x,y) = F(Vn41,u4n) withn € Z.

Let m be an even integer different from zero and & = L,,. Then by using L2, —
SF? = 4, we see that

a = (k+ViE=4)/2=(Ln+V5E/2=((1+V5) 2)"
B = (k—vi=2)2=n-V3E2= ((1-V53) 2)".

Thus it follows that u, = F,,/F, and v, = Ly,. Now we can give the follow-
ing corollaries easily. The proofs of the corollaries follow from Theorem 2.10,

Theorem 2.12, and Theorem 2.11,respectively.
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Corollary 17. Let m > 2 be an even integer. Then

F,%,, = LonEmnFm(n-1) +F,3(n—1) = Fnzu
for all n € Z.

Corollary 18. Let m > 2 be an even integer. Then all integer solutions of the
equation x*> — L,xy+y* = 1 are given by

(xy) = q:(an/FM1Fm(n—l)/Fm)

withn e Z.

Corollary 19. Let m > 2 be an even integer. Then
L%,n _LmLanm("_]) +LI2"(YI—]) = —SF”%

forallne€ Z.

Theorem 2.14. Let k > 3. Then the equation x* — kxy+y*> = —1 has no integer
solutions.

Proof. Assume that x* — kxy + ) = —1 for some integers x and y. Then
(ex=y)(Ox-y)=-1

and therefore ax — y is a unit in Z[e]. Thus ax—y = Fa" for some n € Z. Then
it follows that (x,y) = F (4, 4n—1). This shows that

—1=x— by +y* = v} — ktntin-1 + 5 = 1,
which is a contradiction. Il

We can give the following two corollaries.

Corollary 20. Let k > 3. Then the equation u> — (k> — 4)v* = —4 has no integer
solutions.

Proof. Assume that u? — (k> — 4)v? = —4 for some integers  and v. Then 1% —
k2v? = 4v? — 4 and therefore u? — k%2 is an even integer. Thus u and v have the
same parity. Let x = (u+kv) /2 and y = v. Then it follows that

2y y = (u+kv)2—2kz(u+kv)+4v2 _ uz—(kz—4)v2 _

which is impossible by Theorem 2.14. l

-1,
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Corollary 21. Letk >3 and k* — 4 be a square free integer. Then x2 — kxy+)? =
k2 — 4 has no integer solutions.

Also the following corollary can be given.

Corollary 22. Letk > 3 and k be an odd integer. Then there are no integer solu-
tions of the equations u* — (k% — 4)v? = —16 and x* — kx?)? +y* = —4.

Proof. Assume that »* — (k% —4)v* = —16 for some integers # and v. Then
u and v have the same parity. Since k> —4 = —3(mod8), it follows that u* +
312 = 0(mod8). This shows that  and v are even integers. This implies that
(u/2)? — (i? — 4)(v/2)* = —4, which is impossible by Corollary 20. Therefore
there is no solutions of the equation u? — (k% — 4)v* = —16. Now assume that
x* —kx?y? + y* = —4 for some integers x and y. Then (2x2 — b?)2 — (K2 —4)y* =
—16, which is a contradiction. H

Corollary 23. Let k > 3. Then there are no integer solutions of the equation

52— (R = 4y — (I = 4)2 = —2.

Proof. Assume x2 — (k* — 4)xy — (k? — 4)y? = —k? for some integers x and y.
Then it is seen that k2|(x +2y)?. That is, k|(x +2y). Letu = (x+2y)/kand v=y.
Then it follows that

2= (- dpy— (R4 _ R _

P23 @ =h

wt —kuv+v* =
which is a contradiction by Theorem 2.14.

Corollary 24. Let k > 3. Then there are no integer solutions of the equation x> —

(R ~ 4y~ (& - 4)7 = =1,

Proof. Assume that k > 3 and x2 — (k2 — 4)xy — (k* — 4)y? = —1 for some integers
x and y. Then (kx)? — (k2 — 4)kocky — (k2 — 4)(ky)? = —k?,which is impossible by
Corollary 23. Now assume that k = 3. Then the equation becomes x* — 5xy — 5y? =
—1. Then (2x — Sy)? — 5(3y)? = —4 and therefore |2x— Sy| = L, and 3|y| = F, for
some odd integer n. Thus 3|F, and this implies that 4|n, which is a contradiction.
Recall that F},|F,, if and only if m|n where m > 3.(See [9]). B

Corollary 25. Let k > 2. Then equations x> — 4(k* — 1)xy — 4(k? — 1)) = —i?
and x2 — 4(k% — 1)xy — 4(k% — 1)y? = —1 have no integer solutions.
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Proof. Assume that
432 = Dxy— 42— 1)) = —k2
for some integers x and y. Then we have
X2 — ((2k)? — 4)xy— ((2k)* — 4)y* = 2. (2.12)
Multiplying (2.12) by 4, we get
(20)” = ((26)° - 4) (26) () = ((24)* — 9) ()" = - (20,

which is impossible by Corollary 23.

Now assume that
X2 =42 = 1)xy— 4K - 1) = —1 (2.13)
for some integers x and y. Then multiplying (2.13) by &2, we get
(ke)? = 40 = 1) (k) (k) = 4(8* ~ 1) ()" = %,

which is also impossible. @

Whenk=3,k*—4=5, u, = F>, and v, = L, and the equations x2 — 3xy +
¥ =—1,x*=3xy+y* =5 and u* — 5v> = —4 have solutions. Also, Theorem
2.12, Theorem 2.13, Corollary 12, and Coroliary 16 are correct. This follows from
the following theorem.

Theorem 2.15. All integer solutions of the equation x*> —3xy+)? = F1 are given
by (x,y) = F(Fy+2,F,) with n € Z and all integer solutions of the equation x* —
3xy+y? = F5 are given by (x,y) = F(Ln+2,Ln) withn € Z. Also, all nonnegative
integer solutions of the equation u* — 5v* = F4 are given by (u,v) = (L, F;) with
n € N and all integer solutions of the equation x> — Sxy — 5y* = 9 are given by
(x,3) = F(Lan+2,Fon) withn € Z.

Proof. Letu=x—yandv=y. Then > —uv—v? = (x—y)?> —y(x —y) —)? =
x? = 3xy+y? = F1. Therefore by Corollary 2, we get (4,v) = F(Fy+1,Fy)- Thatis,
x—y = FF,y and y = FF,. It follows that (x,y) = F(Fp+2,F,). Similarly, if x2 —
3xp+y> =F5, thenw? —uv—v2 = (x —y)2 —y(x—y) — )2 = x2 = 3xp+)% = F5.
Thus (u,v) = F(Lp+1,Ls) by Corollary 4. That is, x —y = FL,4+) and y = FL,.
This shows that (x,y) = F(Ln+2,L,). Conversely, it can be shown by induction
that F2,, — 3F,Foq2 + F? = (—=1)" and L2, — 3LaLpy + L2 = 5(—1)"1, By
Theorem 2.6, it is seen that all nonnegative integer solutions of the equation »? —
5v2 = F4 are given by (u,v) = (L,, F,,) with n € N. Moreover, all integer solutions
of the equation x2 — Sxy — 5y? =9 can be found similarly. I
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When &2 + 4 or k2 — 4 (in this case, k > 3) are not square free, Theorem 2.7
and Theorem 2.13 are not correct. For instance, x? — 4xy —? = 20 has a solution
(x,9) = (7,1) but (7,1) # (¥, V1) for all n € Z. Also, x2 — Txy+)* = —45 has
a solution (x,y) = (1,11) but (1,11) % (vn,va-1) for all » € Z. More generally,
taking k = L,,, where m # 0, we can give the following theorem.

Theorem 2.16. All integer solutions of the equation x* — Lyxy+(—1)"y? = F5F>
are given by (x,y) = F(Lm4n,Ln) withn € Z.

Proof. Assume that x2 — L,xy + (—1)™? = F5F2. Then (2x — Lny)? — (L2, —
4(—1)")y? = F20F?2 and therefore (2x — Lmy)? — SF2y? = F20F2. Then it fol-
lows that 5F,|(2x — L,,y). Similarly it is seen that 5F,|(x+ L—1y). Taking
u = (x+Lm-1y)/5Fm,
v=(2x—Lpy)/5F,

and considering the identity

L2 —LyLpy —12_ =5(=1)"

we see that
% S (x+L_19)? = (x+ Lin—19) (2% — Lmy) — (2% — Lyy)?
25F2
_ 5@ Ley+ ()W)

25F2

Then it follows from Corollary 2 that (u,v) = F(F,+1,Fn) for some n € Z. That
is,
(x+Ln-19)/5Fn = FFys1

and
(2x —Lyy)/5Fm = FF,.

A simple computation shows that (x,y) = F(Lytm,L,). Conversely, it can be

shown that
L2 —LiLnpmLa+ (=1)"L2 = (=1)"™15F2.

This completes the proof. B
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