A Characterization on Potentially $K_6 - E(K_3)$ -graphic Sequences*

Meng-Xiao Yin

School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China. Email: yinmengxiao@yahoo.com.cn

Jian-Hua Yin

Department of Mathematics, School of Information Science and Technology, Hainan University, Haikou 570228, China.

Email: yinjh@ustc.edu

Abstract: For given a graph H, a graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be potentially H-graphic if there is a realization of π containing H as a subgraph. In this paper, we characterize potentially $K_6 - E(K_3)$ -graphic sequences without zero terms, where $K_6 - E(K_3)$ is the graph obtained from a complete graph on 6 vertices by deleting three edges which form a triangle. This characterization implies the values of $\sigma(K_6 - E(K_3), n)$.

Keywords: graph, degree sequence, potentially $K_6 - E(K_3)$ -graphic sequence.

Mathematics Subject Classification (2000): 05C07.

1. Introduction

The set of all sequences $\pi = (d_1, d_2, \ldots, d_n)$ of non-negative, non-increasing integers with $d_1 \leq n-1$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . If each term of a graphic sequence π is nonzero, then π is said to be positive graphic. For a sequence $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$, denote $\sigma(\pi) = d_1 + d_2 + \cdots + d_n$. For given a

^{*}The research was supported by National Natural Science Foundation of China and NSF of Hainan Province (807026).

graph H, a sequence $\pi \in GS_n$ is said to be potentially H-graphic, if there is a realization of π containing H as a subgraph. Eschen and Niu [2] characterized potentially $K_4 - e$ -graphic sequences. Yin and Li [11] gave two sufficient conditions for $\pi \in GS_n$ to be potentially $K_r - e$ -graphic. In the following, the symbol x^y in a sequence stands for y consecutive terms, each equal to x.

Theorem 1.1 [2] Let $n \geq 4$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence. Then π is potentially $K_4 - e$ -graphic if and only if the following conditions hold:

- $(1) d_2 \ge d_2 \ge 3, d_4 \ge 2.$
- (2) $\pi \neq (3^6), (3^2, 2^4), (3^2, 2^3).$

Theorem 1.2 [11] Let $n \ge r+1$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with $d_{r+1} \ge r-1$. If $d_i \ge 2r-i$ for $i=1,2,\ldots,r-1$, then π is potentially $K_{r+1}-e$ -graphic.

Theorem 1.3 [11] Let $n \ge 2r+2$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with $d_{r-1} \ge r$. If $d_{2r+2} \ge r-1$, then π is potentially $K_{r+1} - e$ -graphic.

Recently, Hu and Lai [4] characterized potentially $K_5 - E(C_4)$ -graphic sequences, where C_4 is a cycle on four vertices. In [5], they characterized potentially $K_5 - E(H)$ -graphic sequences, where H is a path on five vertices or a tree on five vertices and three leaves. Besides, they characterized potentially $K_5 - E(K_3)$ -graphic sequences and potentially 3-regular graph graphic sequences in [6] and [7], where 3-regular graph is $K_6 - E(C_6)$ or a complete bipartite graph $K_{3,3}$. In [6], they gave the following

Theorem 1.4 [6] Let $\pi = (d_1, d_2, \ldots, d_n)$ be a graphic sequence with $n \geq 5$. Then π is potentially $K_5 - E(K_3)$ -graphic if and only if the following conditions hold:

- (1) $d_2 \ge 4$ and $d_5 \ge 2$.
- (2) $\pi \neq (4^2, 2^4), (4^2, 2^5), (4^3, 2^3)$ and (4^6) .

In [3], Gould et al. posed an extremal problem on potentially H-graphic sequences as follows: determine the smallest even integer $\sigma(H,n)$ such that every positive sequence $\pi \in GS_n$ with $\sigma(\pi) \geq \sigma(H,n)$ is potentially H-graphic.

In this paper, we first characterize potentially $K_6 - E(K_3)$ -positive graphic sequences. That is the following

Theorem 1.5 Let $n \geq 6$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence. Then π is potentially $K_6 - E(K_3)$ -graphic if and only if π satisfies the following conditions:

- (1) $d_3 \ge 5$ and $d_6 \ge 3$;
- (2) π is not one of the following sequences:

$$(n-1,5^2,3^4,1^{n-7})(n \ge 7),$$
 $(n-1,5^2,3^5,1^{n-8})(n \ge 8),$ $(n-1,5^3,3^3,1^{n-7})(n \ge 7),$ $(n-1,5^6,1^{n-7})(n \ge 7),$

$$\begin{array}{l} n=7: (5^6,4), (5^4,4^3), (5^3,3^3,2), (5^4,3^2,2), (5^3,4,3^3), (5^4,4,3^2),\\ n=8: (5^4,4^4), (5^3,4^2,3^3), (6^4,3^4), (5^7,3), (5^3,3^3,2^2), (5^3,4,3^3,2),\\ (5^3,3^4,1), (5^4,3^3,1), (5^7,1), (5^4,3^3,1), (5^8), (6,5^2,4^5), (5^3,3^5), (5^3,4^4,3),\\ (6^2,5,3^5), (6,5^2,4,3^4), (5^4,3^4), (6,5^2,3^4,2),\\ n=9: (5^8,4), (5^3,4,3^5), (6,5^8), (5^3,3^5,2), (5^3,3^4,2,1), (5^3,4,3^4,1),\\ (5^3,4^5,1), (6,5^2,3^5,1), (6,5^2,4^6), (5^4,4^5), (6,5^2,3^6), (5^3,4^5,3),\\ n=10: (5^3,3^6,1), (5^3,3^5,1^2), (5^9,1), (5^3,4^6,1), (5^{10}). \end{array}$$

As an application of this characterization, it is straightforward to find the values of $\sigma(K_6 - E(K_3), n)$.

2. Proof of Theorem 1.5

In order to prove Theorem 1.5, we also need the following known results. Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ and $1 \le k \le n$. Let

$$\pi_k'' = \begin{cases} (d_1 - 1, \dots, d_{k-1} - 1, d_{k+1} - 1, \dots, d_{d_k+1} - 1, d_{d_k+2}, \dots, d_n), \\ \text{if } d_k \ge k, \\ (d_1 - 1, \dots, d_{d_k} - 1, d_{d_k+1}, \dots, d_{k-1}, d_{k+1}, \dots, d_n), \\ \text{if } d_k < k. \end{cases}$$

Let $\pi'_k = (d'_1, d'_2, \ldots, d'_{n-1})$, where $d'_1 \geq \cdots \geq d'_{n-1}$ is the rearrangement in non-increasing order of the n-1 terms of π''_k . π'_k is called the *residual sequence* obtained by laying off d_k from π .

Theorem 2.1 [8] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ and $1 \leq k \leq n$. Then $\pi \in GS_n$ if and only if $\pi'_k \in GS_{n-1}$.

Theorem 2.2 [1] Let $\pi = (d_1, d_2, \ldots, d_n)$ be a non-increasing sequence of nonnegative integer with even $\sigma(\pi)$. Then $\pi \in GS_n$ if and only if for any $t, 1 \le t \le n-1$,

$$\sum_{i=1}^t d_i \leq t(t-1) + \sum_{i=t}^n \min\{t,d_i\}$$

Theorem 2.3 [10] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$, $d_1 = m$ and $\sigma(\pi)$ be even. If there exists an integer $n_1, n_1 \leq n$ such that $d_{n_1} \geq h \geq 1$ and $n_1 \geq \frac{1}{h} \left\lfloor \frac{(m+h+1)^2}{4} \right\rfloor$, then $\pi \in GS_n$.

Theorem 2.4 [9] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ and $\sigma(\pi)$ be even. If $d_1 - d_n \le 1$ and $d_1 \le n - 1$, then $\pi \in GS_n$.

Theorem 2.5 [3] If $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ has a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

In order to prove our main result, we need the following definition.

Let $n \ge r+1$ and $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ with $d_{r+1} \ge r$. We define sequences π_0, \ldots, π_{r+1} as follows. Let $\pi_0 = \pi$. Let

$$\pi_1 = (d_2 - 1, \dots, d_{r+1} - 1, d_{r+2}^{(1)}, \dots, d_n^{(1)}),$$

where $d_{r+2}^{(1)} \geq \cdots \geq d_n^{(1)}$ is the rearrangement in non-increasing order of $d_{r+2}-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n$. For $2\leq i\leq r+1$, given $\pi_{i-1}=(d_i-i+1,\ldots,d_{r+1}-i+1,d_{r+2}^{(i-1)},\ldots,d_n^{(i-1)})$, let

$$\pi_i = (d_{i+1} - i, \dots, d_{r+1} - i, d_{r+2}^{(i)}, \dots, d_n^{(i)}),$$

where $d_{r+2}^{(i)} \geq \cdots \geq d_n^{(i)}$ is the rearrangement in non-increasing order of $d_{r+2}^{(i-1)} - 1, \ldots, d_{d_i+1}^{(i-1)} - 1, d_{d_i+2}^{(i-1)}, \ldots, d_n^{(i-1)}$. The following lemma is obvious from the definition of π_i .

Lemma 2.1 Let $n \geq 6$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with $d_3 \geq 1$ $5, d_6 \geq 3$ and $d_n \geq 1$. If π_3 is graphic, then π is potentially $K_6 - E(K_3)$ graphic.

Lemma 2.2 Let $\pi = (3^x, 2^y, 1^z)$, where $x + y + z = n \ge 1$ and $\sigma(\pi)$ is even. Then $\pi \in GS_n$ if and only if $\pi \notin S$, where

$$S = \{(2), (2^2), (3, 1), (3^2), (3, 2, 1), (3^2, 2), (3^3, 1), (3^2, 1^2)\}.$$

Proof. For n=1, since $\sigma(\pi)$ is even, π must be (2), which belongs to S. For $n \geq 2$, we consider the following cases.

Case 1. n=2. Then π is one of the following sequences:

$$(3,1), (2^2), (3^2), (1^2).$$

It is easy to check that only one sequence (1^2) is graphic.

Case 2. n=3. Since $\sigma(\pi)$ is even, π must be one of the following sequences:

$$(3,2,1), (3^2,2), (2^3), (2,1^2).$$

We can see that the sequences (2^3) and $(2, 1^2)$ are graphic.

Case 3. n=4. Then π is one of the following sequences:

$$(3^3, 1), (3, 1^3), (3^4), (2^4, (3, 2^2, 1), (2^2, 1^2), (3^2, 2^2), (1^4), (3^2, 1^2).$$

Theses sequences are all graphic except $(3^2, 1^2)$ and $(3^3, 1)$.

Case 4. n=5. We know that π must be one of the following sequences:

$$(2,1^4), (3,2,1^3), (3^2,2,1^2), (3^3,2,1), (3,2^3,1), (2^5), (3^2,2^3), (2^3,1^2), (3^4,2).$$

These sequences are all graphic.

Case 5. $n \ge 6$. If x > 0 and z > 0, then $6 = \lfloor \frac{(3+1+1)^2}{4} \rfloor \le n$. Hence, π is graphic from Theorem 2.3. Otherwise, π is graphic by Theorem 2.4. \square

Lemma 2.3 Let $\pi = (4^x, 3^y, 2^z, 1^m)$ with even $\sigma(\pi), x + y + z + m = n \ge 5$ and $x \ge 1$. Then $\pi \in GS_n$ if and only if $\pi \notin A$, where $A = \{(4, 3^2, 1^2), (4, 3, 1^3), (4^2, 2, 1^2), (4^2, 3, 2, 1), (4^3, 1^2), (4^3, 2^2), (4^3, 3, 1), (4^4, 2), (4^2, 3, 1^3), (4^2, 1^4), (4^3, 2, 1^2), (4^4, 1^2), (4^3, 1^4)\}.$

Proof. It is easy to see that the sequences of the set A are not graphic. Now we verify the sufficient condition. We need consider the following five cases.

Case 1. n = 5. Since $\sigma(\pi)$ is even, π must be one of the following sequences:

 $\begin{array}{l} (4,1^4), (4,2^2,1^2), (4,3^2,1^2), (4,3,1^3), (4,3,2^2,1), (4,3^3,1), (4,2^4), (4,3^2,2^2), \\ (4,3^4), (4^2,2,1^2), (4^2,3,2,1), (4^2,2^3), (4^2,3^2,2), (4^3,1^2), (4^3,2^2), (4^3,3^2), \\ (4^3,3,1), (4^4,2), (4^5). \text{ Except } (4,3^2,1^2), (4,3,1^3), (4^2,2,1^2), (4^2,3,2,1), \\ (4^3,1^2), (4^3,2^2), (4^3,3,1) \text{ and } (4^4,2), \text{ the others are all graphic.} \end{array}$

Case 2. n = 6. Since $\sigma(\pi)$ is even and $x \ge 1$, $m \ne 5$.

If m = 0, then $n = 6 \ge max\{\frac{1}{3}\lfloor \frac{(4+3+1)^2}{4} \rfloor, \frac{1}{2}\lfloor \frac{(4+2+1)^2}{4} \rfloor\}$. By Theorem 2.3, π is graphic.

If m=1, then π must be one of the following sequences:

$$(4^4, 3, 1), (4^2, 3^3, 1), (4, 3, 2^3, 1), (4^2, 3, 2^2, 1), (4^3, 3, 2, 1), (4, 3^3, 2, 1).$$

It is easy to check that these sequences are all graphic.

If m=2, then π must be one of the following sequences:

$$(4,3^2,2,1^2), (4^2,2^2,1^2), (4^2,3^2,1^2), (4,2^3,1^2), (4^3,2,1^2), (4^4,1^2).$$

Except for $(4^3, 2, 1^2)$ and $(4^4, 1^2)$, the others are graphic.

If m=3, then π is $(4,3,2,1^3)$ or $(4^2,3,1^3)$. The sequence $(4,3,2,1^3)$ is graphic and the sequence $(4^2,3,1^3)$ belongs to A.

If m=4, then π is $(4,2,1^4)$ or $(4^2,1^4)$. The sequence $(4,2,1^4)$ is graphic and the sequence $(4^2,1^4)$ belongs to A.

Case 3. n = 7.

If m = 0, then $n = 7 \ge max\{\frac{1}{3}\lfloor \frac{(4+3+1)^2}{4} \rfloor, \frac{1}{2}\lfloor \frac{(4+2+1)^2}{4} \rfloor\}$. By Theorem 2.3, π is graphic.

If $1 \le m \le 3$, then π must be one of the following graphic sequences: $(4,3,2^4,1),(4^2,3,2^3,1),(4^3,3,2^2,1),(4^4,3,2,1),(4^5,3,1),(4,3^3,2^2,1),(4^2,3^3,2,1),(4^3,3^3,1),(4,3^5,1),(4,2^4,1^2),(4^2,2^3,1^2),(4^3,2^2,1^2),(4^4,2,1^2),(4^5,1^2),(4,3^2,2^2,1^2),(4^2,3^2,2,1^2),(4^3,3^2,1^2),(4,3^4,1^2),(4^3,3,1^3),(4,3,2^2,1^3),(4^2,3,2,1^3),(4,3^3,1^3).$

If m = 4, then π is $(4^3, 1^4), (4^2, 2, 1^4), (4, 2^2, 1^4)$ or $(4, 3^2, 1^4)$. The sequence $(4^3, 1^4) \in A$ and the others are graphic.

If m is 5 or 6, π is $(4,3,1^5)$ or $(4,1^6)$. They are both graphic.

Case 4. n = 8. Since $x \ge 1$ and $\sigma(\pi)$ is even, $m \ne 7$.

If $m \leq 2$, then π is graphic by Theorem 2.3 and 2.4.

If $m \geq 3$, then π is one of the following graphic sequences:

 $(4,3,2^3,\overline{1^3}),(4^2,3,2^2,1^3),(4^3,3,2,1^3),(4^4,\overline{3},1^3),(4,3^3,2,1^3),(4^2,3^3,1^3),\\(4,2^3,1^4),(4^2,2^2,1^4),(4^3,2,1^4),(4^4,1^4),(4,3^2,2,1^4),(4^2,3^2,1^4),\\(4,3,2,1^5),(4^2,3,1^5),(4,2,1^6),(4^2,1^6).$

Case 5. $n \ge 9$. For $n \ge 9 \ge max\{\frac{1}{2}\lfloor \frac{(4+2+1)^2}{4} \rfloor, \lfloor \frac{(4+1+1)^2}{4} \rfloor\}$, π is graphic by Theorem 2.3 and 2.4. \Box

The proof of Theorem 1.5 Assume that π is potentially $K_6 - E(K_3)$ -graphic. (1) is obvious. It is easy to compute the corresponding π_3 (zero omitted) of the excepted sequences is one of the following sequences: (2), (2²), (4, 2³), (4, 2, 1²), (3, 1), (3, 2, 1), (4², 2, 1²), (3², 1²), (5, 3, 2³), (5, 2³, 1), (5², 2³), (4, 3, 1³), (3²), (3², 2), (5², 4, 2³), (3³, 1), (4², 1⁴), (4³, 2, 1²), (4², 3, 1³), (5³, 2³, 1), (4³, 1⁴), none of which is graphic.

To prove the sufficiency, we use induction on n. From Lemma 2.1, it is enough to show that π_3 is graphic. Assume that n=6 and $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ satisfies (1) and (2). Then π is one of the following sequences:

$$(5^3, 3^3), (5^3, 4^2, 3), (5^4, 4^2), (5^6).$$

It is easy to see that these sequences are all potentially $K_6-E(K_3)$ -graphic. Now suppose that the sufficiency holds for $n-1 (n \geq 7)$, and let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ satisfies (1) and (2). In the following, we will use Theorem 2.5, repeatedly. We now prove that π is potentially $K_6 - E(K_3)$ -graphic in terms of the following cases

Case 1. $d_n \geq 5$. Then $\pi'_n = (d'_1, d'_2, \dots, d'_{n-1})$ satisfies (1) since $\pi \neq (6, 5^6), (5^8)$. If π'_n also satisfies (2), then by the induction hypothesis, π'_n is potentially $K_6 - E(K_3)$ -graphic, and hence so is π . If π'_n does not satisfy (2), i.e. π'_n is one of the following since $\pi \neq (5^{10}), (6, 5^8)$

$$(6,5^6), (5^6,4), (5^4,4^3), (5^8,4), (6,5^8), (5^8).$$

Hence π is one of the following

$$(6^6, 5^2), (7, 6^4, 5^3), (6^4, 5^4), (6^4, 5^6), (7, 6^4, 5^5), (6^6, 5^4), (6^5, 5^4), (6^2, 5^6).$$

It is easy to compute the corresponding π_3 is one of the following graphic sequences

$$(4,3^4), (3^4,2), (4,3^2,2^2), (5,4^3,3,2^2), (4^4,3^2,2), (5,4^3,3^3), (4^3,3^2,2), (4^2,2^3).$$

So π is potentially $K_6 - E(K_3)$ -graphic.

Case 2. $d_n = 4$. Consider $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$ where $d'_{n-1} \geq 3$ and $d'_{n-2} \geq 4$. If π'_n satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_6 - E(K_3)$ -graphic, and hence so is π .

Assume that π'_n does not satisfy (1), i.e. $d'_3 = 4$. Then $d_3 = 5$. Thus, the general form for π must be one of t he following four types

$$(d_1, d_2, 5, 4^{n-3}), (d_1, d_2, 5^2, 4^{n-4}), (d_1, d_2, 5^3, 4^{n-5}), (d_1, d_2, 5^4, 4^{n-6}).$$

If $\pi = (d_1, d_2, 5, 4^{n-3})$ and $d_1 + d_2 \le n + 4$, then

$$\pi_3 = (4^{n+4-d_1-d_2}, 3^{d_1+d_2-10}, 1^3)$$

and $|\pi_3| \geq 4$, where $|\pi|$ means the number of the positive term of π . If $\pi_3 = 4$, then n = 7 and π is $(6, 5^2, 4^4)$, which is potentially $K_6 - E(K_3)$ -graphic since π_1' is potentially $K_5 - E(K_3)$ -graphic by Theorem 1.4. If $\pi_3 \geq 5$ and $\pi_3 \neq (4, 3, 1^3), (4^2, 3, 1^3)$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. If π_3 is $(4, 3, 1^3)$ or $(4^2, 3, 1^3)$, then π is $(6, 5^2, 4^5)$ or $(6, 5^2, 4^6)$, which is a contradiction. If $d_1 + d_2 \geq n + 5$, then $\pi_3 = (3^x, 2^y, 1^3)(y \geq 1)$, which is graphic by Lemma 2.2.

If $\pi = (d_1, d_2, 5^2, 4^{n-4})$ and $d_1 + d_2 \le n + 4$, then

$$\pi_3 = (4^{n+4-d_1-d_2}, 3^{d_1+d_2-10}, 2, 1^2)$$

and $|\pi_3| \geq 4$. If $\pi_3 = 4$, then n = 7 and π is $(6^2, 5^2, 4^3)$ since $\pi \neq (5^4, 4^3)$. The sequence π_3 is graphic sequence $(2^2, 1^2)$, so π is potentially $K_6 - E(K_3)$ -graphic. If $\pi_3 \geq 5$ and $\pi_3 \neq (4^2, 2, 1^2)$, $(4^3, 2, 1^2)$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. If π_3 is $(4^2, 2, 1^2)$ or $(4^3, 2, 1^2)$, then π is $(5^4, 4^4)$ or $(5^4, 4^5)$, a contradiction. If $d_1 + d_2 \geq n + 5$, then $\pi_3 = (3^x, 2^y, 1^2)(y \geq 2)$, which is graphic by Lemma 2.2.

If $\pi = (d_1, d_2, 5^3, 4^{n-5})$ and $d_1 + d_2 \le n + 4$, then

$$\pi_3 = (4^{n+4-d_1-d_2}, 3^{d_1+d_2-10}, 2^2, 1)$$

and $|\pi_3| \geq 4$. If $\pi_3 = 4$, then $\pi_3 = (3, 2^2, 1)$ since $\sigma(\pi_3)$ is even. So π is potentially $K_6 - E(K_3)$ -graphic by Lemma 2.1. If $\pi_3 \geq 5$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. Thereby, π is potentially $K_6 - E(K_3)$ -graphic by Lemma 2.1. If $d_1 + d_2 \geq n + 5$, then $\pi_3 = (3^x, 2^y, 1)(y \geq 3)$, which is graphic by Lemma 2.2.

If $\pi = (d_1, d_2, 5^4, 4^{n-6})$ and $d_1 + d_2 \le n + 4$, then

$$\pi_3 = (4^{n+4-d_1-d_2}, 3^{d_1+d_2-10}, 2^3)$$

and $|\pi_3| \ge 4$. If $\pi_3 = 4$, then $\pi_3 = (4, 2^3)$ since $\sigma(\pi_3)$ is even. So π is $(5^6, 4)$, which is a contradiction. If $\pi_3 \ge 5$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. Thereby, π is potentially $K_6 - E(K_3)$ -graphic by Lemma 2.1. If $d_1 + d_2 \ge n + 5$, then $\pi_3 = (3^x, 2^y)(y \ge 4)$, which is graphic by Lemma 2.2.

Assume that π'_n does not satisfy (2), i.e. π'_n is one of the following

$$(6,5^6), (5^6,4), (5^4,4^3), (5^4,4^4), (5^8,4), (6,5^8), (5^8), (6,5^2,4^5), (6,5^2,4^6),$$

 $(5^4,4^5), (5^3,4^4,3), (5^3,4^5,3), (5^{10}).$

Since $\pi \neq (5^8,4)$, π is one of the following $(7,6^3,5^3,4)$, $(6^3,5^4,4)$, $(6^4,5^2,4^2)$, $(6^4,4^4)$, $(6^3,5^2,4^3)$, $(6^2,5^4,4^2)$, $(6^5,5^2,4)$, $(6^3,4^6)$, $(6^4,5^6,4)$, $(6,5^6,4^2)$, $(6^2,5^4,4^3)$, $(6^3,5^2,4^4)$, $(6^4,4^5)$, $(6^3,5^6,4)$, $(6^4,5^4,4^2)$, $(7,6^3,5^5,4)$, $(6^3,4^7)$, $(6,5^6,4)$, $(6^5,5^4,4)$, $(6^4,5^4,4)$, $(7,6^2,5,4^5)$, $(7,6,5^3,4^4)$, $(7,5^5,4^3)$, $(7,5^5,4^4)$, $(7,6,5^3,4^5)$, $(6^4,4^6)$, $(7,6^2,5,4^6)$, $(6^3,5^2,4^5)$, $(6^2,5^4,4^4)$, $(6,5^6,4^3)$, $(5^8,4^2)$. It is easy to compute the corresponding π_3 is one of the following graphic sequences

 $\begin{array}{l} (3^{\overset{2}{4}},2), (3^{2},2^{3}), (3^{2},2,1^{2}), (3^{3},2^{2},1), (4^{2},2^{3}), (4,3^{2},2^{3}), \\ (3^{4},1^{2}), (4^{4},2^{3}), (4^{3},3^{2},2^{2}), (4^{4},3^{2},2), (4^{2},3^{2},2^{2}), (3^{2},2^{2},1^{2}), \\ (3^{4},2,1^{2}), (4^{4},2^{3}), (4,3^{3},2^{2},1), (4^{2},3^{2},2^{3}), (4,3^{4},1^{2}), (5^{2},4^{2},2^{3}), \\ (3,2^{3},1), (3^{3},1^{3}), (4,3^{3},1^{3}), (5,4^{4},3,2^{2}). \end{array}$

So π is potentially $K_6 - E(K_3)$ -graphic by Lemma 2.1.

Case 3. $d_n = 3$. If $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$ satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_6 - E(K_3)$ -graphic, and hence so is π .

Assume that π'_n does not satisfy (1), i.e. $d'_3 = 4$. Then $d_3 = 5$ and $3 \le d_6 \le 4$.

If $d_6 = d_4 = 3$, then $\pi = (d_1, d_2, 5, 3^{n-3})$. If $d_1 = 5$, then $\pi = (5^3, 3^{n-3})$ and n is even. Hence $\pi_3 = (3^{n-6})$. If $n \ge 10$, then π_3 is graphic by Theorem 2.4. Thus π is potentially $K_6 - E(K_3)$ -graphic by Lemma 2.1. If n = 8, then $\pi = (5^3, 3^5)$, a contradiction. If $6 \le d_1 \le n - 2$ and $d_2 = 5$, then $\pi_3 = (3^{n-1-d_1}, 2^{d_1-5})$. If $\pi_3 \ne (3^2, 2)$, then π_3 is graphic by Lemma 2.2. If $\pi_3 = (3^2, 2)$, then $\pi = (6, 5^2, 3^6)$, a contradiction. If $d_1 = n - 1$ and $d_2 = 5$, then $\pi_3 = (2^{n-6})$. If $\pi_3 \ne (2^2)$, (2), then π_3 is graphic by Lemma 2.2. If π_3 is (2²) or (2), then π_3 is $(6, 5^2, 3^4)$ or $(7, 5^2, 3^5)$, a contradiction. If $d_2 \ge 6$ and $d_1 + d_2 \le n + 3$, then $\pi_3 = (3^{n+4-d_1-d_2}, 2^{d_1+d_2-10})$, which is graphic by Lemma 2.2. If $d_2 \ge 6$ and $d_1 + d_2 = n + 4$, then $d_3 = (2^{n-6})$ and $d_3 \ge 8$. If $d_3 \ne (2^2)$, then $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2. If $d_3 = (2^n + 2^n)$ is graphic by Lemma 2.2.

If $d_6=d_5=3$ and $d_4=4$, then $\pi=(d_1,d_2,5,4,3^{n-4})$. If $d_1=5$, then $\pi=(5^3,4,3^{n-4})$ and n is odd. Hence $\pi_3=(3^{n-6},1)$. If $\pi_3\neq(3,1),(3^3,1)$, then π_3 is graphic by Lemma 2.2. If π_3 is (3,1) or $(3^3,1)$, then π is $(5^3,4,3^3)$ or $(5^3,4,3^5)$, a contradiction. If $d_1\geq 6$ and $d_1+d_2\leq n+3$, then $\pi_3=(3^{n+4-d_1-d_2},2^{d_1+d_2-10},1)$. If $\pi_3\neq(3,2,1)$, then π_3 is graphic by Lemma 2.2. If $\pi_3=(3,2,1)$, then $\pi=(6,5^2,4,3^4)$, a contradiction. Since $\sigma(\pi_3)$

is even, then $d_1 + d_2 \neq n + 4$. If $d_1 \geq 6$ and $d_1 + d_2 \geq n + 5$, then $\pi_3 = (2^x, 1^y)(y \geq 1)$, which is graphic by Lemma 2.2.

If $d_6=d_5=3$ and $d_4=5$, then $\pi=(d_1,5^3,3^{n-4})$ since $d_3'=4$. It is easy to compute the sequence π_3 is $(3^{n-1-d_1},2^{d_1-4})$. If $|\pi_3| \geq 4$, that is $n \geq 9$, then $|\pi_3|$ is graphic by Lemma 2.2. If n=7, then π is $(6,5^3,3^3)$, a contradiction. If n=8, then $\pi=(7,5^3,3^4)$ since $\pi\neq(5^4,3^4)$. The sequence π_3 is graphic sequence (2^3) .

If $d_6=3$ and $d_4=d_5=4$, then $\pi=(d_1,d_2,5,4^2,3^{n-5})$. If $d_1=5$, then $\pi=(5^3,4^2,3^{n-5})$ and n is even. Hence $\pi_3=(3^{n-6},1^2)$. If $\pi_3\neq (3^2,1^2)$, then π_3 is graphic by Lemma 2.2. If π_3 is $(3^2,1^2)$, then π is $(5^3,4^2,3^3)$, a contradiction. If $d_1\geq 6$ and $d_1+d_2\leq n+3$, then $\pi_3=(3^{n+4-d_1-d_2},2^{d_1+d_2-10},1^2)$. According to Lemma 2.2, π_3 is graphic. If $d_1\geq 6$ and $d_1+d_2\geq n+4$, then π_3 is graphic sequence $(2^x,1^y)(y\geq 2)$.

If $d_6 = 3$ and $d_4 = d_5 = 5$, then $\pi = (5^5, 3^{n-5})$ since $d_3' = 4$. It is easy to compute the sequence π_3 is $(3^{n-6}, 2^2)$. Since $\sigma(\pi_3)$ is even, π_3 is graphic by Lemma 2.2. According to Lemma 2.1, π is potentially $K_6 - E(K_3)$ -graphic.

If $d_6 = 3$, $d_4 = 5$ and $d_5 = 4$, then $\pi = (d_1, 5^3, 4, 3^{n-5})$ since $d_3' = 4$. If $d_1 = 5$, then $\pi = (5^4, 4, 3^{n-5})$ and n is odd. Hence $\pi_3 = (3^{n-6}, 2, 1)$. If $\pi_3 \neq (3, 2, 1)$, then π_3 is graphic by Lemma 2.2. If π_3 is (3, 2, 1), then π is $(5^4, 4, 3^2)$, a contradiction. If $d_1 \geq 6$, then $\pi_3 = (3^{n-1-d_1}, 2^{d_1-4}, 1)$, which is graphic by Lemma 2.2.

If $d_6 = d_4 = 4$, then $\pi = (d_1, d_2, 5, 4^3, 4^x, 3^{n-6-x})(n-6-x \ge 1)$. If $d_1 = 5$, then $\pi = (5^3, 4^3, 4^x, 3^{n-6-x})$ and the parities of n differs from x. Hence $\pi_3 = (4^x, 3^{n-6-x}, 1^3)$. If $\pi_3 \ne (4, 3, 1^3), (4^2, 3, 1^3)$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. If π_3 is $(4, 3, 1^3)$ or $(4^2, 3, 1^3)$, then π is $(5^3, 4^4, 3)$ or $(5^3, 4^5, 3)$, a contradiction. If $d_1 \ge 6$ and $d_1 + d_2 \le x + 9$, then $\pi_3 = (4^{x+10-d_1-d_2}, 3^{n-16-x+d_1+d_2}, 1^3)$, which is graphic by Lemma 2.3. If $d_1 \ge 6$ and $d_1 + d_2 = x + 10$, then π_3 is graphic sequence $(3^{n-6}, 1^3)$. If $d_1 \ge 6$ and $d_1 + d_2 \ge x + 11$, then π_3 is graphic sequence $(3^{x'}, 2^{y'}, 1^3)(y' \ge 1)$.

If $d_6=d_5=4$ and $d_4=5$, then $\pi=(d_1,5^3,4^2,4^x,3^{n-6-x})(n-6-x\geq 1)$. If $d_1\leq x+4$, then π_3 is graphic sequence $(4^{x-d_1+5},3^{n-11-x+d_1},2,1^2)$. If $d_1\geq x+5$, then $\pi_3=(3^{x'},2^{y'},1^2)(x'\geq 1,y'\geq 1)$, which is graphic by Lemma 2.2.

If $d_6 = 4$ and $d_4 = d_5 = 5$, then $\pi = (5^5, 4, 4^x, 3^{n-6-x})(n-6-x \ge 1)$ since $d_3' = 4$. It is easy to compute the sequence π_3 is $(4^x, 3^{n-6-x}, 2^2, 1)$, which is graphic by Lemma 2.2 and Lemma 2.3.

Assume that π'_n does not satisfy (2). Then π'_n is one of the following sequences:

 $\begin{array}{l} (6,5^2,3^4), (7,5^2,3^5), (6,5^3,3^3), (6,5^6), (5^6,4), (5^4,4^3), (5^4,4^4), \\ (5^8,4), (5^3,4^2,3^3), (6^4,3^4), (5^7,3), (5^3,4,3^5), (6,5^8), (5^8), \\ (6,5^2,4^5), (6,5^2,4^6), (5^4,4^5), (5^{10}), (5^3,3^5), (6,5^2,3^6), (6^2,5,3^5), \\ (5^3,4,3^3), (6,5^2,4,3^4), (5^4,3^4), (5^4,4,3^2), (5^3,4^4,3), (5^3,4^5,3). \end{array}$

Since $\pi \neq (6^4, 3^4), (5^7, 3), \pi$ is one of the following sequences:

 $(7,6^2,3^5),(8,6^2,3^6),(7,6^2,5,3^4),(6^4,5^3,3),(7,6^2,5^4,3),(6^3,5^3,4,3),\\ (6^2,5^5,3),(6^3,5,4^3,3),(6,5^5,4,3),(6^2,5^3,4^2,3),(5^7,4,3),(6^3,5,4^4,3),\\ (6,5^5,4^2,3),(6^2,5^3,4^3,3),(6^3,5^5,4,3),(6^2,5^7,3),(6^3,4^2,3^4),(6^2,5^2,4,3^4),\\ (6,5^4,3^4),(6^3,4,3^6),(6^2,5^2,3^6),(7^3,6,3^5),(7,5^4,4^4,3),(6^3,5^4,3^2),\\ (6^4,5^5,3),(7,6^2,5^6,3),(6^3,5^5,3),(7,6^2,4^5,3),(7,6^2,4^6,3),(6^3,5,4^5,3),\\ (6^2,5^3,4^4,3),(6,5^5,4^3,3),(5^7,4^2,3),(6^3,5^7,3),(7,6,5^2,4^4,3),(7,5^4,4^3,3),\\ (7,6^2,3^7),(6^3,3^6),(7^2,6,3^6),(6^3,4,3^4),(6^2,5^2,3^4),(7,6^2,4,3^5),\\ (7,6,5^2,3^5),(6^3,5,3^5),(6^3,5,4,3^3),(6^2,5^3,3^3),(6^3,4^4,3^2),(5^6,4,3^2),\\ (6^2,5^2,4^3,3^2),(6,5^4,4^2,3^2),(6^3,4^5,3^2),(5^6,4^2,3^2),(6^2,5^2,4^4,3^2),\\ (6,5^4,4^3,3^2),(7,6,5^2,4^5,3).$

It is easy to compute the corresponding π_3 (zero omitted) is one of the following graphic sequences:

 $(1^2), (2, 1^2), (2^5), (3^2, 2^3), (2^3, 1^2), (3, 2^3, 1), (5, 4, 3, 2^3), (3^2, 2^2, 1^2), \\ (4, 3^2, 2^3), (3^3, 2^2, 1), (4^2, 3^2, 2^3), (5, 4^2, 3, 2^3), (3, 1^3), (3^2, 2^4), (4^3, 3^2, 2^2), \\ (3, 2^2, 1^3), (3^3, 2, 1^3), (3^4, 2, 1^2), (4, 3^3, 2^2, 1), (5, 4^3, 3, 2^3), (2^3), (2^4), (2^2, 1^2).$

Case 4. $d_n = 2$. If $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$ satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_6 - E(K_3)$ -graphic, and hence so is π .

Assume that π'_n does not satisfy (1), i.e. $d'_3 = 4$. Then $d_2 = d_3 = 5$ and $d_5 \le 4$.

If $d_5=d_4=3$, then $\pi=(d_1,5^2,3^3,3^x,2^{n-6-x})(n-6-x\geq 1)$. If $d_1=5$, then $\pi_3=(3^x,2^{n-6-x})$. If $\pi_3\neq (3^2,2)$, then π_3 is graphic by Lemma 2.2. If $\pi_3=(3^2,2)$, then π is $(5^3,3^5,2)$, a contradiction. If $6\leq d_1\leq x+4$, then π_3 is graphic sequence $(3^{x+5-d_1},2^{n-6-x+d_1-5})$. If $d_1=x+5$, then π_3 is (2^{n-6}) . If π_3 is not (2) or (2^2) , then π_3 is graphic. If π_3 is (2) or (2^2) , then π is $(5^3,3^3,2)$ or $(5^3,3^3,2^2)$ or $(6,5^2,3^4,2)$, which is contradict. If $d_1\geq x+6$, then π_3 is graphic sequence $(2^{x'},1^{y'})(y'\geq 1)$.

If $d_5=3$ and $d_4=4$, then $\pi=(d_1,5^2,4,3^2,3^x,2^{n-6-x})(n-6-x\geq 1)$. If $d_1=5$, then $\pi_3=(3^x,2^{n-6-x},1)$. If $\pi_3\neq (3,2,1)$, then π_3 is graphic by Lemma 2.2. If $\pi_3=(3,2,1)$, then π is $(5^3,4,3^3,2)$, a contradiction. If $6\leq d_1\leq x+4$, then π_3 is graphic sequence $(3^{x+5-d_1},2^{n-6-x+d_1-5},1)$. Since $\sigma(\pi_3)$ is even, $d_1\neq x+5$. If $d_1\geq x+6$, then π_3 is graphic sequence $(2^{x'},1^{y'})(y'\geq 2)$.

If $d_5 = 3$ and $d_4 = 5$, then $\pi = (5^4, 3^2, 3^x, 2^{n-6-x})(n-6-x \ge 1)$ since $d_3' = 4$. It is easy to compute $\pi_3 = (3^x, 2^{n-5-x})$. Since $\sigma(\pi_3)$ is even, x is even. If $\pi_3 \ne (2^2)$, then π_3 is graphic by Lemma 2.2. If $\pi_3 = (2^2)$, then π is $(5^4, 3^2, 2)$, a contradiction.

If $d_5 = d_4 = 4$ and $d_6 = 3$, then $\pi = (d_1, 5^2, 4^2, 3, 3^x, 2^{n-6-x})(n-6-x \ge 1)$. If $d_1 = 5$, then it is easy to compute $\pi_3 = (3^x, 2^{n-6-x}, 1^2)$, which is graphic. If $6 \le d_1 \le x + 4$, then π_3 is graphic sequence

$$(3^{x+5-d_1}, 2^{n-6-x+d_1-5}, 1^2).$$

If $d_1 \geq x + 5$, then π_3 is graphic sequence $(2^{x'}, 1^{y'})(y' \geq 2)$.

If $d_5 = d_4 = d_6 = 4$, then $\pi = (d_1, 5^2, 4^3, 4^x, 3^y, 2^{n-6-x-y})(n-6-x-y \ge 1)$. If $d_1 = 5$, then $\pi_3 = (4^x, 3^y, 2^{n-6-x-y}, 1^3)$. According to Lemma 2.2 and Lemma 2.3, π_3 is graphic. If $6 \le d_1 \le x+4$, then $\pi_3 = (4^{x-d_1+5}, 3^{y+d_1-5}, 2^{n-6-x-y}, 1^3)$, which is graphic by Lemma 2.3. If $d_1 \ge x+5$, then $\pi_3 = (3^{x'}, 2^{y'}, 1^{z'})(z' \ge 3)$, which is graphic by Lemma 2.2.

If $d_5 = 4$, $d_4 = 5$ and $d_6 = 3$, then $\pi = (5^4, 4, 3, 3^x, 2^{n-6-x})(n-6-x \ge 1)$ since $d_3' = 4$. It is easy to compute $\pi_3 = (3^x, 2^{n-5-x}, 1)$. According to Lemma 2.2, π_3 is graphic.

If $d_5 = d_6 = 4$ and $d_4 = 5$, then $\pi = (5^4, 4^2, 4^x, 3^y, 2^{n-6-x-y})(n-6-x-y \ge 1)$ since $d_3' = 4$. It is easy to compute $\pi_3 = (4^x, 3^y, 2^{n-5-x-y}, 1^2)$, which is graphic by Lemma 2.2 and Lemma 2.3.

Assume that π'_n does not satisfy (2), i.e. π'_n is one of the following sequences:

 $\begin{array}{l} (6,5^2,3^4), (7,5^2,3^5), (6,5^3,3^3), (6,5^6), (5^6,4), (5^4,4^3), (5^4,4^4), \\ (5^8,4), (5^3,4^2,3^3), (6^4,3^4), (5^7,3), (5^3,4,3^5), (6,5^8), (5^3,3^3,2), \\ (5^3,3^3,2^2), (5^3,3^5,2), (5^3,4,3^3,2), (5^4,3^2,2), (5^8), (6,5^2,4^5), (6,5^2,4^6), \\ (5^4,4^5), (6,5^2,3^4,2), (5^3,3^5), (6,5^2,3^6), (6^2,5,3^5), (5^3,4,3^3), \\ (6,5^2,4,3^4), (5^4,3^4), (5^4,4,3^2), (5^3,4^4,3), (5^3,4^5,3), (5^{10}). \end{array}$

Hence π is one of the following sequences:

 $(7,6,5,3^4,2),(6^3,3^4,2),(8,6,5,3^5,2),(7,6,5^2,3^3,2),(6^3,5,3^3,2),(7,6,5^5,2),\\ (6^2,5^4,4,2),(6^3,5^4,2),(6,5^6,2),(6^2,5^2,4^3,2),(6,5^4,4^2,2),(5^6,4,2),\\ (6^2,5^2,4^4,2),(5^6,4^2,2),(6,5^8,2),(6,5^4,4^3,2),(6^2,5^6,4,2),(6^2,5,4^2,3^3,2),\\ (5^5,3^3,2),(7,6,5^7,2),(6^3,5^6,2),(6^2,5,4,3^5,2),(6,5^3,3^5,2),(7^2,6^2,3^4,2),\\ (6^2,5^5,3,2),(6^2,5,3^3,2^2),(6^2,5,3^3,2^3),(6^2,5,3^5,2^2),(6^2,5,4,3^3,2^2),\\ (6,5^3,3^3,2^2),(6^2,5^2,3^2,2^2),(6^2,5^6,2),(7,6,5,4^5,2),(6^3,4^5,2),(7,5^3,4^4,2),\\ (7,6,5,4^6,2),(7,5^3,4^5,2),(6^3,4^6,2),(6^2,5^2,4^5,2),(5^6,4^3,2),(6,5^4,4^4,2),\\ (7,6,5,3^4,2^2),(6^3,3^4,2^2),(6,5^8,2),(6^2,5,3^5,2),(7,6,5,3^6,2),(6^3,3^6,2),\\ (7^2,5,3^5,2),(7,6^2,3^5,2),(6,5^3,3^3,2),(6^2,5,4,3^3,2),(7,6,5,4,3^4,2),\\ (6,5^3,4,3^3,2),(6^3,4,3^4,2),(7,5^3,3^4,2),(6^2,5^2,3^4,2),(6^2,5^2,4,3^2,2),\\ (6,5^4,3^2,2),(6^2,5,4^4,3,2),(5^5,4^2,3,2),(6,5^3,4^3,3,2),(6^2,5,4^5,3,2),\\ (5^5,4^3,3,2),(6,5^3,4^4,3,2).$

It is easy to compute the corresponding π_3 (zero omitted) is one of the following graphic sequences:

 $\begin{array}{l} (1^2), (2, 1^2), (2^5), (3^2, 2^3), (2^3, 1^2), (3, 2^3, 1), (5^2, 4, 2^4), (3^2, 2^2, 1^2), \\ (4^2, 2^4), (3^3, 2, 1^3), (4, 3, 2^3, 1), (4^3, 2^4), (3, 2^3, 1^3), (3, 1^3), (3^2, 2^4), (2^4), \\ (3, 2^2, 1^3), (5^2, 4^2, 2^4), (4, 2^4), (4, 3^2, 2^2, 1^2), (4^2, 3, 2^3, 1), (2^3), (2^2, 1^2). \end{array}$

Case 5. $d_n = 1$. Consider $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$ where $d'_2 \geq 5, d'_3 \geq 4, d'_6 \geq 3$ and $d'_{n-1} \geq 1$. If π'_n satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_6 - E(K_3)$ -graphic, and hence so is π .

Assume that π'_n does not satisfy (1), i.e. $d'_3 = 4$. Then $d_1 = d_2 = d_3 = 5$ and $d_4 \le 4$.

If $d_4 = 3$, then $\pi = (5^3, 3^3, 3^x, 2^y, 1^z)(z \ge 1, x + y + z = n - 6)$ and π_3 is $(3^x, 2^y, 1^z)$. If $\pi_3 \ne (3, 1), (3, 2, 1), (3^3, 1), (3^2, 1^2)$, then π_3 is graphic by

Lemma 2.2. If π_3 is one of the following sequences:

$$(3,1), (3,2,1), (3^3,1), (3^2,1^2),$$

then π is one of the following:

$$(5^3, 3^4, 1), (5^3, 3^4, 2, 1), (5^3, 3^6, 1), (5^3, 3^5, 1^2),$$

which is contradict.

If $d_4=4$ and $d_5=3$, then $\pi=(5^3,4,3^2,3^x,2^y,1^z)(z\geq 1,x+y+z=n-6)$ and $\pi_3=(3^x,2^y,1^{z+1})$. If $\pi_3\neq(3^2,1^2)$, then π_3 is graphic by Lemma 2.2. If $\pi_3=(3^2,1^2)$, then $\pi=(5^3,4,3^4,1)$, a contradiction.

If $d_4 = d_5 = 4$ and $d_6 = 3$, then $\pi = (5^3, 4^2, 3, 3^x, 2^y, 1^z)(z \ge 1, x + y + z = n - 6)$ and $\pi_3 = (3^x, 2^y, 1^{z+2})$. According to Lemma 2.2, π_3 is graphic.

If $d_4 = d_5 = d_6 = 4$, then $\pi = (5^3, 4^3, 4^{x_1}, 3^{x_2}, 2^{x_3}, 1^{x_4})(x_4 \ge 1, x_1 + x_2 + x_3 + x_4 = n - 6)$ and $\pi_3 = (4^{x_1}, 3^{x_2}, 2^{x_3}, 1^{x_4+3})$. If π_3 is not $(4^2, 1^4)$ or $(4^3, 1^4)$, then π_3 is graphic by Lemma 2.2 and Lemma 2.3. If π_3 is $(4^2, 1^4)$ or $(4^3, 1^4)$, then π is $(5^3, 4^5, 1)$ or $(5^3, 4^6, 1)$, which is contradict.

Assume π'_n does not satisfy (2). Since π is not one of the following sequences

$$(6,5^2,3^5,1),(n-1,5^2,3^4,1^{n-7}),(n-1,5^2,3^5,1^{n-8}),(n-1,5^3,3^3,1^{n-7}),(n-1,5^6,1^{n-7}),$$

```
\pi'_n is one of the following sequences:
(5^6, 4), (5^4, 4^3), (5^4, 4^4), (5^8, 4), (5^3, 4^2, 3^3), (6^4, 3^4),
(5^7,3), (5^3,4,3^5), (6,5^8), (5^3,3^3,2), (5^3,3^3,2^2), (5^3,3^5,2),
(5^3, 4, 3^3, 2), (5^4, 3^2, 2), (5^3, 3^6, 1), (5^3, 3^5, 1^2), (5^3, 3^4, 1), (5^3, 3^4, 2, 1),
(5^3, 4, 3^4, 1), (5^4, 3^3, 1), (5^7, 1), (5^9, 1), (5^3, 4^6, 1), (5^3, 4^5, 1),
(6,5^2,4^5), (6,5^2,4^6), (5^4,4^5), (5^4,3^3,1), (6,5^2,3^6), (6^2,5,3^5),
(5^3, 4, 3^3), (6, 5^2, 4, 3^4), (5^4, 3^4), (5^4, 4, 3^2), (5^3, 4^4, 3), (5^3, 4^5, 3),
(5^8), (6, 5^2, 3^5, 1), (5^{10}), (6, 5^2, 3^4, 2), (6, 5^2, 3^4), (6, 5^3, 3^3), (6, 5^6).
    Since \pi \neq (5^7, 1), (5^9, 1), (5^4, 3^3, 1), \pi is one of the following sequences:
(6,5^5,4,1),(6,5^3,4^3,1),(5^5,4^2,1),(6,5^3,4^4,1),(5^5,4^3,1),(6,5^7,4,1),
(6, 5^2, 4^2, 3^3, 1), (6^2, 5^5, 1), (5^4, 4, 3^3, 1), (6, 5^2, 4, 3^5, 1), (5^4, 3^5, 1),
(7,6^3,3^4,1),(6,5^6,3,1),(7,5^8,1),(6^2,5^7,1),(6,5^2,3^3,2,1),(6,5^2,3^3,2^2,1),(6,5^2,3^3,2^2,1),(6,5^2,3^5,2,1),(6,5^2,4,3^3,2,1),(5^4,3^3,2,1),(6,5^3,3^2,2,1),
(6,5^2,3^6,1^2),(6,5^7,1),(6,5^2,3^5,1^3),(6,5^2,3^4,1^2),(6,5^2,3^4,2,1^2),
(6,5^2,4,3^4,1^2),(5^4,3^4,1^2),(6,5^3,3^3,1^2),(6,5^6,1^2),(6,5^8,1^2),
(7,5^2,4^5,1),(6^2,5,4^5,1),(7,5^2,4^6,1),(6^2,5,4^6,1),(6,5^3,4^5,1),
(5^5, 4^4, 1), (6, 5^9, 1), (6, 5^3, 3^3, 1^2), (7, 5^2, 4, 3^4, 1), (6^2, 5, 4, 3^4, 1),
(7,5^2,3^6,1),(6^2,5,3^6,1),(7,6,5,3^5,1),(6^3,3^5,1),(6,5^2,4,3^3,1),
(6,5^3,3^4,1),(6,5^3,4,3^2,1),(5^5,3^2,1),(6,5^2,4^4,3,1),(5^4,4^3,3,1),
(6^2, 5, 3^4, 1), (6, 5^2, 4^5, 3, 1), (5^4, 4^4, 3, 1), (6, 5^2, 4^6, 1^2), (5^4, 4^5, 1^2),
```

$$(6,5^2,4^5,1^2), (5^4,4^4,1^2), (7,5^2,3^5,1^2), (6^2,5,3^5,1^2), (7,5^2,3^4,2,1), (6^2,5,3^4,2,1), (6^2,5^2,3^3,1).$$

It is easy to compute the corresponding π_3 (zero omitted) is one of the following graphic sequences:

$$\begin{array}{l} (3,2^3,1), (5,4,2^3,1), (3,2,1^3), (4,2^2,1^2), (4,3,2,1^3), (4^2,2^2,1^2), \\ (5,4^2,2^3,1), (3^2,2,1^2), (3^3,2,1), (3,1^3), (4,3,2^3,1), (1^2), (2,1^2), \\ (3,2^2,1), (2^2,1^2), (4,2^3,1^2), (5^2,4,2^3,1^2), (3^2,1^4), (4,3^2,1^4), (4^2,3,2,1^3), \\ (4^3,2^2,1^2), (5^3,4,2^3,1), (4^2,3,1^5), (4^3,2,1^4), (4,3,1^5), (4^2,2,1^4). \end{array} \ \Box$$

We now give an application of Theorem 1.5.

Corollary $\sigma(K_6 - E(K_3), 6) = 28$, $\sigma(K_6 - E(K_3), 7) = 38$, $\sigma(K_6 - E(K_3), 7) = 38$ $E(K_3), 8) = 42$, $\sigma(K_6 - E(K_3), 9) = 48$, $\sigma(K_6 - E(K_3), 10) = 52$ and $\sigma(K_6 - E(K_3), n) = 6n - 8 \text{ for } n \ge 11.$

Proof. For $6 \le n \le 10$, the following sequences

$$(5^2, 4^4), (6, 5^6), (5^8), (6, 5^8), (5^{10}),$$

none of which is potentially $K_6-E(K_3)$ -graphic, thereby, $\sigma(K_6-E(K_3),6) \ge$ $5 \times 2 + 4 \times 4 + 2 = 28$, $\sigma(K_6 - E(K_3), 7) \ge 6 + 5 \times 6 + 2 = 38$, $\sigma(K_6 - E(K_3), 7) \ge 6 + 5 \times 6 + 2 = 38$ $E(K_3), 8 \ge 5 \times 8 + 2 = 42, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_3), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 - E(K_6), 9) \ge 6 + 5 \times 8 + 2 = 48, \sigma(K_6 E(K_3), 10) \ge 5 \times 10 + 2 = 52.$

According to Theorem 1.5, $\sigma(K_6 - E(K_3), 6) = 28, \sigma(K_6 - E(K_3), 7) =$

38, $\sigma(K_6 - E(K_3), 8) = 42$, $\sigma(K_6 - E(K_3), 9) = 48$, $\sigma(K_6 - E(K_3), 10) = 52$. For $n \ge 11$, take $\pi = ((n-1)^2, 4^{n-2})$. It is easy to see that π is graphic. If π is potentially $K_6 - E(K_3)$ -graphic, then there are at least three terms in π which are greater or equal to five, a contradiction. Hence, π is not potentially $K_6 - E(K_3)$ -graphic. In other other words, $\sigma(K_6 - E(K_3), n) \ge$ 2(n-1)+4(n-2)+2=6n-8.

Let $n \geq 11$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence with $\sigma(\pi) \geq 6n - 8$. We show that π is potentially $K_6 - E(K_3)$ -graphic.

(1) By $n \ge 11$ and $\sigma(\pi) \ge 6n - 8$, it is easy to check that π is not one of the following sequences:

$$\begin{array}{ll} (n-1,5^2,3^4,1^{n-7})(n\geq7), & (n-1,5^2,3^5,1^{n-8})(n\geq8), \\ (n-1,5^3,3^3,1^{n-7})(n\geq7), & (n-1,5^6,1^{n-7})(n\geq7), \end{array}$$

- (2) We claim that $d_3 \geq 5$. By way of contradiction, we assume that $d_3 \le 4$. Then $\sigma(\pi) = d_1 + d_2 + \dots + d_n \le 2(n-1) + 4(n-2) = 6n - 10 < 6n - 10$ 6n - 8, a contradiction.
- We claim that $d_6 \geq 3$. By way of contradiction, we assume that $d_6 \leq 2. \text{ Then } \sigma(\pi) = \sum_{i=1}^5 d_i + \sum_{i=6}^n d_i \leq 5(5-1) + \sum_{i=6}^n \min\{5, d_i\} + \sum_{i=6}^n d_i = 20 + 2\sum_{i=6}^n d_i \leq 4n < 6n - 10, \text{ a contradiction.}$

Thus, π is potentially $K_6 - E(K_3)$ -graphic by Theorem 1.5. \square

References

- [1] P. Erdős and T. Gallai, Graphs with given degrees of vertices, *Math. Lapok*, 11 (1960) 264-274.
- [2] E.M. Eschen and J.B. Niu, On potentially $K_4 e$ -graphic sequences, Australasian J. Combinatorics, 29 (2004) 59-65.
- [3] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, Vol.1, New Issues Press, Kalamazoo Michigan, 1999, 451-460.
- [4] L.L. Hu and C.H. Lai, On potentially $K_5 C_4$ -graphic sequences, accepted by Ars Combinatoria.
- [5] L.L. Hu, C.H. Lai and P. Wang, On potentially $K_5 H$ -graphic sequences, accepted by *Czechoslovak Mathematical Journal*.
- [6] L.L. Hu and C.H. Lai, On potentially $K_5 E_3$ -graphic sequences, accepted by Ars Combinatoria.
- [7] L.L. Hu and C.H. Lai, On potentially 3-regular graph graphic sequences, accepted by *Utilitas Mathematics*.
- [8] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, *Discrete Math.*, 6 (1973) 79– 88.
- J.S. Li and J.H. Yin, A variation of an extremal theorem due to Woodall, Southeast Asian Bulletin of Mathematics, 25 (2001) 427-434.
- [10] J.H. Yin and J.S. Li, An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **26** (2003) 295-305.
- [11] J.H. Yin and J.S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, *Discrete Math.*, 301 (2005) 218–227.