Gray code for permutations with a fixed
number of left-to-right minima,

Jean-Luc BARIL
LE2I UMR-CNRS 5158, Université de Bourgogne
B.P. 47 870, 21078 DIJON-Cedex France
e-mail: barjl@u-bourgogne.fr

January 13, 2009

Abstract

In (1], the author provided a Gray code for the set of n-length
permutations with a given number of left-to-right minima in in-
version array representation. In this paper, we give the first Gray
code for the set of n-length permutations with a given number
of left-to-right minima in one-line representation. In this code,
each permutation is transformed into its successor by a product
with a transposition or a cycle of length three. Also a generating
algorithm for this code is given.

Keywords: Stirling numbers, permutations, left-to-right minima,
Gray codes, generating algorithms.

1 Introduction

Let S, be the set of all permutations of length n (n > 1). We represent
permutations in one-line notation, i.e. if %1, ¢2,..., ¢, are n distinct
values in [n] = {1, 2,..., n}, we denote the permutation o € S, by the
sequence (i1,12,...,%n) if o(k) = ix for 1 £ k < n. Moreover, if v =
(v(1),7(2),...,7v(n)) is an n-length permutation then the composition
(or product) v - o is the permutation (y(c(1)),7v(c(2)),...,7(o(n))). In

Sn, a k-cycle 0 = (i1, ig,..., ix) is an n-length permutation verifying
o(i1) = 19, o(i2) = 13,..., 0(ik-1) = ik, 0(ix) = i1 and o(j) = j for
j € [n)\{41,...,%k}; in particular, a transposition is a 2-cycle (k = 2).

Now, let 0 € S,. We say that o(i) is a left-to-right minimum of o if
o(i) < o(j) for j < 1. For instance, permutation 231546 has two left-
to-right minima (2 and 1) and 654321 has six left-to-right minima. For

ARS COMBINATORIA 111(2013), pp. 225-239

1 < k £ n, we denote by S, i the set of all n-length permutations with
exactly k left-to-right minima. For instance, we have S3; = {123,132},
S3.2 = {213,231,312} and S33 = {321}. Obviously, {Snx}1<k<n forms
a partition for S, and it is well known (see for instance [14], p. 20) that
the cardinality of S, is given by the signless Stirling numbers of the
first kind s(n, k) satisfying:

s(nk)=(n-1)-s(n-1,k)+s(n—-1,k—1) (1)

with the initial conditions s(n,k) =0if n <0 or k£ <0, except s(0,0) =
1. Notice that s(n,k) also enumerates the n-length permutations with
exactly k cycles. [1, 14, 18].

A Gray code is a family {£n}n>0 of lists of n-length sequences such
that in each list the Hamming distance between any two consecutive se-
quences (i.e. the number of positions in which they differ) is bounded by
a constant independently of the length of the sequences. If this constant
is minimal then the code is called optimal. A Gray code is cyclic if the
Hamming distance between the first and the last sequence is also bounded
by this constant. There are many studies on generating permutations: in
any order (or lex order) 5, 13], in Gray code order [4, 15]. Some other
results are published for restricted permutations (3, 6, 8, 10, 12], derange-
ments [2, 7], with a fixed number of cycles [1], involutions and fixed-point
free involutions [17] or their generalizations (multiset permutations [16]).
At [9] is given an implementation of U. Taylor and F. Ruskey [11] gen-
erating algorithm for n-length permutations with k left-to-right minima.
However the generating order is neither lexicographic nor Gray code or-
der.

In this paper, we provide the first Gray code for permutations (in one-
line notation) with a fixed number of left-to-right minima. In this code
two successive permutations differ in at most three positions (or equiva-
lently, by a product with a 2 or 3-cycle). This code is optimal; indeed,
it is easy to check that the set Sy 3 = {3214, 3241, 3421, 4231, 4312, 4213}
can not be list such that two consecutive elements differ in at most two
positions. This means there does not exist any Gray code for the com-
plete family {Sn k}n>k>1 such that two consecutive permutations in a
list S, x differ in at most two positions. However by considering the set
I = N x {1}, we can obtain a Gray code for {Ss i}(n,x)er such that
the Hamming distance between any two consecutive permutations is two
(this case will not be presented here).

Notice that in [1], the author gave a Gray code for n-length per-
mutations with exactly k& cycles and deduces a Gray code for n-length
permutations with exactly k left-to-right minima in inversion array rep-
resentation but not in one-line notation. Since there is not known gray
code-preserving bijection between these representations it is of interest

226

to construct directly a Gray code for permutations with a fixed num-
ber of left-to-right minima in the natural representation, i.e. in one-line
notation. This is the main motivation of our work. In order to obtain
this result, we first give two combinatorial interpretations of the recursive
relation (1) which allows us to obtain in Section 3 two recursive definition-
(2) and (3)- for the set Sy x; then, by considering them in terms of lists,
we show how one can recursively construct a Gray code for S, ;. Finally
we give a constant amortized time algorithm for generating our code.

2 Preliminaries

In this section we recursively construct Sn i from S,_; % and Sp_1 x—1
which allows us to obtain a constructive proof of the enumerating relation
(1). We also provide two lemmas, crucial in our construction of the code.

Let v € Sp—1,% be an (n — 1)-length permutation with k left-to-right
minima, n—1 > k > 1; let also 7 be an integer, 1 < ¢ < n—1. If we denote
by o the permutation in S, obtained from v by inserting the entry n in
the i-th position (i.e. between (i) and (i + 1)), then o is an n-length
permutation with k left-to-right minima.

Similarly, if ¥ € Sp—1,k-1 is an (n—1)-length permutation with (k—1)
left-to-right minima, n > k& > 2, and if o denotes the permutation in
S, obtained from « by appending n before the first position, then o is
an n-length permutation with k left-to-right minima. Moreover, each
permutation in Sp k, n > 2, can uniquely be obtained by one of these two
constructions.

The functions ¢, and 1, defined below induce a bijection between
Sn—1,k—1U[n—1] X Sp—1 x and Sy x such that its restriction to Sp—1,k—1
is ¢ and its restriction to [n — 1] X Sp—1,k is Pn.

Definition 1 1. For 1 < k < n, an integer i € [n — 1] and a permu-
tation v € Sp—1,k, we define an n-length permutation o = ¥n(3,7)

by
v(5) fj<i
o) ={ n =i+l
v(j - 1) otherwise.

2. For n > k > 2 and a permutation v € Sp_1k—1, we define an
n-length permutation o = ¢n(y) by

o(j) = { :(j —1) otherwise.

227

On the other hand, we have another bijection between S,,_; x—1U[n]\ {1} x
Sp—1,k and S, x by replacing ¢, and ¥, with the two functions ¢}, and
¥}, given in Definition 2 below. Indeed, let us consider o € S, x, n > 2;
if o(n) = 1 then v = (o(1) — 1)(¢(2) — 1)...(o(n — 1) — 1) belongs to
Sn-1,k—1 and ¢'(7) = o; if o(n) =14, ¢ # 1, then we define v in S,_1
as the permutation obtained from o by deleting the last entry 7 and by
decreasing by one each entry greater than i, i.e., o = ¢’(¢,7). Also, each
permutation o in S, ;. can be uniquely obtained from one of these two
constructions.

Definition 2 1. For 1 < k < n, an integer i € [n]\{1} and a permu-
tation v € Sp_1,x, we define an n-length permutation o = ¥} (¢,7v)

by

v(4) fy(@)gi-1
oli) =14 i ifj=n
Y(j)+1 otherwise.
2. Forn > k > 2 and a permutation v € Sp_; k-1, we define an
n-length permutation o = ¢,,(7y) by

N _] 1 ifj=n
o) = { v(5)+1 otherwise.

In the following, we will omit the subscript n for the functions ¢, ¥n,
#,, and 9., and it should be clear from context. Also, we will extend the
functions ¢, ¥, ¢’ and ¢’ in a natural way to sets and lists of permutations.
Moreover, if S is a list then S is the list obtained by reversing S, and
first(S) (last(S) respectively) is the first (last respectively) element of
the list, and obviously first(S) = last (S) and first (8) = last(S); S®
is the list S if 4 is even, and S if i is odd; if S; and S; are two lists, then
81083 is their concatenation, and generally 6 S; is the list $10850. . .08,,.

i=1

1
Similarly, O S; is the list Sy, 0 Spm—10...08;. Finally, for i € [n — 1]

=m

and S a list of (n — 1)-length permutations we have ¥(:,8) = (3, S),
Y(i, first(S)) = first(¥(¢,S)), and (i, last(S)) = last(y(i,S)). We
obtain similar results for the function ¥’ and for ¢, ¢’ if we do not consider
the parameter 1.

In the sequel, S, x will denote our Gray code for the set Sy, .

Here we give some elementary results which are crucial in the con-
struction of our Gray code.

228

Lemma 1 Let vy be an (n — 1)-length permutation, ifn >3 and 1 <i <
n — 2, then P(i,v) = ¥(i+1,7)- <7' +1,i+2).

Lemma 2 Let v be an (n — 1)-length permutation, ifn >3 and 1 <i <
n — 3, then ¥(i,7) =¢¥(E+2,7) - i+ 1, + 3,7+ 2).

These two Lemmas can also be written for ¢’ as follows:

Lemma 3 Let«y be an (n — 1)-length permutation, ifn >3 and 2 <i <
n—1, then ¥'(i,7) = (i,i + 1) - ¥’ (i + 1, 7).

Lemma 4 Let vy be an (n — 1)-length permutation, ifn >3 and 2 <i <
n—2, then ¥'(,7) = (i,i +1,i+2) - ¥'(i + 2,7).

3 The Gray code

From the remarks before Definition 1 results that the set S, can be
written as:

n—1
Sn k= | J®(i, Sn-1,6) U $(Sn-1,4-1) (2)
i=1
with ¢(Sn0) and (%, Spn+1) empty. Notice that if we consider ¢’ and
1)’ the previous relation becomes

Sk = Uz/)’(z',S —1,k) U (Snoik-1). (3)

=2

If S is a list of permutations where any two consecutive permutations
differ in p positions (p > 1) then so is the image of S by ¥, ¥/, ¢ or ¢'.
Therefore, it is natural to look for a Gray code for the set Sn i of the

form
81080...0850T08¢410...085, 4)

where 7 is the list ¢(Sn—1,k~1) or its reverse, and S; is ¥(j, Sn—1,x) or
its reverse, for some j. Notice that (4) is an ordered counterpart of (2)
and we have a similar result by considering relation (3).

In order to construct our Gray code, we distinguish five cases ()
k=1<n,3Gi)2<k=n,(i)2<k=n~-1,(iv)2< k=n-2and
(v) the other cases. For each case we give a recursive definition for an
ordered list S, i of the set Sy x, and we provide its first element f5 x and
last element £, k. Snx is the concatenation of n lists as in (4) and we
prove that it is a Gray code by showing that there is a ‘smooth’ transition
between successive sublists. That is, the last permutation of a sublist and
the first one of the next sublist differ in at most three positions. By the
remark in introduction, the Gray code will be optimal.

229

3.1 Thecasek=n,n>1

Obviously, Sp,n, » > 1, contains only one element (n,n —1,...,2,1),

(a)

and in this case, there is nothing to do.

3.2 Thecasek=1,n2>2

For n > 2 we define the relations (b):
skorn=2,8,;=(1,2).
eForn=2m > 2,

Sna=%(n-1,8-11)0 O 1,()(21,— 1,8p-1,1)™+=Do

t=m-1

O ¥(28, Sp—1,1) M+,
oForn—2m+1>3

Sna=9%(n—1,50-11)0 O (21, Sn- 11)(’"'"‘)0

i=m-—1

O P(2 — 1,8,-1,1)(149,

Remark that the function ¢ does not appear in these relations. See
Figure 1 for an illustration of this code.

n=8 n=

® O} ®

N3 _A\S5 6 1 IN23\4_15\¢6_77 8

Figure 1: The relations (b) for n = 8 and n = 9. Each point i cor-
responds to the list 1(%,S5,-1,1) and each encircled point i represents

the list (4, Sn_1,1), i.e., the reverse list of ¥(¢,8,—-1,1). For instance, if
n = 8 then Sg1 = ¥(7,S7,1) 09(5, S7,1)0¥(3, S7,1)0%(1, S7,1) 09(2,S7,1) 0
(4, S7,1) 0 (6, S7,1).

The lemma below gives the first and the last permutations of the list
Sn,1.

Lemma 5 Ifn >3 then
1. fn,l =(1,2,3,...,n—2,n—1,n)
2.4,,=(1,23,...,n—2,n,n-1).

230

Proof. This holds if n = 2. For n > 2, relations (b) give fn,1 = ¥(n —
1, fam11) and €n 1 = ¢P(n — 2,8n_1,1) = ¥(n - 2, fn_1,1). We obtain the
results by induction.

Proposition 1 In the list S,,1 defined by (b), n > 2, two consecutive
permutation differ in at most three positions.

Proof. The transitions between 9(1,8,-1,1) and %(2,8p-1,1) (or be-
tween ¥(1,Sn-1,1) and ¥(2,Sn-1,1)) are given by Lemma 3. The transi-
tions between (%, Sp—1,1) and (¢ + 2,8n_1,1) (or ¥(%,Sn-1,1) and ¥(i+
2,8n-1,1)) are given by Lemma 4. Finally, for n even n > 3, we obtain
last(P(n — 1,8,-1,1)) =9¥(n —1,last(Sa-1,1))
=(1,2,3,...,n=-3,n—1,n—2,n)
=(1,2,3,...,n-3,n,n—-2,n—1) - (n—2,n)
= (n — 3, first(Sn-1,1)) - (n — 2,n)
= first(¥(n — 3,5n-1,1)) - {(n — 2,n)
which gives a smooth transition (product by a transposition) between the
two first sublists when n is even. (m]

3.3 Thecasek=n—1,n2>3

We define the relations (c) (see Figure 2),
e For n = 2m > 4,

1
Snn-1=9'(n,Sn—1,n-1) 0 ¢ (Sp-1,n-2)0 O 11//(22', Sn-1,n-1)©

t=m-

m

C)z '¢'I(2i - 1) Sn—l,n—l)-
1=
eForn=2m+12>3,

2
Sn,n—l = "/)’(n) Sn—l,n—l) o ¢’(8 -—1,n—2) o O Kb'(?ﬁ - 1, Sn—l,n—l) °

_Ql ¥'(21,Sp—1,n-1)-

Notice that these relations consider ¢’ and ¢’ instead of ¢’ and ¢.

Lemma 6 Ifn > 3 then
1. fn,n—l = (n— l,n - 2,n— 3,.. . ,2, l,n)
2. bpp1=(n,n-2,n-3,...,2,1,n—-1).
Proof. By relations (c) we obtain by induction fy n—1 = ¥'(7,Sp-1,n-1) =

(n-1,n-2,...,2,1,n)and p n—1 =¥’ (n — 1,850_1,n—1) = (n,n—2,n—
3,...,2,1,n-1).

231

Figure 2: The relations (¢) for n = 8 and n = 9. Each point ¢ # 0
corresponds to the list 4'(¢, Sp—1,,—1) and the point O represents the list
@' (Sn—1,n-2). For instance, if n = 8 then Sg7 = ¥'(8,57,7) 0 ¢'(S76) ©
Y'(6,87,7) 0 ¢’ (4,57,7) 0 9'(2,S7,7) 0 ¥'(8,57,7) 0 ¥'(5,S7,7) 0 ¥'(7, S7.7).

Proposition 2 In the list Spn-1 defined by (c), n 2 3, two consecutive
permutations differ in at most three positions.

Proof. Here, we just consider the transitions between sublists which
are not considered by Lemma 3 and 4. It remains the transitions (1)
YP'(n,Sn-1,n-1)0¢'(Sn-1,n-2) and (2) ¢'(Sp—1,n-2) 0¥’ (n—2,5n_1,n-1).
For the case (1),
last(y’'(n,Sn-1,n-1)) =(m-1,n-2,...,3,2,1,n)
=(n-Ln-2,..,3,2,n,1)- (n—1,n)
= ¢,(fn—1,n—2) * (n - 1»"’)
= first(¢'(Sn-1,n-2)) - (n — 1,n).

(n,n-2,n-3,...,3,2,n—1,1)
(ny,n-1,n-3,...,3,2,1,n - 2)- (2,n,n — 1)
fiTSt(¢,(n_2aS —l,n—l)) * (2$ n,n— 1)‘

For the case (2),
last(¢'(Sn-1,n-2))

o

34 Thecasek=n—-2,n>4

We define the relations (d) (see Figure 3),
eForn=2m >4,

1 :
Snn—-2 = P(n—1,8n-1,n-2)0(Sn-1,n-3)0 O P(2i—1,8n-1,n—2)™m+=D

i=m—1
° _O 1!*(2z Sn-1,n-2)(M+).
0Forn-2m+1>5
Spn-2 =P(n—1,8,-1,n-2) 0 H(Sn-1,n-3) © O ¢(2z Sn1n-2)™*) o

i=m-1

.Oil’(?z = 1,8n1,n-2) M1+,

i=l

Lemma 7 Ifn > 4 then

232

n= n=

Figure 3: The relations (d) for n = 8 and n = 9. Each point ¢ # 0 corre-
sponds to the list (¢, Sp—1,n—2) and the point 0 is the list #(Sn—1,2-3).
When the point is encircled, we consider the inverse list. For instance, if
n = 8 then Sg 6 = Y(7,57,6) 0 §(S7,5) 0 Y(5,S7,6) 0 ¥(3,S7,6) 0 Y(1,S7,6) ©
(2, S7,6) 0 ¥(4,S7,6) 0 9(6,S76)-

1. fan—2=Mm-2,n-38,...,2,1,n—1,n)
2 lpn2=mn-2,n-3,...,2,1,n,n—1).

Proof. By induction and with relations (d) we obtain

fan—2=9%(n -1, first(Sp_1,n-2)) =9¥(n-1,(n-2,n-3,...,2,1,n—
1)N)=mn-2,n-3,...,2,1,n—1,n) and

lyn-2=9(n—2, first(Sn-1,n-2)) =9¥(n—-2,(n—-2,n-3,...,2,1,n—
1)=n-2,n-3,...,2,1,n,n—1). Q

Proposition 3 In the list S, n-2 defined by (d), n > 4, two consecutive
permutations differ in at most three positions.

Proof. After applying Lemma 1 and 2, it remains the transitions (1)
Y(n—1,81-1,n-2)08(Sn—1,n-3), (2) Y(n—=1,8n-1,n-2)0@(Sn-1,n-3), (3)
#(Sn-1,n-3)0Y(n — 3,5,-1,n—2) and (4) ¢(Sn-1,n-3)0Y(n—3,8n-1,a-2)-
For the cases (1) and (2),

last(y(n — 1,8,-1,n-2))

=n-1,n-3,n-4,...,3,2,1,n-2,n)
=(nn-3,n-4,...,1,n-2,n-1)-(1,n)
= ¢(fn—1,n—3) ’ <1an)

= first($(Sn-1,n-3)) - (1,n)

= last($(Sn-1,n-3)) - {1,n — 1,n).

For the case (3),
last(¢(Sn-1,n-3)) (n,n—3,n—4,...,2,1,n—-1,n—-2)
n-1,n-3,...,2,n,1,n—-2)- (I,n—-2,n— 1)
last(¥(n — 3,8n-1,n-2)) - (1,n — 2,n — 1).

For the case (4),
first(¢(Sn—1,n-3)) (n,n-3,n-4,...,2,1,n—-2,n-1)
n-2,n-3,....,2,n,1,n-1)- (1,n—2,n-1)

first(¥(n — 3,5p-1,n-2)) - (,n —2,n —1).

nn

233

3.5 Thecase2<k<n-3

If 2 < k < n — 3, we define relations (e) (see Figure 4)
e For n = 2m, k odd,

1)/2
n k= '(/J(n -1 Sn_l k) 0 O ’Rp(?l - 1 Sn 1 k)(m'l") o O w(zz’
-1
Sac1,)™HHD 0 G(Sn_1jm1)™HED 20 O (2, Spmomr) .

i=(k+1)/2
e For n = 2m, k even,
Snk =P(n—1,8,1 k)° O 1.0(21 = 1,8n-1%)") 0 §(Sp_1 k1) 5

O Y(2i — 1, Sp—1,£) ™"V o O $(24, Sp—1,k-1)™+,

t=k/2
eForn=2m+1, kodd

Snk =9%(n—1,8. k)o o ¢(2z Sne1 k) ™D 0 (S pg)

i=m-1
1
o O $(2,8n-14)m o O'!’(?i = 1,8po p—1)(mHEHD),
i=(k-1)/2 i=1

e For n =2m+ 1, k even,
(k-1)/2

Sn,k = 7/)(71« - I’Sn—l,k) O 7/)(22 Sn 1 k)(m+‘—1) o ()l 1/)(22' - 1’
1=

i=m-—1

) m)
Sn-16) M od(Sp_1 k1) TEHD/ 20 O P(2i—1,8p—1 k1) PHFD,
i=(kr1)/2

Figure 4: The relations (e) for n = 8,9 and k = 3,4. Each point i # 0
corresponds to the list %(i, S,_1 x) and the point 0 is the list ¢(Sp—1 x—1).
When the point is encircled, we consider the inverse list. For instance, if
n=2=8 and k= 4 then 88,4 = 1/)(7, 87,4) [¢] ¢(5, 87’4) o] ¢(S7'3) o] ¢(3,57,4) (o]
W(1,857,4) 0 P(2,57,4) 0 Y(4,S7,4) 0 Y(6, S7,4).

234

Lemma 8 If2< k <n—23 then
1 fax=0(k-1k-2,...,2)1,k+1,k+2,...,n—-2,n—1,n)
2. bory=(kk—-1,k-2,...,2,1,k+1,k+2,...,n—2,n,n— 1)

Proof. We obtain the result with f, x = first(¥(n—1,8,-1,k)) = ¥(n—
1, fa—1,x) anchored by frx = (k,k—1,k—2,...,3,2,1). Similarly, £, ; =
last(¥(n —2,5,-1,k)) = ¥(n -2, fn_1’k) also anchored by fixx = (k,k —
1,k~2,...,3,21). u)

Proposition 4 In the list S, defined by (e), 2 < k < n — 3, two con-
secutive permutations differ by at most three positions.

Proof. After applying Lemma 1 and 2, it remains the transitions (1)
Y(k — 1,8n-1,k) © ¢(Sn-1,k-1), (2) H(Sn-1,k-1) © Y(k + 1,8n-1k), (3)
B(FE—1,80_1) © $(Sn-1,k-1), (4) $(Sn-r,k-1) © Bk +1,3n1), (5)
"/j(n - lysn—l,k) ° "wb(n - 3,Sn—1,k)-
Case 1: last('w(k —1,85,-1k) =
=(kk-1,...,2,n,1,k+1,k+2,...,n=1,n—2)
(n k- 1 2 Lk k+1,k+2,...,n=1,n-2)-(1,k+1,k)
= first(¢(S, —l,k—l)) (Lk+ l,k)
Case 2: first(d:(k +1,8.1%) =
= (k, k—l L2, L,k+1,nk+2,...,n-2,n—1)
(n, k w2, L,k k+1,k+2,...,n-2,n-1)-(LLk+1,k+2)
= last(¢(8 _1’k_1)) . (l,k-l- 1,k+ 2)
Case 3 ast(BF 1. 5,1) =
=(k,k-1,...,2,n,,k+1,k+2,...,n—2,n—1)
(nk—1,...,2,L,k,k+1,k+2,...,n=2,n—1)- (1, k+ 1,k)
last(¢(n—1,k— 1)) (L, k+1,k).
Case 4: first(y(k +1,80-1,k)) =
(k,k-1,...,2,,k+1,n,k+2,...,n—1,n-2)
(n,k—1,...,2,1,k,k+1,k+2,...,n—1,n—-2)'(1,k+1,k+2)
last(¢(8n_1k 1)) (L, k+1, k -+ 2).
5: first($(n — 3,Sn-14)) =
(k,k-1,...,2,,k+1,...,n-3,n,n—-2,n—1)
(k,k—1,...,2,1,k+1,...,n—3,n—1,n,n—2)-(n——‘2,n—1,n)
last(¥(n — 1,8,-1k)) - {(n — 2,n — 1,n).

o 0 ([l

0

The family of lists {Sn x}n>k>1 is an optimal cychc Gray code. See
Table 1 for some examples. Moreover, let denote S 1 i the list obtained

235

Table 1: The lists S3 %, 1 < k < 3, and Sy 1 for 1 < k < 4. For instance,
in Sy2 the sublists of relation (d), ¥(3,S32), &(S3,1), ¥(1,Ss,2), and
¥(2, S3,2), are alternatively in bold-face and italic.

S3,1 S3.2 Sas Sa Sa,2 Sa.3 Sa,a
1 123 |1 2183 |1 821 1 1234 1 2134 |1 3214 |1 4821
2 132 | 2 231 2 1324 2 2314 | 2 8241
3 812 3 1428 | 3 8124 | 3 3481
4 1432 | 4 4182 | 4 4881
5 1842 5 4123 | 5 43812
6 1243 6 2413 | 6 4213
7 2431
8 3412
0 8142
10 2341
11 2148

from S, by replacing each permutation in Sy, x by its group theoretical
inverse. Thus, by a simple calculation, the family of lists {S; }c}nzkzl is
also an optimal cyclic Gray code for the n-length permutations with &
left-to-right minima; i.e. two successive permutations in a list S’ }c differ
by a product with a transposition or a 3-cycle.

4 Algorithmic considerations

In this part, we explain how the recursive definitions (a), (b), (¢), (d)
and (e) can be implemented into an efficient algorithm, i.e. in a constant
amortized time (CAT) algorithm. Such algorithms already exist for de-
rangements, permutations with k cycles or involutions [1, 2, 10, 12], so
we will just give here the main difficulties to implement our one.
According to the relation (4) and the cases (a), (b), (c), (d) and (e),
the procedure gen_up(n,k) given in Appendix produces iteratively the
sublists S; and 7 that are recursively generated. So, each call of this
procedure fills up entries with indices in an active set T' C [n] associated
with it, and for each recursive call T = {iy,12,...,%} is replaced by an
active subset T’ such that T = T U {i,} where j € [k]. As we did it for
the generating algorithm the Gray code for derangements (2], the current
active set T is represented by four global variables: the integers head, tail,
and the two arrays succ and pred defined as follows. If at a computational
step T’ = {i1,42,...,1ix}, then we let head = 4;, tail = iy, succ[t;] = ij41
and pred[i;] = %;_;. So, before each recursive call of the procedure cor-
responding to the active set 7", (1) the procedure remove(i;) delete the
index i; in T, (2) we perform the recursive call relatively to T = T\ {i;},
(3) the procedure append(i;) add the index ¢; in T

236

In our algorithm, we consider initially the active set T = [n + 1}, and
the procedure gen_up(n, k) generates permutations of S, x in an array p
anchored by the first element of the list. The procedure type() prints out
the current permutation of p.

Between any successive calls at least one update statement is performed
(according to the relations (a), (b), (¢), (d) and (e)), and after each update
statement a new permutation is produced and printed out. The proce-
dure generates at least two recursive calls or produces a permutation.
Clearly, the time complexity of gen_up is proportional to the total num-
ber of recursive calls. Since each call produces at least one new element
the time complexity is O(s, «). A java implementation of our algorithm is
avalaible at http : //www.u-bourgogne.fr/LE2I/jl.baril/leftapplet.html.

5 Appendix

The call of gen_up(n,k) generates the list S, k. In order to produce S, i
we consider also the procedure gen.down(n,k) which has the same instruc-
tions of gen_up(n,k) in the reverse order. The notation gen_up/down(n—
1,k) means that we use gen_up(n,k) or gen_down(n,k) according to the
sense of each sublist in the relations (a), (b), (¢), (d) and (e). The no-
tation (i, 7) means that the current permutation p is composed (on the
right) by the transposition (z, 7).

public static void gen_up(int n, int k)
{ 12(ke=n) type();
1f(kw=1)
if(o==3) {type();<succ(head]),succ[succ(head)]>;type();}
olse
{ run=pred(tail) ;reaove(run);gen_up{n-1,k);eppend(run);
<run,pred(run)>; <pred[run] ,pred[pred(runl1>;
1f(a mod 2¢=0)
<prod[tail],pred(pred(tail)l>;
tor{i=n-3;i>e1;{=i-2)
{run=pred(pred(run]);rezove(run) ;gen_up/dovn(n-1,k) ;append(run) ;
12(1>=3)
{<run,pred(run}>; <pred[run) ,pred [pred{run))>;}
alse <succ(hoad] ,succ[succ(head)]>;

¥
12(4me-1) (1=2;run=succ(succlhead}]);} else {i=1;runesucc(hesd];}
for(int jei;j<en-2;j=j+2)
{reaove (run) ; gen_up/dovn(n~-1,k) ;append{run) ;
1£(§+2¢wn=2){<run, succ{run]>; <succ [run) , succ(succ[run})>; run=succ{succ(run)) ; }

)
i (k==n-1)
i2(n==3) {type();<pred(tail] ,pred(pred(tail)])>;type();
<pred(pred(pred(tail))],pred{pred[tail}]>;
<pred(tail) ,pred(pred(tail))>;type();}
else
{ type();<pred(tail) ,pred(pred[tail])>; run=pred{tail);
renove(run) ;gen_up(n-1,k-1);append{run);
runesucc(head) ;<pred[tail) ,pred(pred(tailll>;<pred{tasd] ,run>;type();
runehesd;
for(imn-4;1>=2;i=i-2)
{runesuce(succ[run]} ; <run,succ{run)>;<run,pred(tatl)>;type(};}
<pred[tail] ,pred{pred(pred(tail)])>;type();
if(==0) {i=3;run=pred(pred[tail]);} else {i=2;runepred[tail]);}
for{int j=i¢2;j<on=1;j=j+2)
{run=pred(pred[run)) ;<run,pred[run]>;<run,pred(tail)>; type();}

}
11 (k==n-2)
{ runepred(taill;

237

renove(run);gen_up(n-1,k) ;append(run);
12(n sod 2==0)
{<bead,pred[tail)>;<pred(tail) ,pred{pred(taill)>;}
else {<head,predftasl]>;}
runshead;
rezove(run) ;gen_up/dovn(n-1,k-1) ;appezd(run) ;
<pred(pred (prod(tail)]) ,pred[pred[tail)]>;<head,pred(pred(prod(taillll>;
run=pred(tail);
for{ien=3;1>=1;ini-2)
{runepred(pred[runl);
resove(run) ;gen_up/dovn(a-1,k) ;append(run);
1£(4>3) {<run,pred{run}>;<pred(run) ,pred(pred(runl]>;}
else {<succ(head] ,succ[succ(head]]>;}

}
12(4==-1) {4=2;run=succ(succ(head]];} else {i=1;runwsucclhead);}
tor{int j=i;j<wn-2;=j+2)
{renove(run);gen_up/dovn(n-1,k); eppend(run);
12 (j*2¢en~2){<run, succ[run]>;<succ(run] ,succsucc{rm)}>; runesucc [succ{rua)1;}
}

}
42(ki= n &k ki= 1 &k ki= n-1 &k k!= 0-2)
{ run=preditaill;
rezove(run);gen up(n-1,k) ; sppead(run.
if(n cod 2e=0){<run,pred(run}>; <prod[run].pnd[prod[m]]> 3}
olse {<run,pred(pred(run))>;)}
runspredftaill;
for{ien-3;i>=1;1s1-2)
{ run=pred(pred[run]};
rezove(run);gen. up/dovn(a-1,k);append(run);
1f{§meke1)
{<pred[run], run>; <head, pred[run)>; runishead;
resove(runl);gen.up/dovn(a-1,k-1,runl,sens) ;append(runi);
<head,pred[run)>;<pred(run) ,run>;

12(§>=3) {<run,pred(run}>;<pred(run] ,pred(pred(run])>;}
else {<succ(head),succ(succ(hesd]]>;}

if(iwe-1) {1e2;runesucc[succ(head]]:} else {i=1;run=succ[kead];}
tor{int jei;j<wn~2;jeje2)
(run);gen.up/dovn(a-1,k) ;append(run);
12(Jeek-1)
{ <succ(run],run>;<hesd,succ{run)>;

runi=head;
reaove(runi) ;gen_up/down(n-1,k-1);append(runl);
<head, succ(run)>; <succ(run) ,run>;

}
12(§+2<=n=-2){<run, succ [run)>; <succ[run) , succ [succ {run])>; runesucec [succ{run}) ;}

References

(1] J.L. Baril. Gray code for permutations with a fixed number of cycles.
Discrete Math., 307, 13(6): 1559-1571, 2007.

[2) J.L. Baril and V. Vajnovszki. Gray code for derangements. Discrete
Appl. Math., 140(1-3): 207-221, 2004.

[3] W.M.B. Dukes, M. F. Flanagan, T. Mansour and V. Vajnovszki.
Combinatorial Gray codes for classes of pattern avoiding permuta-
tions. Theoretical Computer Science, 396: 35-49, 2008.

[4] S.M. Johnson. Generation of permutations by adjacent transposi-
tions. Mathematics of computation, 17: 282-285, September 1963.

(5] D.E. Knuth. The art of computer programming, combinatorial al-
gorithms, volume 4, fascicle 2, Generating All Tuples and Permuta-
tions, Addison Wesley, 2005.

238

[6) J.F. Korsh. Loopless generation of up-down permutations. Discrete
Math., 240(1-3): 97-122, 2001.

[7] J.F. Korsh. Constant time generation of derangements. Information
Process. Letters, 90(4): 181-186, 2004.

(8] D. Roelants van Baronaigien. Constant time generation of involu-
tions. Congressus Numerantium, 90: 87-96, 1992.

[9] F. Ruskey. http://www.theory.cs.uvic.ca/~cos/gen/perm.html.

[10] F. Ruskey and S. Effler. A CAT algorithm for generating permu-
tations with a fixed number of inversions. Inform. Process. Lett.,

86(2): 107-112, 2003.

[11] F. Ruskey and U. Taylor. Fast generation of restricted classes of
permutations. Manuscript, 1995.

[12] F. Ruskey and D. Roelants van Baronaigien. Generating permuta-
tions with given ups and downs. Discrete Appl. Math., 36(1): 57-67,
1992.

(13] R. Sedgewick. Permutation generation methods. Comput. Surveys,
9(2): 137-164, 1977.

[14] R. Stanley. Enumerative combinatorics, volume 1. Cambridge Uni-
versity Press, Cambridge, England, 1997.

[15]) H.F. Trotter. PERM (Algorithm 115). Communications of ACM,
5(8), 434-435, 1962.

(16] V. Vajnovszki. A loopless algorithm for generating the permutations
of a multiset. Theoretical Computer Science, 307: 415-431, 2003.

[17] T. Walsh. Gray code for involutions. J. Combin. Math. Combin.
Comput., 36: 95-118, 2001.

(18] R.M. Wilson and J.H. van Lint. A course in Combinatorics. Cam-
bridge University Press, 2002.

239

