Some classes of antimagic graphs
with regular subgraphs

Tao WANG!, Deming LI?, Qing WANG*
1. Depart. of Foundation, North China Institute of Science
and Technology 065201, P. R. China;
2. Depart. of Mathematics, Capital Normal University, 100048, P. R. China

Abstract A labeling f of a graph G is a bijection from its edge set E(G)
to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices
z and y, the sum of the labels on edges incident to z is different from the
sum of the labels on edges incident to y. A graph G is antimagic if G
has an f which is antimagic. Hartsfield and Ringel conjectured in 1990
that every connected graph other than K> is antimagic. In this paper, we
show that some graphs with regular subgraphs are antimagic.
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1. Introduction

Graphs considered in this paper are finite, undirected and loopless. Let G
be a graph with vertex set V(G) and edge set E(G), respectively. Let f be
a mapping from E(G) onto {1,2,...,|E|}. For a vertex z of G, we define
a mapping on V(G) by f(z) = 3_.cp, f(e), where E; is the set of edges
incident with z in G. An antimagic labeling f of G is a bijection from E(G)
to {1,2, ..., |E|} such that for any two distinct vertices z and y, f(z) # f(y).
Let E(G) = E, U E;, where E; and E; are two disjoint subsets. Let f;
be mappings from E; to the set of integers for ¢ = 1,2. Then (f; U f2)
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is a mapping from E and (fy U fo)(z) = (f1 + f2)(z) = fi(z) + fa(z) for
z € V(G). A graph G is antimagic if it admits an antimagic labeling.

The notation of antimagicness of graphs is introduced in 1990 in [1],
which conjectured that connected graphs other than K, are antimagic.
Since then, some classes of graphs are proved to be antimagic, which in-
cludes Cartesian products of graphs, regular bipartite graphs, cycles, paths,
complete graphs and so on. But the conjecture is open. For more details
on antimagic graphs, refer to [1-8}.

It is proved in (3] that regular bipartite graphs are antimagic. If we
add some edges to the same part of vertices of a bipartite graph, is the
obtained graph antimagic? Clearly, the hardness of showing a graph being
antimagic is that the antimagic labeling of a graph may be useless for the
graph with one more edge, although the difference between the two graphs
is very little. In this paper, we use the way of listing edges in [2] and ideas
in [3], we show that some classes of graphs derived from regular graphs or
regular bipartite graphs are antimagic.

Our main result of this paper can be stated as follows.

Theorem 1.1 Let X = {z,z3,..,2,} and Y = {y1,v2,...,yn}. Let G;
be a graph with vertez setY and mazimum degree at most 4r +1(< n). Let
Ga be an m(2 < m < n)-regular bipartite graph with parts X and Y and
G3 be a (2r)-regular graph with vertez set X. Let G = G1UG2UG]3. Then
G is antimagic.

Before proving Theorem 1.1, we need some lemmas. We put them in
Section 2. The proof of Theorem 1.1 is in Section 3.

2. Some lemmas

By the way of listing edges as in [2], we have the following lemma.

Lemma 2.1 Let G be a connected graph of size e with mazrimum de-
gree A. Let f be a labeling of edges onto {1,2,...,e} and let f(z) =
maz{f(z1), f(z2), ... f(zn)}. If A is odd, then f(z) < B851(e +2) +e.
If A is even, then f(z) < A(e+2)/2.
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Proof Let G* be the graph with vertex set V(G) U {u}, where u is a new
vertex, and edge set E(G) U F, where F' = {uz : z is an odd vertex of
G}. Then G* is a eulerian graph and it has a euler trail R. We order
the edges of G along the trail R by ry, 72, ..., 7. and label edges in F' by
zero, label the unlabeled edges along R by 1,e,2,e—1, 3, e—2, ..., such
that label i is followed by e + 1 — i for i < e/2, and label j is followed
by e+ 2 —j for [e/2] < j < e. For an even vertex of degree d, there are
d/2 pairs of consecutive edges, f(z) < d(e + 2)/2. For an odd vertex of
degree d, there are (d — 1)/2 pairs of consecutive edges and a single edge,
f(z) < (d—1)(e+2)/2 +e. Let d = A. The lemma follows. [

Lemma 2.2 is a straightforward result of Lemma 2.1.

Lemma 2.2 If G is a 2t-regular bipartite graph with A and B of size n,
then G has o mapping f from the edges of G onto {1,2,...,2tn} such that
the sum at each vertex of A is a constant (2tn + 1)t and the sum of the
vertices of B is at most (2nt + 2)t.

Proof We assume that G is connected. Since G is eulerian, G has a euler
trail R. Starting from a vertex of B, labeling the edges as in Lemma 2.1,
we have that for a vertex = in A, f(z) = t(2nt + 1) and for a vertex y in
B, f(y) < t(2nt + 2). Actually, f(y) = t(2nt + 2) except for the starting
vertex with weight (¢t — 1)(2nt + 2) + (2 + nt).

If G is not connected, we consider each component separately. We
assume that G = G| U G5, where G; is connected. Further, we assume
that |[E(G)| = e and |E(Gy)] =e€;. Weuse 1,2, ...,e;/2and e, e—1, ..,
e —e1/2+1 to label edges of G; by the way of connectedness. [

Lemma 2.3 Forn > 3, there is a 3xn matriz A with entries {1,2,...,3n}
such that either the sum of the entries of each column is a constant or ezcept
for one column, the sum of the entries of each column is a constant.

Proof We construct the matrix Aayxn as follows:

Casel. n=2k+1fork>1 a;=3iforl <i<n. asz2itl =
6k+1-3(i—1)for1 <i<k+1,a32=3k—-i)+1for1 <i<k
@2,2i+1 =3(k—i)+2 for 0 <i<k, a,2i =6k+2—3(i—1) forl1<i<k.
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It is easy to know that the constant is (9n + 3)/2. The following is the

required matrix.

3 6 9 12 cen 6k 6k +3
A= |3k+2 6k+2 3k-1 6k-1 ... 3k+5 2 .
6k+1 3k—-2 6k—2 3k-—-5 -.-. 1 3k+1
Case 2. n =2k + 2 for k > 1. Let vector § = (6k + 4,6k + 5,6k + 6).
Let B = A3y (n—1), Where B is constructed as in Case 1. Let A = (BST).
It is easy to know that the constant is (9n — 6)/2. The following is the

required matrix.

3 6 9 12 .. 6k 6k+3 6k+4
A=|3+2 6k+2 3k-1 6k—1 --- 3k+5 2 6k+5]).
6k+1 3k-2 6k—-2 3k-5 .- 1 3k+1 6k+6
0O

Lemma 2.3 is constructive. Since the edge set will be decomposed into
a few pieces, one of which is a 3-regular bipartite graph. We will use the
entries of the matrix to label these edges such that the entries of each
column are the labelings of the edges incident with the same vertex.

The idea of the following lemma is drawn from [4].

Lemma 2.4 LetS={a+1,a+2,..,a+n}and H be a 2-reqular graph
with V(H) = {z1, =2, ..., zn}. Let f: V(H) > {b+1,b+2,...,b+n} be
a bijective mapping. Then there is a bijective mapping g : E(H) — S such
that {(f+g)(z:):1<i<n}={2a+n+1+b+i:1<i<n}.

Proof Without loss of generality, we assume f(z;) =b+i,for1<i<
n.We construct the labeling g as follows:

Firstly, we orient the edges of H such that for each vertex z, the in-
degree is one and so is the out-degree. Then we assign the out-edge of z;
bya+n+1l—-iforl<i<n.

Assume the weight of the in-edge of z; is «;, then

(f+o)z) =flz:))+a+n+1l—i+oa;
=b+ita+n+l—i+o
=a+b+n+1+ao.



Andso, {(f+9g)(z:):1<i<n}=a+b+n+1+{o:1<i<n}
By {@;:1<1i < n}=_S. This completes the lemma. O

By Lemma 2.4, we have Lemmas 2.5 and 2.6.

Lemma 2.5 LetS={a+1, a+2,..,a+rn} and H be a 2r-regular
graph with V(H) = {1, z3, ..., zo}. Let f: V(H) = {b+1, b+2,..., b+n}
be a bijective mapping. Then there is a bijective mapping g : E(H) — S
such that {(f +g)(z:): 1<i<n}={r(Qe+rn+1)+b+i:1<i<n}.

Proof We decompose the 2r-regular graph H into r 2-factors Hy, Hp,
oy Hr. Let fi = f, for 2-factor H;, by Lemma 2.4, we may construct
a mapping g; from E(H;) to $; = {a + 1, a + 2,..., a + n} such that
{(fitg)(zi):1<i<n}={2a+n+1+b+i:1<i<n}. Let fi1=
fj+gj,for 2-factor H;,1, by Lemma 2.4, we may construct a mapping g;+1
from E(Hj11) to Sjp1 = {a+jn+1, a+jn+2,.., a+ (5 + 1)n} such
that {(fj+1+gj+1)(z:) : 1< i<n}={(G+1)Q2e+jn+n+1)+b+i:
1<i<n}. Let j=r—1and g=g1+g2+ ..+ gr, the conclusion of the
lemma holds. O

Lemma 2.6 LetS = {a+1, a+2,.., a+rn} and H be a 2r-regular graph
with V(H) = {z1, =3, ..., zn}. Let f be a vertex mapping on V(H) such
that f(z1) < f(z2) < --- < f(zn), and {f(z1), f(z2), -+, f(zn-1)} C
{b+1,b+2, .., b+n}. If f(zn) =2 2n + b. Then there is a bijective
mapping g : E(H) = S such that (f + g)(z:) # (f + g)(z;) for distinct i
and j, and (f+g)(z:) 2b+1+r(2a+mm+for 1 <i<n.

Proof Firstly, let fi(z:) = f(z;) for 1 <4 <n—1, and fi(z,) = b+,
where 1 <! < n, such that{f(z), f(z2), -**, f(za)} = {b+1,0+2,...,0+
n}. Using the way in Lemma 2.5, we have an edge mapping g on E(H)
such that {(fi+g)(z:):1<i<n}={rQa+rn+1)+b+i:1<i<n}.
Let (f1 U g)(z) = max{(f1 U g)(z1), (frUg)(z2), ---, (fUg)(zn)}, then
(Augz)—(frug)(zn) <n-1

Secondly, we only change f) () of vertex z,, for f(z,). By fi(zn)—b=
I <nand f(za)— b > 2n, then f(za) - fi(za) = n. For (fUg)(e) - (LU
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9)(zn) < n—1, we have (fUg)(zn) > (fiUg)(x:), for 1 <i<n—1. This
completes the lemma.[]

3. Proof of Theorem 1.1

Now we are ready for proving Theorem 1.1. We decompose the edge set
into three parts, and label each part by the above lemmas. After checking
the last labeling, we finish the proof.

Let X = {z1,%2,...,zn} and Y = {y1,¥2,...,Un}.- We construct an an-
timagic mapping of G by three steps.

Let ¢; = |E(G;)| for i =1,2,3.

Step 1 We label the edges of Gy by {1,2,...,e1} as doing in Lemma
2.1, and denote the labeling by f;. We assume that fi(y) = max{f1(y1),
fi(y2) -y fi(yn)}. Since A(G1) < 4r +1, by Lemma 2.1,

fily) < 2r(ey +2) +ey.

Step 2 We label edges of G2. Let fo be the mapping on E(G;). We
split this step by two cases.

Case 1 m = 2t + 1 (t > 1). Then E(G2) can be decomposed into a
2t-regular bipartite subgraph G} and a perfect matching M,. Let e} =
|E(G})|. By Lemma 2.2, there is a labeling f] from E(G}) to e; + {1, 2,
..., €3} such that for z € X, f}(z) is a constant 2te; + (el + 1)t, and for
yeY, f3(y) < 2te; + (e} + 2)t.

We may order the vertices of Y such that (fi+f3)(y1) < (fi+f3)(y2) <
o+ £ (fr + f})(yn). Now we label the edges of M> by labels e; + e} + 1,
...y €1 + €2. Define the mapping f2 by f2(yizj,) =e1+ed+ifor1 <i<n,
where {71, 72, ..., n} = {1,2,...,n}.

Let f2(E(G2)) = (f3 U f3)(E(G2)), we have

(v f2)(y) <(HhUuf)y) <---<(fiUfo)yn) S2r(e1+2)+ e
+2te; + (ed +2)t + €1 + eg,

and

{f2(z1), fo(x2), oo, fo(Tn)} = 2tey + (e3 + 1)t + &1 + €5 + {1,2,...,n}.



Case 2. m = 2t +4 (t > 0). Then E(G2) can be decomposed into a
2t-regular bipartite subgraph G} and four perfect matching M; for i = 1,
2, ..., 4. Let G2 = MyUM,UMs3 and G3 = My. Let e} = |E(G})| fori=1,
2, 3. By Lemma 2.2, there is a labeling f} from E(G}) to e1 +{1,2, ...,e}}
such that for z € X, f}(z) is a constant 2te; + (e + 1), and for y € Y,
f3(y) < 2tey + (e} +2)t. '

For edges of G2, we define a mapping from E(G3) to e; + €3 +{1, 2, ...,
3n}. We use the sum of e; + e} and the entries of a row of the matrix A
constructed in Lemma 2.3 to label the edges of a matching. The mapping
f2 is defined as follows.

For1<i<nandl<j<n,and if z;y; € M,

fzy) =e+e+ay;

if z;y; € Ma,
f(zy;) =e1 + €3 +az;

and if z;y; € M3,
fg(a:,-yj) =e; + eé + agi.

If nis odd, f3(z:) = 3(e1 +ed) + 282, f2(y:) < 3(exr +e€}) +9n — 3 for
1< i< n Ifniseven, f3(z;) = 3(er+es)+252, f2(y;) < 3(e1+e})+9n—3
for1<i<n—1,1<j<n. And f2(z,) =3(e1 +€}) +9n - 3.

We may order the vertices of Y such that

(4 +B)wm) S (i + £+ ) ) S - < (fu+ f2 + ) (yn)-
Now we label the edges of G3 by labels €; + e} + €2 + {1,2,...,n}. Define
the mapping f3 by f3(viz;,) = e1 +e2 —n+i for 1 < ¢ < n, where

{jlsj2’ "-9jn} = {1, 2, veey 'n}.
Let fo(E(G2)) = (f2 U f2U f3)(E(G2)), then

(i f2)(11) <(fivfa)(ye) < - <(frUfo)(yn) <2r(e1+2) + e
+2te; + (el +2)t +3(e1 +el) +9n — 3+ e + €.

For n is odd, we have

{f2(z1), fa(Z2), . falTn)} = 2ter + () + 1)t + 3(er +€}) + 22
+e1 + e+ €} +{1,2,...,n}.
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For n is even,let f3(z,) = e; + e} + €3 + |, where 1 < | < n.We have
the following

fo(zn) =2te; + (e} + 1)t +3(e1 +ed) +9n—3+ey +e} +ed +1,

and

{f2(z1), fa(Z2), s fo(Zn-1)} = 2ter + (e} + 1)t + 3(e1 + e3) + 2552

+e1 +e3+ed+{1,2,...,n}\ {I}.

Step 3 We label the edges of 2r-regular graph G3 by {e; +e2+1,e; +
ez + 2, ...,e1 + e2 + rn}, and denote the labeling by f3.

Since fi(z:;) =0, (fi + f2)(z;) = fa(z:) for 1 £ ¢ < n.

If m = 2t + 1, we assume that fao(z;) is the vertex labeling of z;for
1 < i < n,by Lemma 2.5,we may find a labeling f3 of E(G3) onto e; +e; +
{1,2,...,rn} such that {(foU fa)(z:) : 1 <i<n} ={r(2a+rn+1)+b+i:
1<i<n}, wherea =e; + ez and b = 2te; + (el + 1)t + e, +el.

If m = 2t + 4 and n is odd. Similarly,by Lemma 2.5,we can find a
labeling f3 of E(G3) onto ey + e2 + {1,2,...,7n} such that {(f2 U f3)(z:):
1<i<n}={r(2a+rm+1)+b+i:1<i< n}, where a =e; + e; and
b=2te; + (e} + 1)t + 3(e1 +eb) + 22 + e + e} + 3.

If m =2t+4 and n is even. Let b = 2te; +(ej+1)t+3(ey +e}) + 288 +
e1+e3+e? ,we have fo(z,) > 2n+b. By Lemma 2.6, we may find a labeling
f3 of E(G3) onto ey +e2+{1,2,...,7n} such that (foUfa)(z:) # (f2Uf3)(z;)
for distinct vertices of X,and (f2 U f3)(z:) 2 b+ 1+ 7(2a + rn + 1) for
1 <1< n,where a =e; +ej3.

Now we check fi U foU fs is an antimagic mapping of G.

For m = 2t + 1, we have the following.

(iU faU f3)(y) <2r(er +2) +ey +2te; + (ef + 2)t + ey + ey,

and

(AU faU fa)(z) =>2ter+(el+1)t+er+el+1
+2r(e1 + e2) +r2n + 7.

For m = 2t + 4, we have the following.

(LU f2U f3)(y) < 2r(er +2) +e1 + 2tey + (€3 + 2)t + 3(ey + e3)
+9n — 3+ e + e,
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and
(iU faU fa)(z) 2 2tes + (e} + 1)t + 3(ey + e3) + (9n — 6)/2
+e1+ed+ed+1+2r(er+ep) +rin+r.
Note that e; < 2rn +n/2, e; = mn, e} = 2nt, e3 =3n and 2 < m < n.
Clearly, we have (fiU foU fa)(y) < (fiUf2U f3)}(z). And G is antimagic.O0
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