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Abstract

Given a graph G, a function f : V(G) — {1,2, ..., k} is a k-ranking
of G if f(u)} = f(v) implies every u— v path contains a vertex w such
that f(w) > f(u). A k-ranking is minimal if the reduction of any
label greater than 1 violates the described ranking property. The
arank number of a graph, denoted ¥.(G), is the maximum k such
that G has a minimal k-ranking. We establish new properties for
minimal rankings and present new results for the arank number of a

cycle.
MSC Classification (Primary): 05C78

1 Introduction

A labeling f : V(G) — {1,2,...,k} is a k-ranking of a graph G if and only
if f(u) = f(v) implies that every u — v path contains a vertex w such that
f(w) > f(u). A k-ranking f is minimal if for all z € V(G) if f(v) < g(v)
for all rankings g. A ranking f has a drop vertez x if the labeling defined
by g(v) = f(v) when v # z and g(z) < f(z) is still a ranking. It was
shown by Jamison [10] that a ranking is minimal if and only if it contains
no drop vertices. As a result for any ranking f there exists a minimal k-
ranking h such that hA(v) < f(v) for every v € V(G). When the value of k
is unimportant, we will refer to a k-ranking simply as a ranking.
Following along the lines of the chromatic number, the rank number of a
graph x.(G) can be defined to be the smallest & such that G has a minimal
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k-ranking. The arank number of a graph ¥.(G) is defined to be the largest
k such that G has a minimal k-ranking,.

Early studies involving the rank number of a graph were sparked by
its numerous applications including designs for very large scale integration
(VLSI) layouts, Cholesky factorizations and scheduling of manufacturing
systems [5], [12], and [17]. Numerous papers have since followed [1], [2]-[4],
[7)-[11], and [13]-[16]. One of the first results involving minimal rankings
was by Bodlaender et al. where they determined the rank number of a path
Xr(Pn) = |logan] + 1. A ranking of this form can be obtained by labeling
the vertices {v; | 1 < i < n} with a4+ 1 where 2% is the highest power of
2 dividing ¢ and this ranking is unique when n is a power of 2 [1]. We will
refer to this ranking as the standard ranking of a path. Ghoshal, Laskar, and
Pillone were the first to investigate minimal rankings from a mathematical
standpoint. They obtained precise rank numbers for many classes of graphs
and also investigated the problem’s complexity and extremal properties (7],
(8], [13], and [14]. The rank number of a cycle was determined by Novotny,
Ortiz, and Narayan [15]. Hseih studied minimal k-rankings for starlike
graphs [9].

The determination of the arank number of a path was first studied
by Ghoshal, Laskar, and Pillone (8] and later by Kostyuk, Narayan, and
Williams [11]. The arank number of a cycles was first investigated by Fisher,
Kostyuk, and Narayan [6] where 9,(C;,) was determined for small values
of n. Recent works have included the presentation of new methods for
determining ¢.(G) as well as investigations of the extremal and complexity
properties of the arank number [8], {10], {11], [13], and [14]. In particular
Laskar and Pillone showed that the determination of ¥(G) for an arbitrary
graph is NP-complete [14].

A motivation for studying the arank number is that it gives a necessary
condition for deciding if a given ranking is minimal. That is if a ranking
contains a label greater than v,.(G) it clearly can not be minimal. Further-
more the determination of ¥,(G) for various families of graphs may serve
to refine algorithms for computing x,(G), since xr(G) < ¥.(G). However
despite numerous works, precise arank numbers are only known for a few
families of graphs, including split graphs, stars [7], and paths [11].

We next restate a result of Ghoshal, Laskar, Pillone, and Jamison in-
volving the arank number of a graph [7] and [10].

Lemma 1 Let H be an induced subgraph of a graph G. Then ¥.(H) <
¥r(G).

Even for relatively simple families of graphs, the computation of the
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arank number can be highly nontrivial. Kostyuk, Narayan, and Williams
determined the arank number of a path [11] which is restated below.

Theorem 2 Let P, be a path onn vertices. Then,(P,) = [log, (n + 1)+
|logy (n+ 1 — (2llganl-1)) |,

In this work we investigate the arank number of a cycle on n vertices
Cn. Despite many similarities between paths and cycles, the methods
used to calculate %,.(P,) will not apply to the calculation of %,(Cy). The
monotonicity property ¥r(Pm) < ¥r(Pn) when m < n, was instrumental
in the proof of Theorem 2 and followed directly from Lemma 1. However
since a small cycle is not an induced subgraph of a larger cycle a different
approach must be used to establish a similar monotonicity property for
cycles. However we prove that ¥,.(Cr,) < ¥r(C,) whenever m < n in The-
orem 10. Ironically despite the different methods that must be employed
we will show the arank numbers of paths and cycles of order n agree in
most cases, and differ by at most 1.

In addition to presenting new results involving arank numbers for cycles,
we present new results for minimal rankings in general. One of our main
results is that in any minimal ranking of a cycle, at least half of the labels
must be labeled 1 or 2. This gives an immediate necessary condition for
deciding whether or not a given ranking of a cycle is minimal.

2 Background

We use P, to denote the path vy, ve,...,v, and {f(v1), f(v2),..., f(va)) to
explicitly describe the labels in a ranking f. For a given ranking, S; will
represent the independent set of all vertices labeled z.

Definition 3 For a graph G and a set S C V(G) the reduction of G
denoted G% is a subgraph of G induced by V — S with an extra edge uv in
E(GY%) if there exists ¢ u — v path in G with all internal vertices belonging
to S.

Unless otherwise stated the set S will consist of vertices labeled 1. For
a ranking f of a graph G, flbc,,s will represent the ranking of G% where
flebs (v) = f(v) — 1 for all v € V(G) with f(v) > 1. Following the work of
Ghoshal, Laskar, and Pillone [14] we define the reduction of the reduction
of G. Using our notation we denote the reduction of G% as (G‘g);
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We next restate a result from (7] involving the reduction of a minimal
ranking.

Lemma 4 Let G be a graph and let f be a minimal ¥.(G)-ranking of G.
Then fIbG”s is a minimal ¥, (G%)-ranking of Gbs.

For example if (5,1, 2,3,2,1,4) is 2 minimal ranking of P; and S is the
set of vertices labeled 1, then (4,1,2,1, 3) is minimal ranking of P,b.

Definition 5 Given a graph G, an expansion of G is a graph G¥such
that (G*)% = G.

The reduction of a graph G is unique, but a graph may have many ex-
pansions. For example, the reduction of (1,2, 3,2, 1) is (1,2,1), but (1,2,1)
can be expanded to any of the following: (1,2,1,3,1,2), (2,1,3,1,2,1}, or
(1,2,1,3,1,2,1).

Lemma 6 Let G be a graph and let f be a minimal ranking of G. If v €
V(G) and f(v) = 2 then there exists a verter u adjacent to v such that

flu)=1.

It is not difficult to show that if P’ is an induced subpath of a path P,
then ¥, (P’) < ¥,.(P). We restate a lemma from [7] and [10} which shows
that this monotonicity property holds in general.

3 The arank number of a path

The arank number of a path 1,(P,) has been determined for all values of
n [11]. We review some of their results here, as they will be relevant for
our calculations for ¥,.(C,). We give ¥,(P,) and 9,(C,) for small values
of n in Table 1.

A recursive construction was given in [14] for creating a minimal (2m — 1)-
ranking of Po»_jand a minimal (2m — 2)-ranking of Pom_gm-2_;. It was
later shown that this construction in fact gives ,-rankings [11].

The case m =1 is trivial and when m = 2, a minimal 3-ranking of a P3
can be constructed simply by labeling the vertices (3, 1,2) . Starting with a
k-ranking of a path on w vertices, first delete the two end vertices. We next
join two copies of the resulting path with a P; with labels, (k — 1,k,k —1).
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Finally add one vertex to each end of the path and label one of these vertices
k + 1 and the other k 4 2. There are actually two families of paths: one
where the number of vertices if 2" — 1 and the other -2—"3;_1 —1. An
example showing the construction of a minimal 5-ranking of P; is shown in
Figure 1 (a). An example showing the construction of a minimal 6-ranking

of P;; is shown in Figure 1 (b).

(i) *—o—0
3 1 2

@ [ ] [ ]

1 1
i *——0—0—0—0
i
(") 123 2 1
{iv) *—o—0—0—90—0—90

§ 1.2 3 2 1 4

Figure 1 (a). Construction of a minimal 5-ranking from a minimal

3-ranking.
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6 1 2 1 3 4 3 1 2 1 5
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Figure 1. (b). Construction of a minimal 6-ranking from a minimal
4-ranking.
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It was conjectured in [14] that the rankings produced by this construc-
tion were in fact ¥,-rankings. The construction from [14] was proven in
[11) to give ¥,-rankings for P, wheren = 2™ —2™-2 _ 1 and n = 2™ — 1.
The monotonicity property from Lemma 1 can then be used to determine
¥r(Py) for all other values of n. We restate the following result established
in [11].

Theorem 7 (The arank number of P,)

(i) Yp(Ps) = 2m — 2 for all integers s > 2, 2™ —2™"2 - 1< s < 2™ - 2.
(ii) ¥r(P;) = 2m ~ 1 for all integers t > 2, 2™ —1 <t < 2m+1 _2m-1_3

These formulas can be simplified to form the formula given in Theorem
2, $r(Pn) = [logy (n +1)] + [logy (n+ 1 — (2l82I-1)) |

4 Minimal k-rankings of cycles

We continue with a lemma that will be used for constructing minimal -
rankings for cycles. It simply says that if we have two vertices in a graph
with distinct labels each greater than 1, then we may insert a vertex labeled
1 in between them, and the ranking property is preserved.

Lemma 8 Let f be ¢ minimal k-ranking of G with adjacent vertices u and
v where f(u) > 1, f(v) > 1, and f(u) # f(v). Let G¥ be the graph created
by subdividing (u,v) end inserting a vertex w between u and v. Then let
the ranking f# of G* be defined so that f#(w) =1 and f#(z) = f(z) for
all z # w. Then f# is a minimal k-ranking of G¥.

Proof. We first note that f# is a ranking since inserting a vertex
labeled 1 next to vertices with labels larger than 1, will not violate the
ranking property. The ranking is minimal since the label of 1 can not be
reduced, and all other labels were part of the minimal ranking f. =

Lemma 9 Let f be a minimal k-ranking of G. A graph G’ is created by
subdividing edges of G and adding a set of vertices S that dominates G'.
Then the labeling f' where f'(z) = f(z)+1 for allz € V(G) and f'(z) =1
for all z ¢ V(G) is a minimal (k + 1)-ranking of G'.
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Proof. None of the labels equal to 1 may be reduced. If label f/(u)
can be reduced then the label f(u) could have been reduced, which would
contradict the minimality of f/. =

4.1 A monotonicity property for the arank number of
cycles

One of the main tools used in determining ,(P,) was the monotonicity
property ¥(Pmn) < ¥r(F,) (8] and [11]. This follows from Lemma 1 and
the fact that P,, is an induced subgraph of P, whenever m < n. Of course
the same approach cannot be used for cycles since C,, is not an induced
subgraph of C, for any m < n. However we will show in Theorem 10 that
the monotonicity property ¥,(Cm) < ¥r(Crn) holds whenever m < n.

To establish this result we will start with a (minimal) %, = & ranking
of a cycle on m vertices and use it to create & minimal &’ > k ranking on
m+ 1 vertices. Since a ¥,-ranking has the maximum label over all minimal

rankings, it will follow that ¥,.(Cp) £ ¥r(Crnt1)-
Theorem 10 Let m <n. Then ¢¥.(Cm) < ¥, (Ch).

Proof. We will show that 9,.(Cy) < ¥r(Cny1) for all m > 3. Suppose
the prime factorization of m is 2/t where j is the number of factors of 2 in
m. There are three cases to consider: (i) 7 =0, (ii) j > 0 and t = 1, and

j>0andt>1.
Case (i) (j = 0). Since n is odd there must be two adjacent vertices

with both labels greater than 1. We can apply Lemma 8 to extend a minimal
k-ranking of Cp, to a minimal k-ranking for Cp4;. Clearly (G#)bs =G. The
expansion results in a minimal ranking of the supergraph G#.

Case (ii) (j > 0 and t = 1). We start with a minimal k-ranking of
Csyi,. We may assume that there is no pair of adjacent vertices with labels
larger than 1, or else we could apply Lemma 8 to extend the cycle length by
1. Starting with G we perform up to j reductions to obtain the graph G’.
If at any stage there are two adjacent vertices both with labels larger than
1 we apply Lemma 8. Note that after j reductions we will have a minimal
(k — j)-ranking of G’ and G’ will contain an odd number ¢ of vertices.
Hence it must be the case that after some j' reductions where 0 < j/ < j
the reduced graph G’ must contain a pair of adjacent vertices with labels
larger than 1.

Earlier we defined the term expansion, which is a graph G# whose
reduction is G. We will consider a particular expansion where V(G#)
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consists of the vertices of G along with another set of vertices S which
is a vertex dominating set of G. Starting with the graph Gj we perform
Jj'expansions of the graph Gj, obtaining graphs Gi, for 1 < i < j'. At each
stage 1 < ¢ < j/ — 1 we take G} and add a set of |V(G}) — 1| vertices each
labeled 1 that dominates the expanded graph Gi,.

This yields a minimal k-ranking of Cs;;41. An example with j' =1 is
illustrated in Figure 2.

1 2 1
S 3 1 2 1
1 1
) s
3 2 \
1 1 .
277 4 izl

minimal $-ranking of C, , 4-ranking of C,

Lem,né
/,v

1.2 1
2 /"\
1 1 5 N2
1
s Lemma9 | } !
3 2
1 - \ /
2 31\_,_// 1
1 2777 ¢
4-ranking of C; minimal 5-ranking of C,

Figure 2. Extenstion from a minimal 5-ranking of C4 to a minimal
5-ranking of Cis.

Case (iii) (7 > 0 and ¢t > 1). If G or some reduction of G has two
adjacent vertices with labels greater than 1, then we revert back to cases
(i) or (ii). Next we consider case (ii), where the cycle length equals 27. If
some reduction of G has a pair of vertices each with labels larger than 1,
then we can resort to one of our two previous cases. If no reduction of G
has a pair of vertices with labels larger than 1, then G must have the form
where there are vertices labeled 1 in every other position along the cycle
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and after additional reduction(s) the ranking has labels equal to 1 in every
other position. This ranking corresponds to the standard ranking of a path.
We note that when n = 27 the last vertex has label j 4+ 1. Connecting the
two end vertices gives a minimal (j + 1)-ranking of Cs;.

In our previous cases we inserted a new vertex into a ranking of a cycle
to create a larger cycle and a corresponding ranking. In this case we replace
this minimal 4-ranking with a new minimal ranking from scratch that has
a larger k. Here we use the construction described in Figure 1 to build
a minimal Y,-ranking of Cy;_;. We then insert a with label 1, resulting
in a minimal .-ranking of Cy; with the same largest label. This ranking
contains two adjacent vertices both labeled with integers greater than 1,
so we may insert a vertex labeled 1 between them to obtain a minimal

k-ranking of Cy; where k = 9¥,(Pr) 2 Xr(Pn).

(a) (b)

Figure 3. Replacing a minimal x,-ranking of Cy; with a minimal
Yr-ranking of Cy;

(]
We note that as part of the above theorem we established that 1, (Cpt1)

- wr(Cm) S 1.
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4.2 Frequency and location of vertices with the same
label

We next restate a result from [17] involving the maximum distance between
two vertices with the same label.

Lemma 11 If f is a minimal ranking of P, then any subpath of order
2™+1 has a vertez v such that f(v) = m.

Proof. The proof is by induction on m. The case where m = 1 was
shown in [14]. The inductive step follows using reduction. =

The case of m = 1 states that the maximum distance between two
vertices labeled 1 is 4, and the case of m = 2 states that the maximum
distance between two vertices labeled 2 is 8, etc.

We will use S; to denote the set of vertices labeled i in a ranking. We

next recall a Lemma from (8].

Lemma 12 In any minimal k-ranking |S1| > |S2| > -+ > |Sk|-

We next show that at least half of the labels in a minimal ranking of a
cycle are either 1 or 2.

Theorem 13 For any minimal ranking of Cy, |S1U S2| > 5.

Proof. Let V(C,) = {v1,v2,...,vn} and E(Cp) = {v1v2, v2v3, ..., vp1 }.
We use the vertices labeled 2 to partition the vertices of C,, into parts
F1,F,, ..., Fy in the following manner. Each vertex labeled 2 is the last
vertex in some part F;, 1 <1 < M — 1. The final part Fjs consists of the
remaining vertices. This partition is illustrated in Figure 4.
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Figure 4. An example of a partition of C, with M = 5.

By Lemma 11, |V(F;)| < 8 for all i =2,3,..., M. We consider different
cases depending on the cardinality of the segment F;. For completeness we
include the details.

e Case (i) |[F;| = 2. Since F; contains two vertices one of which is
labeled 2, the result is immediate.

e Case (ii) |F;| = 3 or 4. By Lemma 11 F; must contain at least one
vertex labeled 1. The last vertex in the segment has label 2. Hence

[V(F:) N (S U Sy)| > LRI,

e Case (iii) |F;] = 5. By Lemma 11 |F;N S| > 1 and the vertex
labeled 1 can not be the first or fourth vertex of F;. Assume without
loss of generality, the second vertex is labeled 1. We use a,b, and ¢
to denote the first, third and fourth vertices of F; respectively. If
f(c) > f(b), then f(b) can be set to 2 and f still is a ranking; thus
f(c) < f(b), which implies f(c) can only equal 1 if the ranking f is
minimal. Hence|F; N (S1US2)| =23 > 1%1

o Case (iv) 6 < | ‘,| < 8. If |[F;NS1| < |F;| — 4 then F; contains at
least four vertices with labels higher than 2. Then f[’g. contains
labels for four consecutive vertices that are all greater than 1. By
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Lemma 11 f|b5'1 can not be a minimal ranking, a contradiction. Hence
IFin 81| > |Fi| - 4and [F;N(S1US)| = [V(F)| -3 2 5

Hence |V (F;) N (S; U Sz)| > MAEN for all F and |[S1 US| > 2. m

It was shown in [11] that for any minimal k-ranking of a path it holds
that |.S; U Sp| > 4. The bound for cycles is almost the same, but here there
is the possibility of equality. We give an example of a minimal ranking of
Cip in the Figure 5 that shows the inequality presented in Theorem 13 is
tight.

Figure 5. A minimal ranking of Cio with [S| + [Sz| = 2

5 The arank number of a cycle

We next give results involving the arank number of a cycle. We begin with
some small cases.

Lemma 14 We have the following: ¥(C3) = 3; v(Cy) = 3; ¥(Cs) = 4;
Y(Cs) =4; Y(Cr) =5 forT<n <9, and Y(C,) =6 for 10 <n < 13.

Proof. We prove each case separately:

¢ ¥(C3) = 3. A minimal 3-ranking is 1 — 2 — 3.

¢ /(C4) = 3. A minimal 3-ranking can be constructed using the labeling
1 -2 -3 — 1. Note that if distinct labels are used one the vertex that is
not adjacent to a vertex labeled 1 can have its label reduced to a 1. Hence

any 4-ranking is not minimal.



¢ ¥(Cs) = 4. A minimal 4-ranking can be constructed using the labeling
4—1—-2—1-—3. Assume 9(Cs) > 5. Then each of the labels must have a
different label. Hence one of the vertices not adjacent to a vertex labeled
1 can have its label reduced to a 1. This any 5-ranking of C5 cannot be
minimal.

¢ ¢¥(Cs) = 4. The labeling4—-1—-2-1-3-1 of Cg is a minimal
4-ranking. Assume (Cs) > 5. Then by Lemma 12 we must have |S;| = 2,
and |S;| = 1 for all 2 < i < 5. Since the labels 2,3,4, and 5 are only used
once the vertex that is not adjacent to a vertex labeled 1, can have its label
reduced to a 1. Hence any 5-ranking of Cs cannot be minimal.

¢ ¥(C7) = 5. The labeling 5—1—-2—3 ~2—~1—4 of C; is a minimal
5-ranking. Suppose ¥, (C7) > 6. Then reducing twice would result in a
minimal k-ranking of C; where k > 4 and ¢ < 3 which is clearly impossible.

¢ ¥(Cs) = ¥(Cg) = 5. We first show that ¥(Cy) = 5. The labeling
5-1-2-3-2-1-4 —1-2 of Cg is 2 minimal 5-ranking. Suppose
% (Cg) > 6. Then reducing twice would result in a minimal k-ranking of
C; where k > 4 and t < 4 which is clearly impossible. We can then apply
Lemma 10 to conclude that %(Cs) = 5.

¢ ¥(C10) = 6. A minimal 6-ranking of Cy is given in Figure 5. If
¥ (C10) > 7 then reducing twice would give us a minimal k-ranking of C
where & > 5 and t < 5 which is impossible.

¢ ¥(C11) = 6. We can obtain & minimal 6-ranking of C;; by joining
the first and last vertices of Py; with its ¢-ranking: 6 -1 —-2—-1-3 —
4-3-1-2-1-5. Suppose ¥, (Cy1) > 7. Then reducing twice would
result in a minimal k-ranking of C; where k > 5 and ¢ < 5 which is clearly
impossible.

¢ ¥(Ci2) = ¥(C13) = 6. By Lemma 10 we have (C13) > ¥(Cj2) >
¥(C11) = 6. Assume (Cj3) > 7. Then there would exist a minimal k-
ranking of Cj3 with k > 7. Reducing twice would result in a minimal
k-ranking of C; where & > 5 and t < 6. However this is a contradiction
since we have ¥(C7) = 5 and Lemma 10. Hence ¥(C13) < 6 and finally
6 < ¥(C12) < Y(C13) < 6 gives the desired result. a

The combination of Lemmas 19-24 will give precise values for most
values of n, and differs by one only in the following two cases: (i) when n
is slightly less than a power of 2 and (ii) when = is slightly less than the
average of two consecutive powers of 2.

‘We next present a series of three ‘wrapping lemmas’ which are used to
convert minimal rankings of paths to minimal rankings of cycles, by joining
the end vertices. Each of the wrapping lemmas will use y,.-ranking of a
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path to give a lower bound for the arank number of a cycle.

5.1 Lower bounds and the wrapping lemmas

Lemma 15 (Wrapping Lemma #1) Let n = 2™ — 1. Then ¢.(Cp)
>2m-—-1.

Proof. We can use the construction described in Figure 1(a) to build a
minimal k-ranking of Pom_; that has the form shown in the Figure 6. We
can then connect the two end vertices to form a labeling of a cycle. We
note that this is a ranking since the labeling of the path was a ranking and
the two largest labels are on the end vertices. To see that this ranking is
minimal note that if the ranking of the cycle were to contain a drop vertex
v then v would have been a drop vertex of the path.

*— —0— o200 —0—0© 94—
2m-1 1 2 3 3 2 1 2m-2
Figure 6. Constructing a (2m — 1)-ranking of Com_;

The two end vertices in the graph in Figure 6 can then joined. The
labeling forms a minimal (2m — 2)-ranking of C,,. m

Lemma 16 (Wrapping Lemma #2) Let n = 2™ — 2™~2 — 1. Then
"pr(cn) >2m-—2.

Proof. We can use the construction described in Figure 1 (b) to build
the minimal k-ranking of Pym_gm-2_; shown in Figure 7. We can then
connect the two end vertices to form a labeling of a cycle. We note that
this is a ranking since the labeling of the path was a ranking and the two
largest labels are on the end vertices. To see that this ranking is minimal
note that if the ranking of the cycle were to contain a drop vertex v then v
would have been a drop vertex of the path.

& s 4 b o ——— @
2m2 1 2 1 1 2 1 2m3

Figure 7. Constructing a (2m — 2)-ranking of Com _gm-2_,

The two end vertices in the graph in Figure 7 can then joined. The
labeling forms a minimal (2m — 2)-ranking of C,. ®
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Lemma 17 (Wrapping Lemma #3) Let n = 2™ — 2™~2 — 2. Then
Pr(Cn) 2 2m — 2.

Proof. In Figure 6 we have a minimal k-ranking of Pym_gm-2_3. For
the sake of clarity this figure is shown again in Figure 8 (a). We can
then rearrange the labels on the right side to form the labeling shown in
Figure 8 (b). This is done by first interchanging the order of the first two
vertices appearing on the left, and then removing the second vertex from
the right, and finally adding an edge between the vertex on the right end
and its neighbor. As a result, we have one less vertex and have a ranking of
Py _gm-2_o where the only vertex that can be reduced and still maintain
the ranking property is the end vertex labeled 2m—3. Then the endpoints of
the path may be joined to form a minimal (2m — 2)-ranking of Com _gm-2_5.

a ® r—0—0— b @ o—0
® 2m2 1 2 1 - 1 2 1 2m3

(b) & @ —0— u -—r——0
1 2m2 2 1 1 2 2m3

Figure 8. Constructing a (2m — 2)-ranking of Com_gm-2_»

The two end vertices in the graph in Figure 7 (b) can then joined. The
labeling forms a minimal (2m — 2)-ranking of C,,. =

6 Arank numbers for larger cycles

The results of this section give the arank number of a cycle for certain values
of n and determine the arank number within 1 for remaining values of n.
Most of the proofs follow by induction and tie together two of the main
ideas presented in earlier sections. The first is the use of the reduction
operation. The second is Theorem 13 which states that at least half of
the labels in a minimal ranking of a cycle are labeled either 1 or 2. The
combination of these two tools shows that applying the reduction operation
twice reduces the size of the cycle by approximately one half, and largest
label in the ranking drops by 2.

Before we get to the main lemmas of this section, we give an example
that uses the techniques described above.

Example 18 We show that . (C22) =8. By Lemma 17 we have ¢, (C22) >
8. Suppose ¥, (Ca2) > 9. Then we have a minimal k-ranking of Coo where
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k > 9. Since at least half of the vertices are labeled 1 or 2 by Theorem 13,
reducing this ranking twice results in a k-ranking of C; where k > 7 and
t < 11. However this is a contradiction since Lemma 14 and Theorem 10
tmply ¥, (C11) = 6 and ¥, (C;) < 6.

Lemma 19 Letm > 4. If2m 422 <n < 2m4+2m-1_3 then vy, (C,) =
2m —1 or 2m.

Proof. We proceed by induction on m. For the base case we show
that 7 < ¥y (Ca0) and %, (Ca21) < 8. By Lemma 10 we have v, (Cyo) <
Y, (Ca1). For the first lower we note that 7 = ¥, (P1g) < ¥, (Cs). To
show 9. (C21) < 8, we assume that ¥, (C21) > 9 and seek a contradiction.
Reducing twice would result in a minimal k-ranking of C; where k > 7 and
t < 10. This is impossible since ¥, (Cjo) = 6 as shown in Lemma 14. Next
we let m > 5 and assume our hypothesis is true for m. Let 2™ +2™m-2 < n <
2™ 4+2m=1_3. Then ¥, (Cn) = ¥r (Pa—1) = 2m — 1. For the upper bound,
we assume Yy (Comyom-1_3) > 2m + 1 and seek a contradiction. Then
there exists a minimal k-ranking f of Com gm-1_3 for some k > 2m + 1.

Then the ranking (fg); is a minimal k-ranking of C; where k > 2m — 1
and ¢t < 4 (2™ +2m-1 - 3), which is impossible, sirice Y, (Com-149m-2_5)
=2m-2. =

Lemma 20 Let m >4 andn =2m —2m"2_2 or 2™ —2m~2 _ 1. Then
¥ (Cn) = 2m — 2.

Proof. We proceed by induction on m. We first establish the base case.
By Lemma 14 we have 9, (C10) = ¥r (C11) = 6. Then let m > 5. Assume
our hypothesis holds for m. By Lemmas 16 and 17 we have v, (C,) >
2m — 2. For the upper bound we assume that %, (Cp) > 2m — 1 and
seek a contradiction. Then there exists a minimal k-ranking of C,, where
k > 2m — 1. Then reducing twice gives a minimal k-ranking of C; where k
>2m-3=2(m—-1)—landt< |} (2™ -2m"2-1)| <om-1_2m=3_1
n

Lemma 21 Letm > 4. If2™-2m"3 <n < 2™ -2, then ¢, (Cp) = 2m—2
or2m—1.

Proof. For the base case note that 9, (Ci4) = ¥.(Pi3) = 6. If
¥y (C14) = 8 then reducing twice would give us a minimal k-ranking of C,
where k > 6 and t < 7 which is impossible since we know ¥, (C7) = 5

28



by Lemma 14 .We next show that %, (Cr) < 2m using induction. Assume
Yy (Cam_2) 2 2m. Then there exists a minimal k-ranking f where k > 2m.
Then (fg);. is & minimal k-ranking of C:, k > 2m — 2 and t < 2™~ — 1,
This is impossible since ¥, (Com-1_1) = 2m - 3.

Next we establish the lower bound. By Lemma 2 we have that ¥, (Pam_3)
= 2m — 2. Since Com_3 contains Pom_3 as an induced subgraph, it follows
by Lemma 1 that ¥.(Com_2) 2 ¥r(Pom_gm-s) =2m —2. m

Lemma 22 Let m >4 and 2™ —2m"2_2<n < 2™ —2m=3 _ 1. Then
W (C) = 2m — 2.

Proof. We showed that 9, (Com _gm-2_3) = 2m — 2 in Lemma 20. We
next show that 9, (Com _gm-3_;) = 2m—2. Assume that ¥, (Com_gm-3_1) >
2m — 1. Then there exists a minimal k-ranking f of Cym_gm-3s_; for
some k > 2m — 1. Then the ranking ( fg); is a minimal k-ranking of
C; where k > 2m — 3 and t < 2™~! —2™~4 — 1, which is impossible, since
¥r (Cam-1_gm-4_y) = 2m — 4. Finally, application of Theorem 10 gives the
arank numbers for all intermediate values. =

Lemma 23 Ifn=2™ -1, then ¢, (Cpn) =2m — 1.

Proof. The proof is by induction on m starting with m = 3. The
base case follows from Lemma 14. Let n = 2™ — 1. Next we show the
upper bound ¥, (Cr) < 2m — 1. Assume ¥, (Cr) > 2m. Then there exists
a minimal k-ranking f of C, for some k£ > 2m. Then the ranking ( fg):.
is 2 minimal k-ranking of C, where k > 2m — 2 and t < 2™~! — 1. But
since t must be an integer we have £ < 2™~! — 1. This is impossible since
Yr (sz—l_l) =2m—-3. n

Lemma 24 Letm > 4. If2™ -1<n < 2™ 4+ 2m-2 _ 1, then ¢, (C,) =
2m —1.

Proof. The proof is by induction on m starting with m = 4. By
Lemma 23, we have ¢, (Com_1) = 2m — 1. Then we will show that
Yr (Comygm-2_1) = 2m — 1. Let n = 2™ +2™~2 _ 1. Assume ¥, (Cy) >
2m. Then there exists a minimal k-ranking f of C, for some k > 2m.
Then the ranking ( fg)bs is a minimal k-ranking of C; where k£ > 2m and
t <2m~142m-3_1 which is impossible since ¥, (Cam-149m-3_;) = 2m—3.
Finally, application of Theorem 10 gives the arank numbers for all inter-
mediate values. m
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A comparison of the results in this paper involving the arank number of
a cycle and the known results involving the arank number of a path show
that the arank numbers for the two families are identical in some cases and
differ by at most one in the remaining cases. We formally state their close
relationship in the following corollary.

Corollary 25 For any n > 3 we have ¢¥.(Pn) = ¥(Cr) or ¥,.(Cn) <
Yr(Pn) +1.

7 Conclusion

It would be an interesting problem to close the bounds given in Lemmas
19 and 21. Our conjecture is that the lower bounds hold.
We conclude by posing the following problem.

Problem 26 Characterize minimal rankings of paths and cycles.

Acknowledgements. The author is very grateful for the suggestions and
corrections of the referees. In particular their careful reading of the paper
and their valuable comments led to the (much improved) present proof of
Theorem 10.
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