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Abstract. Let H be a simple graph with n vertices and G be a sequence
of n rooted graphs Gi, Gy, ..., G,. Godsil and McKay (Bull. Austral.
Math. Soc. 18 (1978) 21-28) defined the rooted product H(G), of H by G
by identifying the root of G; with the ¢th vertex of H. In this paper we
calculate the Wiener index, that is the sum of distances between all pairs
of vertices of a (connected) graph, of H(G) in terms of Wiener indices of
the graphs G;, ¢ = 1,2,...,k. As an application of our method we find a
recursive relation to compute the Wiener index of Generalized Bethe trees.
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1 Introduction.

Let G be a finite, undirected and connected graph. The vertex and edge
sets of a graph G are denoted by V(G) and E(G). For vertices u and v,
the standard distance of G, that is the number of edges on a shortest path
connecting these vertices in G, is denoted by d(u,v). The Wiener index is
a graph invariant based on distances in a graph. It is denoted by W(G)
and is defined as the sum of distances between all pairs of vertices in G:

W@ = Y duv).

{z,0}CV(G)

The name Wiener index for the quantity defined in above equation is usual
in chemical literature, since Harold Wiener [5], in 1947, seemed to be the
first to consider it.
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Figure 1: H(Gy,G2,G3,G4,Gs)

One of the problems regarding to the Wiener index is finding methods
so that the Wiener index of various graphs can be efficiently calculated.
Finding simple conditions that provide the coincidence of the Wiener index
for non isomorphic graphs is of interest both in theoretical investigations
and in applications.

In this paper we consider an operation on simple graphs introduced
by C. Godsil and B. Mckay [1}, namely rooted product. Suppose that H
is a labelled graph on k vertices and G is a sequence of k rooted graphs
G1,Gs,...,Gr. The graph obtained by identifying the root of G; with
the ith vertex of H is called the rooted product of H by G and is de-
noted by H(G). To represent an application of this operation, we consider
some special cases for the graphs G; and H, and calculate Wiener index of
H(G,,Ga,...,G) in terms of Wiener indices of Gy, i = 1,2,...,k.

Recall that a tree is a connected acyclic graph. In a tree, any vertex
can be chosen as the root vertex. The level of a vertex on a tree is one
more than its distance from the root vertex. Suppose T is an unweighted
rooted tree such that its vertices at the same level have equal degree. We
agree that the root vertex is at level 1 and that T has k levels. In [4] Rojo
and Robbiano, called such a tree generalized Bethe tree. They denoted the
class of generalized Bethe trees of k levels by Bi. Let H be the star graph
of order n+1, P; be the graph of order 1 and B, be the generalized Bethe
tree of k — 1 levels. By our notation SBx = Sp4+1(P1, pk_l,ﬁk_l, cery ﬁk—l)

n
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Figure 2: A generalized Bethe tree of k levels 8, = H( Py, Br—1,Bk—1, Br—1),
where H is the star of order 4

is a generalized Bethe tree of & levels, B such that degree of root vertex is
n. Therefore the class of generalized Bethe trees of its k levels lies in the
class defined above. Gutman and coauthors in [2, 3] calculated the Wiener
indices of balanced trees in which the vertex degrees in all of levels of tree
are equal (Bethe trees) as molecular graph of dendrimers. As a corollary
of our results we calculate Wiener index of generalized Bethe trees.

2 Main results

In this section first we obtain Wiener index of H(G,,G3,...,Gg) in term
Wiener indices of G;,1 = 1,2,...,k. Let z; € G;, 1 < i < k, be the root ver-
tex of G; and V(H) = {z;,z2,...,zx}. Throughout the paper n; denotes
the number of vertices of G;, fi; = 2;5:1_#1. ng, di = Y, ev(c,) AUTi, )
and dy(z;,z;) denotes the distance between vertices z; and z; in the
graph H. In the following Theorem we compute the Wiener index of
H(G1,Gs,...,Gr).

Theorem 1. With the above notation we have

k k . k
WHG) =S W(G)+Y (ﬁ,-d,- +3 3 njdH(zi,zj)).
=1

i=1 J=1is
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Proof: Let u; € G; and u; € G;, 1 < 4,5 < k. Since we have
d(u‘i,uj) = d(uia xi) + dH(xirxj) + d($j,Uj),

the summation of distance between vertices of G; and u; € G; is
n

zd(uiyuj) = Z (d(ui,xi) + dy(zi, z;) + d(z;, Uj))
i=1 i=1

= d; + nidg(zi, z;) + nid(z5, u5).

Thus if d(G;, G;) is the summation of distances between all of the vertices
of G; and Gj, then

ny

d(Gi,G;) = Y. (di + nidy (i, 75) + nid(xj,uj))
=1
= n,-d,- + n,-n]-dy(m.-,xj) + n,-d,-.

So the summation of distances between vertices of G; and vertices of G;,
i=12,...,i—1,i+1,...,k, can be computed as follows

k k
Z d(Gi, Gj) = Z (njd,- + n,-njdy(x,-,xj) + nidj)

J=1,j#i J=1,j#i
k k
= fd;+n; z njdy(a:,-,a:,-) +n; Z dj.
j=1,j5#i j=1,j#i

Therefore the summation of distances between verticesof G;,7 = 1,2,...,k,
and vertices of G, j =1,2,...,i —1,i+1,...,k, can be computed as

k k k k k
Z(ﬁidi+ni Z nidu (i, T;)+n; Z dj)=2(2ﬁidi+ni z njdH(zi,mj)).
i=1 j=1,5#¢ j=1,5#4 i=1 J=1,j#i

Now we can compute the Wiener index of K using its definition:

W(H(G) = Yo dv)

{u,v}CV(H(G))

k 1 k
= Z( Z d(u,v)+§ Z d(Gi,Gj))

i=1 M {u,w}CV(G) Jj=1,j#i
k k e &
= Y wey+Y (ﬁ,-d,- +3 > n,.d,,(z,-,x,-)).
i=1 i=1 j=1,5#
This proves the Theorem. |
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Figure 3: S¢(Py,C3, C3, C3,C3, Cs)

Now we consider particular cases for G; and H to obtain well known
graphs and calculate Wiener indices of H(G,Ga,...,Gk) in terms of Wiener
indices of G;, i = 1,2,...,k.

Example 1. Let H be the star graph of order k + 1, G; be the graph of
order 1 and G;, i = 2,3,...,k + 1, be the cycle of order n . We will find

the Wiener index of K := Sk4+1(P1,CnyCh,...,Cy) (see Figure 3) in terms
No— —

k
of n and k. We have W(P,) =d; =0,d; = %W(Cn), du(zy,z;) = 1 and
dy(zi,z;) = 2, 4,5 =2,3,...,k+ 1. Using Theorem 1, we can calculate

Wiener index of this graph as follows

k+1 k+1 n: k
W(K) = Y WG)+3Y, (ﬁ,-df +5 > njdg(:c.»,a:j))
i=1 i=1 j=1,3#4
1 1 k+1
= kW(Cn)+Y. 5 doon (1)
i=l  j=1,5#i
k+1 2 n k+1
+z ((1 + (k- l)n)—W(C,.) + 3 Z njdH(z,-,:z:j))
i=2 n j=1,5584
kn 2 kn k!
= kW(Ca)+ 5 + k(1 +(k~ 1)n)=W(Cp) + - > (+2(k-1)n)
J=1,j%i
= k(k+ %)W(c,,) + k(k — 1)n? + kn (2
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Thus, since

n? -
- if nis even
W(Cp) = ,
=1 i noisodd,
8
from equation (2) we have
g((?k —1)n + (8k — 6)n® + Sn) if n is even

W(K) =
g ((2k = 1)n® + (8k — 6)n? — (2k — 9)n — 2) if n is odd.

3 Wiener index of generalized Bethe tree

Suppose Bx is the generalized Bethe tree with & levels and my vertices.
Suppose di_;+; is the degree of vertices in level 7,1 =1,2,...,k. If

[ & if i=k
“FV di-1 if i#k,

then k k
mk=1+ek+ekek_1+-~-+ekek_1--~e2=l+ZHej.

=2 j=i
Now if d;, denotes the summation of distances between root vertex in
Bi and all vertices in the tree, then

k k
d = ex+2erer—_1+3erer—_1ex—o+ - '+(k—1)ekek_1 cee@g = Z(k—j+1) H e;.

i=2 J=i
Using above notation we can calculate the Wiener index of 8. For this
purpose (B, must be considered as a rooted product of some graphs.

Corollary 1. Let §; be the generalized Bethe tree with k levels. Then

W(Be) = e (W(ﬂk_l) + (i = mie—t)dpr — mi_l) + ma(ms — 1).

Proof: Suppose H is the star graph of order e¢; + 1, G; = P, and for
i=2,3,...,ex + 1, G; is equal to Sx_1, and one of the rooted subtree of
B such that it’s root vertex is a vertex in level £ — 1 of 8;. Then S
H(Pl,p‘k_l,ﬂk_l, ‘e ’ﬂk‘l,)' With the notations of Theorem 1, W(G;)

er+1
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Figure 4: A generalized Bethe tree with 6 level.

0, du(zi,z;) =2, fori,j = 2,3,...,ex + 1 and 7; = (m; — mi-1). So by
Theorem 1

k
W) = ZW(GHZ(M > nidu(enss))

i=1 j=1,5¢i
ex+1 ex+1 er+1
= > WG+ Y (mx—me-1)di— 1+Z > me-1+
i=2 =2 i=l j=1,j#¢
ex+1 - ex+1
> (T 3 )
i=2 J=1,57#i
- (W(ﬂk_l) + (e —mk-l)dk_l) + exmiy +
ex+1
Mg—1 Z (1 + (ex — l)mk-l)
1=2

= ek (W(ﬁk—1) + (my — mk—l)dk—l) + exmy—1 + ex(ex — 1ym2_,

= ek (W(ﬂk 1) + (Mg — mi—1)dk—1 —mi_, ) + mg(my — 1).
Example 2. Let G be a tree of type (s as shown in Figure 4. For this
tree we have e; = 1,e3 = 3,e4 = 2,65 = 1,e6 = 2. So by (1) we have

me=1+e =2
m3=1+e3+ezea =7
mg =1+e; +eqe3 +egezex =15
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ms = 1+ e5 + eseq + eseqes + eseqeser = 16
me = 1 + eg + eges + egesey + egeseqses + egeseqezen = 33.
Also by (2) we have
d2 =€ = 1
d3 = e3 +2e3e2 =9
dy = eq + 2eqe3 + 3egezen = 32
ds = e5 + 2ese4 + 3egeses + desesezen = 47,
Now let W; = W(B;), by using of Corollary 1 we can calculate Wiener
index of fGs.
W, =0
W =10+(2-1)-1)+22-2=1
Wa=31+(7T-2)1-4)+7*-7=48
Wa =2(48 + (15 — 7)9 — 49) + 15% — 15 = 352
W5 = 1(352 + (16 — 15)32 — 152) + 162 — 16 = 399
We = W(Bs) = 2(399 + (33 — 16)47 — 162) + 332 — 33 = 2940.
Using this recursive process we can compute the Wiener index of generalized
Bethe trees of arbitrary levels.
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