Total chromatic number of folded hypercubes *

Meirun Chen *! Xiaofeng Guo ® Shaohui Zhai ¢

¢ Department of Mathematics and Physics, Xiamen University of Technology,
Xiamen Fujian 361024, China
b School of Mathematical Sciences, Xiamen University,

Xiamen Fujian 361005, China

Abstract

A total coloring of a simple graph G is a coloring of both the edges
and the vertices. A total coloring is proper if no two adjacent or incident
elements receive the same color. The minimum number of colors required
for a proper total coloring of G is called the total chromatic number of G
and denoted by x:(G). The Total Coloring Conjecture (TCC) states that
for every simple graph G, A(G) +1 < x:(G) < A(G) +2. G is called Type
1 (resp. Type 2) if x¢(G) = A(G) + 1 (resp. x:(G) = A(G) + 2). In this
paper, we prove that the folded hypercubes FQ, is of Type 1 when n > 4.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. Ter-
minology and notation not defined here are followed [3]. Let G be a graph,
we use V(G), E(G) and A(G) (or simply V, E and A) to denote the vertex
set, the edge set and the maximum degree of G, respectively.

A k-total coloring h : VUE — {1,2,.-- ,k} of a graph G = (V, E)
is an assignment of k colors to both the edges and the vertices of G. The
total coloring k is called a proper k-total coloring if no incident or adjacent
elements (vertices or edges) receive the same color. The total chromatic
number of G, x:(G), is the least integer k for which G admits a proper
k-total coloring. Behzad (1] and Vizing [11] proposed independently the
following famous conjecture, which is known as the Total Coloring Conjec-
ture (TCC).

Conjecture 1. For any graph G, A(G)+1 < x:(G) < A(G)+2. O

The lower bound of this conjecture is obvious, the upper bound remains
to be proved. If G satisfies TCC and x:(G) = A(G) + 1 (resp. x:(G) =
A(G) + 2), then G is of Type 1 (resp. Type 2).

The n-dimensional hypercube @, is an undirected graph. Any vertex
z € V(Qy) is denoted by a 0-1 sequence z1z2:- -z, of length n. Hence,
there are 2™ vertices in Q,. Two vertices z,y € V(Q5) are joined by an edge
if and only if z and y differ at exactly one position. If x = zy---z;-- - z,,
denote the vertex z - -+ T; - - - T, by T+ €%, where F; = 1 —z;. Then the set
of edges incident with z is {(z,z +€.): i € {1,2,---,n}}. For any vertex
T=21Z3:Tp € V(Qr),let z.-0=2125---2,0 and z-1 = 2125 - - - 2, 1
denote the vertices in V(Qn+1) corresponding to z in V(Q5,).

As a variant of the hypercube, the n-dimensional folded hypercube
FQ,,, proposed first by El-Amawy and Latifi [4], is a graph obtained from
the hypercube @, by adding an edge, called a complementary edge, be-
tween any two vertices ¢ = z123+ -z, and T = T Tp--+T,. Therefore,
FQ, has 2"~! more edges than a Q,. It is easy to know that the comple-
mentary edges forms a perfect matching of FQn. It has been shown that
FQ, is an (n + 1)-regular graph. The properties of folded hypercube was
studied extensively. The pancyclicity and fault-free cycles in faulty folded

266



hypercubes were studied in [10] and [5], respectively. The fault-tolerance
of folded hypercubes were analyzed in [6-8]. The Hamilton-connectivity of
folded hypercubes was showed in [9].

In this paper, we investigate the total chromatic number of the folded
hypercubes FQ,. If n = 2 (resp. n = 3) then FQ; (resp. FQ3) is
isomorphic to the complete graph Ky (resp. the complete bipartite graph
Kjy,4). The total chromatic number of K4 and K44 have been determined,
see [13] and [2] respectively. So we only need to consider the case for n > 4.
In this work, we obtain that x;(FQr) = A(FQ,)+1 = n+2 which attains
the lower bound of TCC. We get the result by the following method: first,
color the complementary edges of the folded hypercube with one color;
second, decompose the hypercube into 2"~ 3-dimensional cubes, color the
edges and the vertices of each of these 3-dimensional cubes properly by four
colors such that any two adjacent vertices in folded hypercube are colored
differently; third, the uncolored edges form an n— 3 regular bipartite graph,
by Kénig’s theorem, it can be colored by n — 3 colors.

2 Main Result

In this section, we would like to decompose the hypercube into 2"~3 3-
dimensional cubes first.

We define some notations. If P = 43 —ug —-+- — up, is a path in @,
from the vertex u; to the vertex um,, then P~ =u,, —upm_1— - —ug—uy
is a path in Q. from the vertex u,, to the vertex uj. Let P- 0 =1u; -0 —
ug-0—---—u,, -0 be a path from the vertex u; - 0 to the vertex u,;, -0 in
Qn4+1. The symbol P -1 is defined similarly.

We know that Q3 contains a Hamiltonian path P; = 000 — 100 —
110 — 010 — 011 — 111 — 101 — 001. If n > 4, then define P, as: P, =
P,_,-0- Pn__ll - 1. Clearly, P, is a Hamiltonian path of @Q,. Denote the
i-th vertex (from left to right) of P, by v} (1 < ¢ < 2"). By definition of
P,, the following properties are obvious:

(1) The vertices vy'*' and vy'** are adjacent in Qn for n > 4 and
te {0,1,-.-,2""2 -1}

267



(2)va' ! =v +etforn>4andl € {1,---,2"}, ie., v} and v3
are adjacent in Q.

For n > 4, by the above properties and definition of F'Q,,, we can verify
that for any k € {0,1,---,27~3—1}, the vertices vik+1, y2k+2 dk+3 ,dk+4
and v2"~% = vg(2""—k—l)+4’ 2"kl 2" —dk=2 02" —dk-3 _ P32 —k-1)41
induce a 3-dimensional cube. Denote the cube by QX. Figure 1 shows the

Q9 and Q}. Notice that the edges of QX are edges in Q.

Figure 1: The two 3-dimensional cube in Q.

In fact, we can color the cube Q% properly with four colors by the
following manner. Assume there are four colors 1,2, 3,4. Let f(vf,""‘l) =1,
F(uak+2) = 2, f(vdk+3) = 3, f(vik*%) = 4. Assign the same color to
two diagonal vertices and to three non-incident edges. In other words,
let f(v2"~472) = 1, f(u ~%3) = 2, f(uZ %) = 3, f(u2T%Y) = 4
f(v3k+3,v;1'k+4) = f(v?,"“‘"‘a,vﬁ"“"“) = f(vgk+2,v721"—4k—1) =1, f(vﬁk""‘,
) = (o4, o) = (o3, o204 T) = 2, F(utH] ki) =
F(u2"—4k=1 2" —dk=2) - f(ydk+d 2" —4k=3) g p(y2"—4k=3 2" —dk-2) _
Fuak+2 pak+3) — f(ydk+l 42"—4k) — 4  See Figure 2. We can check that
f is a proper 4-total coloring of @%. Moreover, we can color the edges
and the vertices of the 2"~3 three-dimensional cubes Ui:os_l Qk properly
with four colors such that any two vertices adjacent in F'Q, are colored

differently.

n—3
Lemma 2. There exists a proper 4-total coloring f,, for Ui=0 -t Q¥ such
that any two vertices adjacent in F'Qy, are colored differently, where n > 4.

Proof. If n = 4, then set f4(v}) = 1, fa(v3) = 2, fa(¥3) = 3, fa(vd) = 4;
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Figure 2: The proper 4-total coloring method for Q%.

Fa(3) = 3, f4(v8) = 4, f4(v]) = 1, fa(v§) = 2. The other vertices and edges
are colored by the manner in Figure 2. If n > 5, then for any 1 < j < 271,
define fo(vi) = fa—1(v?_,). That is to say, for any = € V(Qn_1), let
fr(z+0) = fn-1(x). Color the other vertices and edges by the manner in
Figure 2. Figure 3 shows the coloring of UZ=0 Q%. By the coloring method,
each Q% (0 < k < 27~3 — 1) is colored properly. We only need to prove
that any two adjacent vertices in F'Q,, are colored differently.

2 4 3 1
vsl 2 3 Ve v: 4 v: V: 3 2 V;' V;) 4
WS T2 P3N T2 s 242140 s | 3] 2
4 1 2 3 2 3 s |1 4 |3 {2 3 2
3 2 3 4 2 1 4 1 2 4 2 3 2 1 3 4 1 4 3
v 4 1 Vs v(; 2 3 LC ! 4 ":l ":h 3 2

1 3 4 2

(14 0. o; o)

Figure 3: A proper 4-total coloring of Ui:o Q¥ distinguishes two adjacent
vertices in FQs.

By the coloring method, we find that {f,(v), fo(v + €2)} = {1,3}
or {2,4} for any v € V(FQ,). For i € {1,2,3,4} and n > 4, denote
Cn(i) = {v|falv) = i}, m = {7]fa(v) = i}, Cn(i) - 0 = {v - 0| fn(v) = i}
(resp. Cr(i)-1={v-1|fa(v) =i}).

For n > 5, we find that C,(1) = Cn-1(1) - 0U Cr1(3) - 1, C(2) =
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Cn-1(2) - 0UCr_1(4) - 1, Ca(3) = Cn1(3) 10U Cr1(1) - 1, Cr(4) =
Cn-1(4)-0UC,-1(2) - 1. It is easy to verify that for even n, Cp(1) = Cn(2)
and C,(3) = Cp(4); for odd n, Cp(1) = Cp(4) and Cp(2) = C,(3).

Next, we will prove that any two adjacent vertices in F'Q,, are colored
differently by induction on n.

If n = 4, Cq(1) = {0000,1010,0111,1101}, C4(2) = {1000, 0010, 1111,
0101}, C4(3) = {1100,0110,1011,0001}, C4(4) = {0100,1110,0011,1001}.
Clearly, C4(%) is independent for any ¢ € {1,2,3,4}.

For n > k > 4, assume Ci(%) is independent for any i € {1,2,3,4}.
Now it is enough to show that Cy.(%) is independent for any ¢ € {1,2,3,4}.

By contrary, without loss of generality, assume z,y € Ci+1(1) and
(z,y) € E(FQk+1). By induction, both Ci(1) and Ci(3) are independent.
So both Ci(1) - 0 and Ci(3) - 1 are independent. Hence, z € Ci(1) - 0,
y € Cr(3)-1ory € Cr(l):0, z € Ci(3) - 1. Without loss of generality,
suppose z € Ci(1) -0, y € Ck(3) - 1. Since Cx(1)NCr(3) =0, 50y = 7.
Suppose v € Ci(1) such that z = v0. Thus, y = T = ¥1. We conclude
that € Ci(3), which contradicts that Cx(1) = Ci(2) for even k and
Cr(1) = C(4) for odd k. So Ci41(1) is independent. Similarly, we can get
Ci+1(2) is independent for any ¢ € {2, 3,4}. The proof is completed. O

The edge chromatic number of G, x'(G), is the least integer k for
which G admits a proper k-edge coloring. We recall a classical result on
edge coloring.

Theorem 3 [3]. Let G be a simple bipartite graph. Then, x'(G) = A(G).

Next is the main result of this paper.

Theorem 4. If n > 4, then x:(FQn) = AFQn)+1=n+2.

Proof. First, color the complementary edges of the folded hypercube with
one color. Second, by Lemma 2, color the edges and the vertices of each
of these 3-dimensional cubes properly by four colors such that any two
adjacent vertices in folded hypercube are colored differently. Third, the
uncolored edges form an n — 3 regular bipartite graph since it is a subgraph
of hypercube @, by Theorem 3, it can be colored by n — 3 colors. This

yields a proper (n + 2)-total coloring of FQ,. Hence, we can conclude
that x:(F@n) < n+ 2. On the other hand, by definition, we know that
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Xt (FQr) > A(FQy) + 1 = n+ 2. Therefore, x:(FQr)=n+2. O

3 Remark

Zhang et al. introduced [13] the concept of the adjacent vertex-distinguishing
edge chromatic number of G. A k-edge coloring f : E — {1,2,-.- ,k}
of a graph G = (V,E) is an assignment of & colors to the edges of G.
The edge coloring f is proper if no two adjacent edges are assigned a
same color. Let f(uv) be the color of the edge uv € E(G). Denote
by F(v) = {f(w) : wv € E(G)}. If f is a proper k-edge coloring, and
F(u) # F(v) for any edge uv € E(G), then f is called a k-adjacent vertez-
distinguishing edge coloring of graph G (abbreviated k-AVDEC of G). The
smallest k for which G has a k-AV DEC is the adjacent vertez-distinguishing
edge chromatic number x,,(G) of G.

If G is a r-regular graph then the following lemma reveals the relations
between x:(G) and x.,(G).

Lemma 5 [12). Let G = (V, E) be a r-regular graph, where r > 2. Then
xt(G) >2r+1, x4,(G) 2 r+1, and x:(G) =r + 1 if and only if x,,(G) =
r+1. O

By Theorem 4 and Lemma 5, we can get the adjacent vertex-distinguish-
ing edge chromatic number of folded hypercube immediately.

Corollary 6. If n > 4, then x/,(FQn) =A(FQn)+1=n+2. O
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