Total chromatic number of folded hypercubes *

Meirun Chen a,† Xiaofeng Guo b Shaohui Zhai a

^a Department of Mathematics and Physics, Xiamen University of Technology, Xiamen Fujian 361024, China
^b School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China

Abstract

A total coloring of a simple graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. The minimum number of colors required for a proper total coloring of G is called the total chromatic number of G and denoted by $\chi_t(G)$. The Total Coloring Conjecture (TCC) states that for every simple graph G, $\Delta(G)+1 \leq \chi_t(G) \leq \Delta(G)+2$. G is called Type 1 (resp. Type 2) if $\chi_t(G) = \Delta(G)+1$ (resp. $\chi_t(G) = \Delta(G)+2$). In this paper, we prove that the folded hypercubes FQ_n is of Type 1 when $n \geq 4$.

Keywords: Total coloring; Total chromatic number; Folded hypercubes

^{*} The Project is Supported by NSFC (11171279, 11101345, 10831001), Fujian Provincial Department of Education (JA10244, JA12244) and Fujian Provincial Department of Science and Technology (2012J05012).

[†] Corresponding author. E-mail address: mrchen@xmut.edu.cn.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Terminology and notation not defined here are followed [3]. Let G be a graph, we use V(G), E(G) and $\Delta(G)$ (or simply V, E and Δ) to denote the vertex set, the edge set and the maximum degree of G, respectively.

A k-total coloring $h: V \cup E \to \{1, 2, \dots, k\}$ of a graph G = (V, E) is an assignment of k colors to both the edges and the vertices of G. The total coloring h is called a proper k-total coloring if no incident or adjacent elements (vertices or edges) receive the same color. The total chromatic number of G, $\chi_t(G)$, is the least integer k for which G admits a proper k-total coloring. Behzad [1] and Vizing [11] proposed independently the following famous conjecture, which is known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph G, $\Delta(G) + 1 \le \chi_t(G) \le \Delta(G) + 2$.

The lower bound of this conjecture is obvious, the upper bound remains to be proved. If G satisfies TCC and $\chi_t(G) = \Delta(G) + 1$ (resp. $\chi_t(G) = \Delta(G) + 2$), then G is of Type 1 (resp. Type 2).

The n-dimensional hypercube Q_n is an undirected graph. Any vertex $x \in V(Q_n)$ is denoted by a 0-1 sequence $x_1x_2\cdots x_n$ of length n. Hence, there are 2^n vertices in Q_n . Two vertices $x,y\in V(Q_n)$ are joined by an edge if and only if x and y differ at exactly one position. If $x=x_1\cdots x_i\cdots x_n$, denote the vertex $x_1\cdots \overline{x_i}\cdots x_n$ by $x+e_n^i$, where $\overline{x_i}=1-x_i$. Then the set of edges incident with x is $\{(x,x+e_n^i): i\in\{1,2,\cdots,n\}\}$. For any vertex $x=x_1x_2\cdots x_n\in V(Q_n)$, let $x\cdot 0=x_1x_2\cdots x_n0$ and $x\cdot 1=x_1x_2\cdots x_n1$ denote the vertices in $V(Q_{n+1})$ corresponding to x in $V(Q_n)$.

As a variant of the hypercube, the n-dimensional folded hypercube FQ_n , proposed first by El-Amawy and Latifi [4], is a graph obtained from the hypercube Q_n by adding an edge, called a complementary edge, between any two vertices $x = x_1x_2 \cdots x_n$ and $\overline{x} = \overline{x}_1\overline{x}_2 \cdots \overline{x}_n$. Therefore, FQ_n has 2^{n-1} more edges than a Q_n . It is easy to know that the complementary edges forms a perfect matching of FQ_n . It has been shown that FQ_n is an (n+1)-regular graph. The properties of folded hypercube was studied extensively. The pancyclicity and fault-free cycles in faulty folded

hypercubes were studied in [10] and [5], respectively. The fault-tolerance of folded hypercubes were analyzed in [6-8]. The Hamilton-connectivity of folded hypercubes was showed in [9].

In this paper, we investigate the total chromatic number of the folded hypercubes FQ_n . If n=2 (resp. n=3) then FQ_2 (resp. FQ_3) is isomorphic to the complete graph K_4 (resp. the complete bipartite graph $K_{4,4}$). The total chromatic number of K_4 and $K_{4,4}$ have been determined, see [13] and [2] respectively. So we only need to consider the case for $n \geq 4$. In this work, we obtain that $\chi_t(FQ_n) = \Delta(FQ_n) + 1 = n + 2$ which attains the lower bound of TCC. We get the result by the following method: first, color the complementary edges of the folded hypercube with one color; second, decompose the hypercube into 2^{n-3} 3-dimensional cubes, color the edges and the vertices of each of these 3-dimensional cubes properly by four colors such that any two adjacent vertices in folded hypercube are colored differently; third, the uncolored edges form an n-3 regular bipartite graph, by König's theorem, it can be colored by n-3 colors.

2 Main Result

In this section, we would like to decompose the hypercube into 2^{n-3} 3-dimensional cubes first.

We define some notations. If $P=u_1-u_2-\cdots-u_m$ is a path in Q_n from the vertex u_1 to the vertex u_m , then $P^{-1}=u_m-u_{m-1}-\cdots-u_2-u_1$ is a path in Q_n from the vertex u_m to the vertex u_1 . Let $P\cdot 0=u_1\cdot 0-u_2\cdot 0-\cdots-u_m\cdot 0$ be a path from the vertex $u_1\cdot 0$ to the vertex $u_m\cdot 0$ in Q_{n+1} . The symbol $P\cdot 1$ is defined similarly.

We know that Q_3 contains a Hamiltonian path $P_3 = 000 - 100 - 110 - 010 - 011 - 111 - 101 - 001$. If $n \ge 4$, then define P_n as: $P_n = P_{n-1} \cdot 0 - P_{n-1}^{-1} \cdot 1$. Clearly, P_n is a Hamiltonian path of Q_n . Denote the *i*-th vertex (from left to right) of P_n by v_n^i $(1 \le i \le 2^n)$. By definition of P_n , the following properties are obvious:

(1) The vertices v_n^{4t+1} and v_n^{4t+4} are adjacent in Q_n for $n \geq 4$ and $t \in \{0, 1, \cdots, 2^{n-2} - 1\}$;

(2) $v_n^{2^{n+1-l}} = v_n^l + e_n^n$ for $n \ge 4$ and $l \in \{1, \dots, 2^n\}$, i.e., v_n^l and $v_n^{2^{n+1-l}}$ are adjacent in Q_n .

For $n\geq 4$, by the above properties and definition of FQ_n , we can verify that for any $k\in\{0,1,\cdots,2^{n-3}-1\}$, the vertices $v_n^{4k+1},v_n^{4k+2},v_n^{4k+3},v_n^{4k+4}$ and $v_n^{2^n-4k}=v_n^{4(2^{n-2}-k-1)+4},v_n^{2^n-4k-1},v_n^{2^n-4k-2},v_n^{2^n-4k-3}=v_n^{4(2^{n-2}-k-1)+1}$ induce a 3-dimensional cube. Denote the cube by Q_n^k . Figure 1 shows the Q_4^0 and Q_4^1 . Notice that the edges of Q_n^k are edges in Q_n .

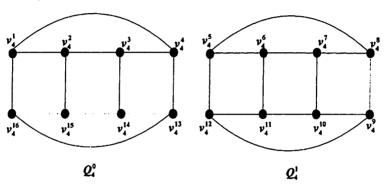


Figure 1: The two 3-dimensional cube in Q_4 .

In fact, we can color the cube Q_n^k properly with four colors by the following manner. Assume there are four colors 1, 2, 3, 4. Let $f(v_n^{4k+1})=1$, $f(v_n^{4k+2})=2$, $f(v_n^{4k+3})=3$, $f(v_n^{4k+4})=4$. Assign the same color to two diagonal vertices and to three non-incident edges. In other words, let $f(v_n^{2^n-4k-2})=1$, $f(v_n^{2^n-4k-3})=2$, $f(v_n^{2^n-4k})=3$, $f(v_n^{2^n-4k-1})=4$; $f(v_n^{4k+3},v_n^{4k+4})=f(v_n^{2^n-4k-3},v_n^{2^n-4k})=f(v_n^{4k+2},v_n^{2^n-4k-1})=1$, $f(v_n^{4k+4},v_n^{4k+1})=f(v_n^{2^n-4k},v_n^{2^n-4k-1})=f(v_n^{4k+3},v_n^{2^n-4k-2})=2$, $f(v_n^{4k+1},v_n^{4k+2})=f(v_n^{2^n-4k-1},v_n^{2^n-4k-2})=f(v_n^{4k+4},v_n^{2^n-4k-3})=3$, $f(v_n^{2^n-4k-3},v_n^{2^n-4k-2})=f(v_n^{4k+2},v_n^{4k+3})=f(v_n^{4k+1},v_n^{2^n-4k})=4$. See Figure 2. We can check that f is a proper 4-total coloring of Q_n^k . Moreover, we can color the edges and the vertices of the 2^{n-3} three-dimensional cubes $\bigcup_{k=0}^{2^{n-3}-1}Q_n^k$ properly with four colors such that any two vertices adjacent in FQ_n are colored differently.

Lemma 2. There exists a proper 4-total coloring f_n for $\bigcup_{k=0}^{2^{n-3}-1} Q_n^k$ such that any two vertices adjacent in FQ_n are colored differently, where $n \geq 4$. **Proof.** If n=4, then set $f_4(v_4^1)=1$, $f_4(v_4^2)=2$, $f_4(v_4^3)=3$, $f_4(v_4^4)=4$;

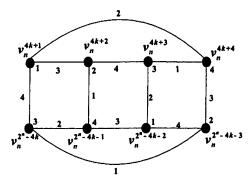


Figure 2: The proper 4-total coloring method for Q_n^k .

 $f_4(v_4^5)=3, f_4(v_4^6)=4, f_4(v_4^7)=1, f_4(v_4^8)=2.$ The other vertices and edges are colored by the manner in Figure 2. If $n\geq 5$, then for any $1\leq j\leq 2^{n-1}$, define $f_n(v_n^j)=f_{n-1}(v_{n-1}^j)$. That is to say, for any $x\in V(Q_{n-1})$, let $f_n(x\cdot 0)=f_{n-1}(x)$. Color the other vertices and edges by the manner in Figure 2. Figure 3 shows the coloring of $\bigcup_{k=0}^3 Q_5^k$. By the coloring method, each Q_n^k $(0\leq k\leq 2^{n-3}-1)$ is colored properly. We only need to prove that any two adjacent vertices in FQ_n are colored differently.

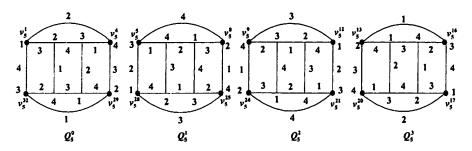


Figure 3: A proper 4-total coloring of $\bigcup_{k=0}^{3} Q_{5}^{k}$ distinguishes two adjacent vertices in FQ_{5} .

By the coloring method, we find that $\{f_n(v), f_n(v + e_n^n)\} = \{1, 3\}$ or $\{2, 4\}$ for any $v \in V(FQ_n)$. For $i \in \{1, 2, 3, 4\}$ and $n \geq 4$, denote $C_n(i) = \{v | f_n(v) = i\}$, $\overline{C_n(i)} = \{\overline{v} | f_n(v) = i\}$, $C_n(i) \cdot 0 = \{v \cdot 0 | f_n(v) = i\}$ (resp. $C_n(i) \cdot 1 = \{v \cdot 1 | f_n(v) = i\}$).

For $n \geq 5$, we find that $C_n(1) = C_{n-1}(1) \cdot 0 \cup C_{n-1}(3) \cdot 1$, $C_n(2) =$

 $C_{n-1}(2) \cdot 0 \cup C_{n-1}(4) \cdot 1$, $C_n(3) = C_{n-1}(3) \cdot 0 \cup C_{n-1}(1) \cdot 1$, $C_n(4) = C_{n-1}(4) \cdot 0 \cup C_{n-1}(2) \cdot 1$. It is easy to verify that for even n, $\overline{C_n(1)} = C_n(2)$ and $\overline{C_n(3)} = C_n(4)$; for odd n, $\overline{C_n(1)} = C_n(4)$ and $\overline{C_n(2)} = C_n(3)$.

Next, we will prove that any two adjacent vertices in FQ_n are colored differently by induction on n.

If n = 4, $C_4(1) = \{0000, 1010, 0111, 1101\}$, $C_4(2) = \{1000, 0010, 1111, 0101\}$, $C_4(3) = \{1100, 0110, 1011, 0001\}$, $C_4(4) = \{0100, 1110, 0011, 1001\}$. Clearly, $C_4(i)$ is independent for any $i \in \{1, 2, 3, 4\}$.

For $n > k \ge 4$, assume $C_k(i)$ is independent for any $i \in \{1, 2, 3, 4\}$. Now it is enough to show that $C_{k+1}(i)$ is independent for any $i \in \{1, 2, 3, 4\}$.

By contrary, without loss of generality, assume $x,y\in C_{k+1}(1)$ and $(x,y)\in E(FQ_{k+1})$. By induction, both $C_k(1)$ and $C_k(3)$ are independent. So both $C_k(1)\cdot 0$ and $C_k(3)\cdot 1$ are independent. Hence, $x\in C_k(1)\cdot 0$, $y\in C_k(3)\cdot 1$ or $y\in C_k(1)\cdot 0$, $x\in C_k(3)\cdot 1$. Without loss of generality, suppose $x\in C_k(1)\cdot 0$, $y\in C_k(3)\cdot 1$. Since $C_k(1)\cap C_k(3)=\emptyset$, so $y=\overline{x}$. Suppose $v\in C_k(1)$ such that v=v0. Thus, $v=\overline{x}=\overline{v}$ 1. We conclude that $v\in C_k(3)$, which contradicts that $\overline{C_k(1)}=C_k(2)$ for even $v\in C_k(3)$ and $\overline{C_k(1)}=C_k(3)$ for odd $v\in C_k(3)$. So $v\in C_k(3)$ is independent. Similarly, we can get $v\in C_k(3)$ is independent for any $v\in C_k(3)$. The proof is completed. $v\in C_k(3)$

The edge chromatic number of G, $\chi'(G)$, is the least integer k for which G admits a proper k-edge coloring. We recall a classical result on edge coloring.

Theorem 3 [3]. Let G be a simple bipartite graph. Then, $\chi'(G) = \Delta(G)$.

Next is the main result of this paper.

Theorem 4. If $n \geq 4$, then $\chi_t(FQ_n) = \Delta(FQ_n) + 1 = n + 2$.

Proof. First, color the complementary edges of the folded hypercube with one color. Second, by Lemma 2, color the edges and the vertices of each of these 3-dimensional cubes properly by four colors such that any two adjacent vertices in folded hypercube are colored differently. Third, the uncolored edges form an n-3 regular bipartite graph since it is a subgraph of hypercube Q_n , by Theorem 3, it can be colored by n-3 colors. This yields a proper (n+2)-total coloring of FQ_n . Hence, we can conclude that $\chi_t(FQ_n) \leq n+2$. On the other hand, by definition, we know that

$$\chi_t(FQ_n) \geq \Delta(FQ_n) + 1 = n + 2$$
. Therefore, $\chi_t(FQ_n) = n + 2$. \square

3 Remark

Zhang et al. introduced [13] the concept of the adjacent vertex-distinguishing edge chromatic number of G. A k-edge coloring $f: E \to \{1, 2, \cdots, k\}$ of a graph G = (V, E) is an assignment of k colors to the edges of G. The edge coloring f is proper if no two adjacent edges are assigned a same color. Let f(uv) be the color of the edge $uv \in E(G)$. Denote by $F(v) = \{f(uv) : uv \in E(G)\}$. If f is a proper k-edge coloring, and $F(u) \neq F(v)$ for any edge $uv \in E(G)$, then f is called a k-adjacent vertex-distinguishing edge coloring of graph G (abbreviated k-AVDEC of G). The smallest k for which G has a k-AVDEC is the adjacent vertex-distinguishing edge chromatic number $\chi'_{av}(G)$ of G.

If G is a r-regular graph then the following lemma reveals the relations between $\chi_t(G)$ and $\chi'_{av}(G)$.

Lemma 5 [12]. Let G = (V, E) be a r-regular graph, where $r \geq 2$. Then $\chi_t(G) \geq r+1$, $\chi'_{av}(G) \geq r+1$, and $\chi_t(G) = r+1$ if and only if $\chi'_{av}(G) = r+1$. \square

By Theorem 4 and Lemma 5, we can get the adjacent vertex-distinguishing edge chromatic number of folded hypercube immediately.

Corollary 6. If
$$n \geq 4$$
, then $\chi'_{av}(FQ_n) = \Delta(FQ_n) + 1 = n + 2$. \square

References

- M. Behzad, Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University, 1965.
- [2] M. Behzad, G. Chartrand, J.K. Cooper, The color numbers of complete graphs, J. London Math. Soc. 42 (1967) 225-228.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, MacMillan, London, 1976.

- [4] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42.
- [5] Sun-Yuan Hsieh, Che-Nan Kuo, and Hsin-Hung Chou, A further result on fault-free cycles in faulty folded hypercubes, Information Processing Letters 110 (2) (2009) 41-43.
- [6] Sun-Yuan Hsieh, Che-Nan Kuo, and Hui-Ling Huang, 1-Vertex-fault-tolerant cycles embedding on folded hypercubes, Discrete Applied Mathematics 157 (14) (2009) 3094-3098.
- [7] Sun-Yuan Hsieh, A note on cycle embedding in folded hypercubes with faulty elements, Information Processing Letters 108 (2) (2008) 81.
- [8] Sun-Yuan Hsieh, Some edge-fault-tolerant properties of the folded hypercube, Networks 51 (2) (2008) 92-101.
- [9] Sun-Yuan Hsieh and Zhe-Nan Guo, Hamilton-connectivity and strongly Hamiltonian-laceability of folded hypercubes, Computers and Mathematics with Applications 53 (7) (2007) 1040-1044.
- [10] Che-Nan Kuo and Sun-Yuan Hsieh, Pancyclicity and bipancyclicity of conditional faulty folded hypercubes, Information Sciences 180 (15) (2010) 2904-2914.
- [11] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134. (in Russian).
- [12] Z. Zhang, D.R. Woodall, B. Yao, J. Li et al., Adjacent strong edge colorings and total colorings of regular graphs, Science in China Ser. A Mathematics 52 (5) (2009) 973-980.
- [13] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.