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Abstract

In this paper, all connected graphs with the fourth largest signless-
Laplacian eigenvalue less than two are determined.
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1 Introduction

All graphs considered here are simple (so loops and multiple edges are
not allowed), undirected and finite. We use standard terminology and
notation and refer to [2] for an extensive treatment of digraphs. Let G =
(V(G), E(G)) be a graph with vertex set V(G) = {v1,:-+ ,vn} and edge
set E(G). The order of G is the number n = |V| of its vertices and its size
is the number m = |E| of its edges. The adjacency matrix of G is the 0—1
n X n-matrix indexed by the vertices of G and defined by a;; = 1 if and
only if ij € E. Then Q(G) = A(G) + A(G), where A(G) is the diagonal
matrix whose diagonal entries are the degrees in G, is called the signless
Laplacian of G. Denote by (q1,92, - ,gn) the Q-spectrum of G, i.e., the
spectrum of the signless Laplacian of G. Since Q(G) is real, symmetric and
positive semidefinite, assume that the eigenvalues of G are labeled such that
g1 >q2 >+ > gn. Denote L(G) = A(G) — A(G) the Laplacian matriz of
G. Since L(G) is real, symmetric and positive semidefinite, the eigenvalues
of L(G) are denoted by u1(G) = u2(G) = -+ 2 un—1(G) = ua(G) =0.
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Cvetkovié, Rowlinson and Simié [6, 7, 8, 9], discussed the development
of a spectral theory of graphs based on the matrix Q(G), and gave several
reasons why it is superior to other graph matrices such as the adjacency
and the Laplacian matrix. We refer the reader to the above cited papers

for basic results on this topic.

Characterizing the structures of graphs by the eigenvalues of some graph
matrix is an attractive study field. Some important results have been ob-
tained already. For the largest eigenvalue p € [0,2] ,(2,vV2+ v/5) and
(V2 + /5, 3+/3] of the graph adjacency matrix, the corresponding graphs
are respectively determined by Smith [15], Cvetkovié et al. [12], Brouwer
and Neumaier (3] and Woo and Neumaier [18]. For the second largest eigen-
value A € (0, -%) and the third eigenvalue Az € (—oo, 1;2@) of the graph
adjacency matrix, the corresponding graphs are found by Cao and Hong
[4, 5]. X.D. Zhang [16], characterized the graphs with fourth Laplacian
eigenvalue less than two. Recently, J.F. Wang et.al. [17], determined the
graphs with signless Laplacian index does not exceed 4.5 and M. Aouch-
iche et.al. [1], characterized all simple connected graphs with second largest
signless-Laplacian eigenvalue at most 3.

The rest paper is organized as follow: In section 2, we give some graphs
with g4(G) < 2. In section 3, we characterize all connected graphs with the
fourth largest signless-Laplacian eigenvalue less than two.

2 Some graphs with ¢;(G) < 2

Many researchers studied the relations between the Laplacian matrix and
the signless Laplacian matrix of a graph. One of the most important results
is the following lemma (see, for example [10, 13])

Lemma 2.1. In bipartite graphs, the Q-polynomial is equal to the charac-
teristic polynomial of the Laplacian.

The next two well-known theorems in matrix theory will be used in the
proofs of our results.

Theorem 2.1. (Cauchy-Poincaré Separation Theorem [14]) Let A be an
n x n Hermitian matriz with eigenvalues A1(A) > Aa(A) > -+ 2 A (A).
For a given integerr, 1 < r < n, let A,, denote any r xr principal submatriz
of A (obtained by deleting n — r rows and the corresponding columns from
A). Then for each1 <i<r,

Ai(4) 2 M(4r) 2 Ancrpi(A).

Applying this inequality to the adjacency matrix of line graphs leads to
the following resuit.
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Theorem 2.2. (Interlacing theorem [11]) Let G be a graph on n vertices
and m edges and let ¢ be an edge of G. Let ¢ > g2 > --- 2 ¢n and
$1 > 83 2 -+ > 8n be the signless Laplacian eigenvalues of G and G — e,
respectively. Then,

q12812G 2822 24qn 2 Sn.
By the above theorem, the following lemma can be easily obtained.

Lemma 2.2. Let G be a simple graph of order n. If H is a subgraph of G of
order m < n (not necessarily an induced subgraph), then fori=1,--.,m,
we have

%:(G) = q:(H).

In the following, we shall study the set G of all connected graphs G with
the property

24(G) < 2.

As a directed consequence of Lemma 2.2, if ¢4(G) < 2 and H is a sub-
graph of G, then g4(H) < 2. The forbidden subgraphs of G denoted by the
minimal graphs satisfy the fourth largest signless-Laplacian eigenvalue less
than two. By a direct calculation, we have the following simple result.

Lemma 2.8. The following graphs as in Fig. 1 are forbidden subgraphs of
GingG, ie q(H;)>2 fori=1,---5.

—_— '.'C[(l > 4)
H1 H2 ]‘;[3 H4 Hs
Hs H7 -

Fig. 1.
Lemma 2.4. Let G1(p,q,7) be a graph of ordern =p+q+r+6 as in
Fig. 2, where p,q,7 > 0. Then q4(G1(p,q,7)) <2, i.e. G1(p,q,7) €G.

Ky K,
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Proof. By Lemma 2.2, we may assume that p = ¢ = r > 1, since G(p, q,7)
can be regarded as a connected subgraph of G, (p+g+r,p+qg+7r,p+g+7).
By a direct calculation, we can show that the characteristic polynomial of

Q(G1(p,p,p)) is equal to
A=1)"°D0% = (p+9)A% +(2p+ 16)A = BI)° — (6+ p)A* + (104 2p)A — 5.

Let f(z) = 23 — (p + 9)z2 + (2p + 16)z — 8 and g(z) = z° — (6 + p)z% +
(10 + 2p)x — 5. Then f(0) = -8<0, f(1) =p >0, f(2) = -4 < 0 and
f(p+11) = 4p%+82p+410 > 0. Hence f(z) = 0 has exactly one root no less
than two. Similarly, we have g(0) = -5<0,g(1)=p>0,9(2)=-1<0
and g(p + 6) = 2p? + 22p + 55 > 0. Hence g(z) = 0 has exactly one root
no less than two. Therefore Q(G;(p,p, p)) has exactly three eigenvalues no
less than two. So ¢4(p,q,7) < 2 and Gi1(p,q,7) €G. O

Lemma 2.5. Let G2(p,q) be a graph of order n =p + q + 6 as in Fig. 8,
where p,q > 0. Then q4(Ga(p,q)) < 2, i.e. Ga(p,q) €G.

Ky

G?(p: Q)
Fig. 3.

Proof. By Lemma 2.2, we may assume that p = ¢ > 4. By a direct cal-
culation, we can show that the characteristic polynomial of Q(G2(p,p)) is
equal to

(A =1)"8[A5 — (13 + p)A* + (59 + 8p) A3 — (115 + 18p)A% + (100 + 12p)X

=32JA3 — (p+5)A2 + (20 + )X - 3].

Let f(z) = z°—(13+p)z*+(59+8p)z3 - (115+18p)z2+(100+12p)z—32 and
g(z) = 2 — (p+5)x? + (2p+7)z — 3. Then f(0) = -32 <0, f(1) =p > 0,
72— 1) = -6+ 7(1) + 43P - 3()* - (2)° < 0, F@) = 4 > 0,
fp+2)=-@p+2)(p*-p® —3p—2) <0and f(p+6) =p* +17° +
95p% + 196p + 100 > 0. Hence f(x) = 0 has exactly two roots no less than
two. Similarly, we have g(0) = -3 < 0, ¢(1) =p > 0,9(2) = -1 <0
and g(p+4) = p®> + 7p+ 9 > 0. Hence, g(z) = 0 has exactly one root
no less than two. Therefore, Q(G2(p,p)) has exactly three eigenvalues no
less than two. So g4(Q(Ga(p,p)) < 2 and then ¢4(Q(G2(p,q)) < 2, that is,
Gz(p,q) € G. 0

Lemma 2.6. Let G3(p) be a graph of order n=p+ 6 as in Fig. 4, where
p > 4. Then q4(G3(p)) <2, i.e. G3(p) €G.
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Gs(p)
Fig. 4.
Proof. By Lemma 2.2, we may assume that p > 4. By a direct calculation,
we can show that the characteristic polynomial of Q(G3(p)) is equal to
(A =1)""T(A% — 51 4 5)[A® — (12 + p)A* + (48 + 9p)A° — (21p + 81)A?
+(60 + 14p)A — 16)
Let f(z) = 2% — 5z + 5 and g(z) = z° — (12 + p)z* + (48 + 9p)z® —
(21p + 81)z2 + (60 + 14p)z — 16. Then g(0) = —16 < 0, g(1) = p > 0,
g2 2) = 2+ 5 - 2002 + 73 - 2 - (1) <0, 92) = 4> 0,
g(p+3) = 2—6p—4p® < 0 and g(p+6) = 20+360p+3p* +45p° +221p% > 0.
Hence g(z) = 0 has exactly two roots no less than two. It is easy to see
that f(z) = 0 has exactly one root no less than two. Therefore, Q(G3(p))
has exactly three eigenvalues no less than two. So ¢4(Q(G3(p)) < 2 and
Ga(p) € 9. |

Lemma 2.7. Let G4(p,q) be a graph of order n =p+q+5 as in Fig. 5,
where p > 4. Then q4(G4(p,q)) < 2, i.e. G4(p,q) €G.

Ka

G4 (py q)

Fig. 5.
Proof. By Lemma 2.2, we may assume that p = ¢ > 4. By a direct cal-
culation, we can show that the characteristic polynomial of Q(G4(p,q)) is
equal to

(A=1)""%[A* = (p+ 11)A3 + (7p + 39)A% — (10p + 53)\
+24)02 - (p+2)A + 1)

Let f(z) = z% — (p+ 11)z® + (7p + 39)z% — (10p + 53)z + 24 and g(z) =
2 —pr — 22+ 1. Then f(0) =24 >0, f(1) = -4p < 0, f(2) = 2 > 0,
f(p+1) = —p(3p? — 13p+8) < 0 and f(p+6) = 2p® +23p? +67p—18 > 0.
Hence f(z) = 0 has exactly two roots no less than two. It is easy to see
that g(z) = 0 has exactly one root no less than two. Therefore, Q(G4(p, q))
has exactly three eigenvalues no less than two. So ¢4(Q(G4(p,q)) < 2 and

G4 (P, Q) € g
(]
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Lemma 2.8. Let Gs5(p,q) be a graph of order n =p+q+ 5 as in Fig. 6,
where p,q > 4. Then q4(Gs(p,q)) <2, i.e. G5(p,q) €G.

X} R,

Gs(p,9)

Fig. 6.
Proof. By Lemma 2.2, we may assume that p = ¢ > 4. By a direct cal-
culation, we can show that the characteristic polynomial of Q(Gs(p,q)) is
equal to

A=1)""T[A5 — (p+ 10)A* 4 (34 + 6p) A3 — (48 4+ 9p)A% + (2p + 27)A
4N - (p+2)A+1]

Let f(z) = 2% — (p + 10)z* + (34 + 6p)z> — (48 + 9p)z? + (2p + 27)z — 4
and g(z) = 2% — pz — 2z + 1. Then f(0) = —4 <0, f(0.2) = —824/3125 +
54/625p > 0, f(1) = -2p <0, f(2) =2>0, f(p+1) = —p(4 - 2p+
3p® — 7p?) < 0 and f(p +6) = 590 + 651p + 242p% + 2p* + 37p® > 0. Hence
f(z) = 0 has exactly two roots no less than two. It is easy to see that
9(z) = 0 has exactly one root no less than two. Therefore, Q(Gs(p, g))
has exactly three eigenvalues no less than two. So g4(Q(Gs(p,q)) < 2 and
Gs(pq) €G. O

Lemma 2.9. Let G¢(p) be a graph of order n = p+ 6 as in Fig. 7, where
p 2 6. Then q4(Ges(p)) <2, i.e. Gg(p) €G.

Ky
Ge(p)
Figu 1.
Proof. By Lemma 2.2, we may assume that p > 6. By a direct calculation,
we can show that the characteristic polynomial of Q(Gg(p)) is equal to

A =1)""3(A = 3)[A — (p+ 10)A3 + (27 + 8p)AZ — (26 + 11p)A + 8].

Let f(z) = z*—(p+10)z®+(27+8p)z%—(26+11p)z+8. Then f(0) =8 >0, .
Ff1) = —4p <0, f(2) =2p > 0, f(p) = —2p° + 16p? — 26p + 8 < 0 and
f(p+4) = 2p3+8p% +30p—92 > 0. Hence f(z) = 0 has exactly two roots

no less than two. Hence g4(Q(Gs(p))) < 2, that is, Gg(p) € G.
a
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Combining Lemma 2.1 with the result of X.D. Zhang in [16], we have the
following lemma.

Lemma 2.10. Let Gg(p,q) be a tree of ordern =p +q+5 as in Fig. §,
where p,q 2 0. Then Q4(Q(G7(Ps q)) <2

LN l e
‘ Gr(»,9)
Fig. 8.

3 All connected graphs with ¢4(G) < 2

In this section, we characterize all connected graphs whose fourth largest
signless-Laplacian eigenvalue is less than two. Denote by 'y, the set of all
connected graphs of order n that do not have any subgraphs isomorphic to
one of Hy-Hy in Fig. 1.

Lemma 3.1. Let G € T',,. If G contains a cycle of order 4, then G must be
a connected subgraph of one of the graphs Gi(p,q,7), Ga2(p,q), Ga(p) and

Gg as in Fig. 9.

Gs Gy
Fig. 9.
Proof. Let G € T, be a connected graph of order n on vertex set V =
{v1,++ ,un}. Since G contains a cycle of order 4 and does not contain Ky,

we only need to consider the following two cases.

Case 1. G contains a K4 — e (the graph obtained from a complete graph
of order 4 by deleting an edge) as an induced subgraph, say v; ~ v; for
i = 23,4, vo ~ vz and vz ~ v4, where ~ stands for the adjacency rela-
tionship, in the sequel. Since H; is a forbidden subgraph, the subgraph of
G induced by vertex set U = {vs,-+ ,vn} has no edges. Moreover, since
Hj is a forbidden subgraph, no vertex in U is adjacent to three vertices in
{v1,v2,v3,v4}. Therefore, at most two vertices of U are adjacent to two
vertices in {v1,v2,vs,v4}. Hence we consider the following three subcases.

Subcase 1.1. There exist two vertices, say vs, vg, in U such that they
are adjacent to two vertices in {v;,vq,vs,v4}, respectively. Since Hj is a
forbidden subgraph, we may assume that vs ~ vy and vs ~ vs. Then vg =
v4, since Hs is a forbidden subgraph. So v is adjacent to two vertices in
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{v1,v2,vs}. Note that H, and Hj are forbidden subgraphs. Then vg ~ vs,
ve ~ vz and v; = vy for i = 7,--- ,n. Hence G is a subgraph of G;(p, g, 7).

Subcase 1.2. Precisely one vertex of U is adjacent to two vertices in
{v1,v2,v3,v4}. Since Hj is a forbidden subgraph, we may assume that
vg ~ vy and vs ~ vy, Since Hy is a forbidden subgraph, v; = w4 for
i=26,-.-,n. So G must be a subgraph of G1(p,q,7).

Subcase 1.3. No vertex in U is adjacent to two vertices in {v), v2, v3,v4}.
Since H, is a forbidden subgraph, there are no four disjoint edges having
one of their end vertices in {v;, vz, v3,v4} and the other one in U. Moreover,
since Hj is a forbidden subgraph of G, there are no two disjoint edges having
one of their end vertices in {vq,v4} and the other one in U. Hence G must
be a connected subgraph of G;(p, ¢q,7).

Case 2. G contains a cycle of order 4 as an induced subgraph, say
v1Uov3v4. Since Hy is a forbidden subgraph, the subgraph of G induced
by vertex set U = {vs,--- ,vn} has no edges. Moreover, since H, is a for-
bidden subgraph, there are no four vertices of U adjacent to two vertices
of {v1,v2,v3,v4}. Hence we consider the following four subcases.

Subcase 2.1. There exist three vertices, say vs, vg, v7, in U such that they
are adjacent to two vertices in {vj, v, vs,vs}, respectively. Since Hj is a
forbidden subgraph, we may assume that vs ~ v; and vs ~ vp. Similarly,
we assume that vg ~ v; and vg ~ v4 and vy ~ v4 and vy ~ v3. Since H; is
a forbidden subgraph, there are no vertices in U adjacent to {vy,v2,v3, v4}.
Therefore G must be Gg. (]

Subcase 2.2. There exist two vertices, say vs, vg, in U such that they
are adjacent to two vertices in {v,vs,v3,v4}, respectively. Since Hj3 is a
forbidden subgraph, without loss of generality, we assume that vs ~ v;
and vs ~ vo. If v¢ ~ vz and vg ~ vy, there exists a vertex, say v; € U
is adjacent to one vertex of {v1,vs,vs,v4}, by symmetric, we may assume
that v7 ~ v;. Hence v; = v3, v4 for i = 8,.-. ,n since H; is a forbidden
subgraph. Therefore, G must be a connected subgraph of Ga(p,q). If
vg ~ vy and vg ~ vy (or vg ~ vp and vg ~ v3), without loss of generality,
we assume that vg ~ v; and vg ~ v4. If there exists a vertex of U, say vy
is adjacent to vy, vy or v4, we have v; » vg (i = 8,--- ,n) since H; is a
forbidden subgraph. Hence G must be a connected subgraph of G, (p, g, 7).
If there exists a vertex of U, say v; is adjacent to vz, we have v; ~ vy, v
and vy (i = 8,--- ,n) since H) is a forbidden subgraph. Therefore G must
be a connected subgraph of G3(p).
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Subcase 2.3. Precisely one vertex of U is adjacent to two vertices in
{v1,v2,v3,v4}. Since Hj is a forbidden subgraph, we may assume that
vs ~ v; and vg ~ vq. If there exists no vertex of U is adjacent to vs and
v4, then G must be a connected subgraph of Gi(p,q,7). If there exists a
vertex of U, say vg, is adjacent to v3 (or v4), we may assume that vz ~ ve.
If there exists a vertex vy ~ vy or vg, ¥; = v3, i = 8,+-+ ,n since H; is a
forbidden subgraph. Hence G must be a connected subgraph of G1(p, q,r).
If v; ~ v3, v; » vy and vy, for 1 = 8,.-- ,n, then G must be a connected

subgraph of Ga(p, q).

Subcase 2.4. No vertex in U is adjacent to two vertices in {vy, vo, v3, v4}.
Since H, is a forbidden subgraph, there are no four disjoint edges having
one of their end vertices in {v1, v2, v3, 74} and the other one in U. Therefore,

G must be a subgraph of G1(p,q,7).

Lemma 3.2. Let G € T,,. If G does not contain a cycle of order 4 and
contains a cycle of order 3, then G must be a subgraph of one of the graphs
Gi(p,q,7), Ga2(p,q), Ga(p), Ga(p,9), Gs(p,q), Ge(p), Gs and Gy as in Fig.
9.

Proof. Let G contain a cycle of order 3, say v;,vq,v3. Since H; is a for-
bidden subgraph, there exist at most two disjoint edges in the induced
subgraph of U = {vy,--- ,v,}. If the induced subgraph G[U] has no edges,
then G must be a subgraph of G1(p, ¢,7). We first consider when G[U] con-
tains exactly one edge. Hence we may assume that the induced subgraph
G[U] consists of a star graph K, 4, say v4,--- ,Vs44, § 2 1 and some iso-
lated vertices, where vg ~ v; for i = 5,--- ,s+4. We only need to consider
the following two cases.

Case 1. vy is adjacent to one vertex in {vy,vs,v3}, say vq ~ v;. Then
v; »vj fori =4,--- ,s+4 and j = 2,3, since G does not contain a cycle
of order 4. We consider the following two subcases.

Subcase 1.1. There exist two vertices, say vs4.5, Us+6, i {Vs45," - ,Un}
such that v,45 ~ vg and vs46 ~ vs. Since H; is a forbidden subgraph,
v; % v fori=s+7,---,n. Moreover, since H; is a forbidden subgraph,
we have s = 1. Hence G must be a subgraph of Gs(p, g).

Subcase 1.2. There exists at most one vertex in {vs45, -+ ,vn} that is
adjacent to one of v, and vs, say v; ~ v3 for ¢ = s+ 5,--- ,n. Since
G does not contain a cycle of order 4, there exists at most one vertex in
{vs,-++ ,vs+4} that is adjacent to v;. Hence G must be a subgraph of

Gl(p’ Q)T)'
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Case 2. w4 » v; for i = 1,2,3. Then there exists one vertex, say vs, in
{vs,*++ ,vs44} that is adjacent to one vertex in {v;,vs,v3}, say, vs ~ v;.
Then v; = v, for i = 6,---,s+4, since G does not contain a cycle of order
4. Moreover, since H; is a forbidden subgraph, there exists at most one
vertex of {ve,- - ,Vs+4} is adjacent to one of v, and v3. Hence we consider
the following two subcases.

Subcase 2.1. There exists only one vertex, say ve, in {vs, - -+ ,v544} such
that vg is adjacent to one vertex in {vz,vs}, say vg ~ ve. Since H; is a
forbidden subgraph, v; = v3 for i = s+ 5,--- ,n, then v; is adjacent to v,
or vg for i = s+5,.-- ,n. Hence G must be a subgraph of G,(p, q,7).

Subcase 2.2. v; » v; fori=6,---,s+4 and j = 2,3. If there exist at
least two vertices, say vs4+5 and vsye, in {Vs45,° - ,vn} such that veps ~ vo
and vs4g ~ v3, then s =1 and v; = vy for i = s+ 5,.-- ,n, since G does
not contain H; as a subgraph. Hence G must be a subgraph of Gs(p, q).
Therefore, we may assume that v; » v3 for ¢ = 4,--- ,n. Then G must be
a subgraph of G1(p, q, 7).

In the following, we will consider when G[U] contains two disjoint edges.
Hence we may assume that the induced subgraph G[U] consists of two
star graphs K;, and Kj, s,t > 1. Since H; is a forbidden subgraph,

there are no isolated vertices. We suppose V(K,s) = {v4,--- ,v5+4} and
V(K] :) = {vs45,++ ,Un}, where vy ~ v; for i =5, , 8 +4; vy45 ~ v; for
j=s8+6, - ,n. In the following, we consider the following two cases.

Case 1. K, and K], are not connected.

Subcase 1.1. Both v4 and v,y5 are adjacent to vertices of {vy,vs,v3}.
We shall discuss by the following two subcases.

Subcase 1.1.1 v4 and v,45 are adjacent to the same vertex of {vy, v2, v3},
say v; ~ vq and v; ~ vs45. Since G does not contain a cycle of order 4,
then v; » vp,v3 (i =5, ,5+4,8+6,-+- ,v,). fv; v vy (i=5,--- ,5+4)
and v; » v; (j =s+86,.--,n), then G must be a subgraph of G4(p, q). If
there exists exactly a vertex of {vs,-- ,vs4+4} or a vertex of {vs46, ,vn}
is adjacent to v;, by symmetry, suppose that vs ~ v;, then s = 1. Hence
G is the subgraph of Ge(p). If there exist both a vertex of {vs, - ,v,44}
and a vertex of {vs46, *+,Un} are adjacent to v;, then s=1and n =17.
Hence G is the graph Go.

Subcase 1.1.2. wv4 and v,4+5 are adjacent to the different vertices of
{v1,v2,v3}, say v4 ~ vy and vg45 ~ vo. Then v; » vp,v3 fori =5,... ,s+4
and v; » vy,v3 for j = s+6,--- ,n since G does not contain a cycle of order
4. lfv v (i=5,---,5+4) and v; » v2 (j = s+6,--- ,n), then G must
be a subgraph of G4(p, q). If there exists exactly a vertex of {vs,--- ,vs44}
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or a vertex of {vs4,** - ,Un} is adjacent to vy, by symmetry, suppose that
vs ~ vy, then s = 1. Hence G is the subgraph of G3(p). If there exist both
a vertex of {vs,+-- ,Vs+4} and a vertex of {vs46,:+,vn}, then s =1 and
n = 7. Hence G is a subgraph of Gs.

Subcase 1.2. At most one of v4 and v,4+5 is adjacent to the a vertex
of {v1,v2,v3}, say, v; % vsys for ¢ = 1,2,3. Then there exists a vertex
S8y Vs46 in {Vsy6,+** ,Un} is adjacent to a vertex of {vy,v2,vs} such that
vs46 ~ v1. Then n = s + 6. Hence G is a subgraph of G3(p).

Subcase 1.3. None of v4 and v,45 is adjacent to the a vertex of {v1, v2, vs}.
Then there exists a vertex of {vs, -+ ,Un}, say vs, and a vertex of {ve46, -+ ,Un},
say vs46, adjacent to a vertex of {v;,vs,v3}. Thenwehaves = landn=7.

If v5 and v; are adjacent to a same vertex of {v,vs,v3}, say vs ~ v; and

v7 ~ vy, then G must be a subgraph of G3(p). If vs and v7 are adjacent to

the different vertices of {v;,v2,vs}, say vs ~ v, and v7 ~ vs, then G must

be a subgraph of Gs.

Case 2. K, and K], are connected.

Subcase 2.1. v, is adjacent to vs45. Since G does not contain a cycle
of order 4, we have v and v,.5 do not adjacent to different vertices of

{v1,v2,v3}. Then we follow the following three subcases.

Subcase 2.1.1. v, and v,4s are adjacent to a vertex of {v;,vq,v3}, say
v1 ~ vg and v ~ Vs45. Since G does not contain a cycle of order 4, we have
v; » {v1,vp,v3} for i = 5,--- ,s+4,5+6,--- ,n. Then G be a subgraph
of G4(Pa Q)

Subcase 2.1.2. Exactly one of v4 and v,45 is adjacent to a vertex of
{v1,v2,v3}, say vg ~ 1.

If there exists a vertex of {vs46,- -+ ,Un} Say, U546 is adjacent to vy or
v3, we have n = s + 6 since Hs is a forbidden subgraph. If v; = v,
(i =5,---,s+4), then G is a subgraph of Ga(p,q). If there exists some
vertex, say vg is adjacent to v, then s = 1. Hence G is a subgraph of Gg.

If v; # v3,v3, for i =s+6,--- ,n. Ifv; o vy, 1 =5,.--,54+4), then G
is a subgraph of Ga(p, g). If there exists some vertex, say vg is adjacent to
v1, then n = s + 6. Hence G is the graph G3(p).

Subcase 2.1.3. Both of vy and v,45 are non-adjacent to {v;,vs,v3}.
Then there exists a vertex of {vs,--- ,Vs4+4,Vs46,'** ,Un} is adjacent to a
vertex of {v1,vs,v3}, say vs ~ v;. Since H is a forbidden subgraph, we
have s = 1. Since there are no cycle of order 4, we have v; = v; for
i =58+6, .- ,n. If there exists a vertex of v,4s,-- - ,vn is adjacent to vy or
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U3, SaY Vs46 ~ U2, then n = 7. Hence G is a subgraph of Gg. If v; = v, v3
fori=s+86,---,n, then G is the subgraph of Ga(p, q).

Subcase 2.2. v, is adjacent to one vertex of {vste, - ,Un}, sy v4 ~
vs46. Since H; is a forbidden subgraph, we have v and v,45 do not adja-
cent to the same vertex of {vy,v2,v3}. Then we follow the following three

subcases.

Subcase 2.2.1. wv4 and v,45 are adjacent to vertices of {v;,ve,v3}, say

vy ~ vg and v3 ~ vgys. If v; 0 v) fori =5,---,5+ 5 and v; » vy for
i=s5+6,---,n, then G is a subgraph of G3(p, q). If there exists a vertex
of {vs, -+ ,vs45}, say vs ~ v, or there exists a vertex of {vs46,---,vn},

say vUs46 ~ Uz, then s =2 and n = 7. Hence G is the subgraph of Gs.

Subcase 2.2.2. Exactly one of vq and v,45 is adjacent to a vertex of
{v1,v2,v3}, say v4 ~ v;. Since G does not contain a cycle of order 4,
therefore v; » vp,v3 ({ =5,.-,s+4,s+6) andv; » v, (j =s5+5,5+
T,ooo,m). Ifv; wvy, vo, v3 fori =5,--- ,s+4,8+7,--+ ,n,then Gis a
subgraph of Ga(p, g). If there exists a vertex of {vs,: -+ ,vs45}, say vs ~ v;
or a vertex of {vs47, -+ ,Un} say ve47 ~ vg (or v3), then s=2and n="7.
Hence G is a subgraph of Gg. If vs46 ~ v1, then G is the subgraph of G3(p)

or G4(p,q).

Subcase 2.2.3. Both of v4 and v,;5 are non-adjacent to {vi,vs,vs}. If
vg46 is adjacent to a vertex of {v;,vq,vs}, then similarly, we have G is the
subgraph of G3(p) or G4(p, ). If there exists a vertex of {vs, -+ ,Vs44, V47, "
then we have s = 2 and n = 7. Hence G is a subgraph of Gg.

Subcase 2.8. There exists a vertex of {vs,---,vs+4} is adjacent to a
vertex of {Vs46,- - ,Un}, S8y Us ~ vs46. Since H) is a forbidden subgraph,
we have n = s 4 6, or s = 1. By symmetry, we suppose that n = s + 6.
Since H, is a forbidden subgraph, we have there are no two vertices of
{va, -+ ,vn} are adjacent to a vertex of {v;,ve,vs}. Then we follow the
following three subcases.

Subcase 2.3.1. v, and v,45 are adjacent to vertices of {vy, v2,v3}, since
H, is a forbidden subgraph, v4 and v,45 are not adjacent to the same vertex
of {v1,v2,v3}, we may assume that v; ~ v4 and v ~ v545. Then s = 1 and
n=7and v; » v; for i =1,2,3 and j = 5,7, therefore G is the subgraph
of Gg.

Subcase 2.3.2. Exactly one of v4 and v,45 is adjacent to a vertex of
{v1,v2,v3}, say vy. If v4 ~ vy, then v; » vy for i = 5,---,s + 3 and
Uspq % V2,v3 since H; is a forbidden subgraph. Moreover, since H; is a
forbidden subgraph, vs1e » v1. If v444 ~ vy, then s = 1, n = 7 and
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vs+6(v7) % ve,v3. Hence G is the subgraph of Gg. Similarly, if vs44 = v;
and v,46 » v2,v3, then G must be the subgraph of Ga(p,q). If vs44 » v;
and v,46 ~ V2 Or V3, then s =1 and n = 7, hence G is a subgraph of Gg.
If vg45 ~ vy, then s =1 and n =7, therefore G is the subgraph of Gs.

Subcase 2.2.3. Both of v; and v,4s are non-adjacent to {vi,v2,vs}.
Since H, is the forbidden subgraph, there is no vertex of {vs,-- ,vst+3} is
adjacent to {v1, v2,v3}. Then either v,44 or 8,45 is adjacent to a vertex of
{v1,v2,v3}, hence we have s = 1 and v7 = v, since G does not contain a
cycle of order 4. Then G is the subgraph of Gs. O

Lemma 3.3. Let G € T',,.. If G does not contain a cycle of order 3, 4 and
contains a cycle of order 5, then G is a subgraph of G1(p,q,7).

Proof. Since G does not contain a cycle of order 3, 4, and contains a cycle
of order 5, G contains a cycle of order 5 as an induced subgraph of G,
say v; ~ vi4; for i = 1,2,3,4 and vy ~ vs. Moreover, v; is not adjacent
to two vertices in {vy,--+ ,vg} for i = 6,--+ ,n since G does not contain
a cycle of order 3. On the other hand, since H; is a forbidden subgraph,
the subgraph of G induced by the vertex set U = {vg,- -+ ,vn} contains no
edges. We may assume that vg ~ v;. If there exists a vertex, say v, in U
such that vz ~ ve (or v7 ~ vg), then v; » v; fori =8,..- ,n and j = 3,5
(or 2), since G does not contain H; as a subgraph. Hence G must be a
subgraph of G1(p,q,7). If v; ®w v;, for i =7,---,n, j = 2,5, then G must
be a subgraph of Gi(p,q,7). 0

Lemma 3.4. Let G € T,,. If G does not contain a cycle of order 3, 4,
5 and contains a cycle of order s > 6, then G is a subgraph of one of
Gi(p,q,7) and the cycle of order 7.

Proof. Since H, is a forbidden subgraph of G, G does not contain a cycle
of order s > 8. Moreover, if G contains a cycle of order 7, then G must be
the graph of the cycle of order 7. Hence G contains a cycle of order 6 as
an induced subgraph of G, say v; ~ vg41 fori=1,--- ,5 and v; ~ vg. On
the other hand, since G does not contain Hj as a subgraph, the subgraph
of G induced by the vertex set U = {v7, -+ ,vn} has no edges. We may
assume that v ~ v;. Then vy % v; for j = 2,-..,6. Further, v; » v; for
i=28,---,nand j = 2,4,6. Hence G must be a subgraph of G;(p,q,7). O

Combining Lemma 2.1 with the result of X.D. Zhang in [16], we get the
following lemma immediately.

Lemma 3.5. Let G € T',,. If G is a tree, then G must be a subgraph of
Gl(p’ q, T) or G7(p’ q)

We sum up the results of Lemma 3.1-3.5 as follows.
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Theorem 3.1. A connected graph G of order n belongs to I'y,, ie. a
connected graph G does not contain any subgraph isomorphic to any one
of the graphs H,-H; if and only if G is a subgraph of one of the following
graphs: G1(p,q,7), G2(p,9), Ga(p), Ga(p,9), Gs(p,9), Ge(p), G7(p,q), Gs,
Gy and the cycle of order 7.

We now present our main result.

Theorem 3.2. A connected graph G of order n > 4 satisfies q4(G) < 2
if and only if G is a subgraph of one of the following graphs: G,(p,q,r),
GZ(p: Q)’ G3(p)’ G4(P, Q), G5(p: Q): Gﬁ(p): G7(P, Q); GB; GQ and the Cyde
of order 7.

Proof. The assertions follow from Theorem 3.1 and Lemmas 2.3-29. O
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