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Abstract

Let T" be the rank three M24 maximal 2-local geometry. For the two
conjugacy types of involution in Mba4, we describe the fixed point sets of
chambers in I
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Introduction

Let I" denote the rank three My, maximal 2-local geometry - the elements of T’
being the octads, trios and sextets of the Steiner system 5(24, 8,5). An octad is
defined to be incident with a trio if it is one of the octads of the trio, incident
with a sextet if it is the union of two of the tetrads of the sextet. A trio and
a sextet are incident if the three octads of the trio are unions of the tetrads of
the sextet. '

In [2) the combinatorial structure of C, the chamber graph of T', is analysed
extensively. For background on chamber systems and sporadic group geometries
see [3]. The purpose of this note is to investigate and describe in detail the fixed
point sets of chambers for involutions in Mayg, using [2] as our starting point.
Since for all ¥ € T, Stabp,,y is a 2-local subgroup of Ma4, I' is arguably a
characteristic 2 geometry and so such sets are of interest. In fact, these sets
have featured in some of the calculations in [4].

Put G = M4 and let §) be a 24-element set. We assume that the Steiner
system S(24, 8, 5) on Q which G stabilizes is given by the MOG [1]. So we have

01]10; |03

where 0,, 0, and O3 are the heavy bricks. We denote the set of all sextets of
by S. A sextet will be described by using ¢ € {1, ..., 6} to identify the 4-element
subsets of the MOG which are the tetrads of the sextet. So, for example, Sy,
the standard sextet is given by
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The stabilizer in G of Sp has, apart from {Sp},three orbits on S which we
name oy, 01, 0s. Representatives for these orbits are, respectively,

5 1]1 3|3 5 3 1]3 33 3
6 112 4|3 6| |1 2|4 4/4 4f
2 5|3 2(5 4|'|1 2|5 5|5 5|3
2 6({4 1|6 4| |1 2|6 6|6 6

1 1]3 3[5 5

1 1|3 3|5 5

2 2|4 4|6 6

2 2(4 4|6 6
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(See {1] or [2] for more details.)

We shall describe a chamber by first specifying a sextet, then the pairings of
the tetrads that give the incident trio and the appropriate octad. For example

1 2[8 4[5 6
|1 2|3 4]5 s
=1 2|3 4{5 6
1 2|3 4|5 6
12[34[56

is the chamber consisting of the standard sextet, the tric {Oy, Oz, O3} and the
octad O,.

Put B = Stabgcp, and recall that |B] = 219.3. For k € N, Di(co) denotes
the set of chambers in C whose distance (in the usual graph theoretic sense)

from ¢p is k.
Now G has two conjugacy classes of involutions - as representatives we select

””=||()(>Il a"dv=55""~

|| NI

We use S, (respectively S,) and C. (respectively C,) for the set of sextets
and chambers fixed by z (respectively y). Before stating our main result on C,
and C,, we discuss the B-orbits of S. Let X € S. If X € oy, then there will be
exactly two columns of the MOG and four tetrads of X each of which intersect
these two MOG columns in one element. Either of these two columns (of the
MOG) will be called mized cols of X. When X € o1, there will be exactly two
columns of the MOG for which two of the tetrads of X intersect these columns
in 3-elements - these columns we call 3-cols of X. For X € o3, the six columns
of the MOG are partitioned into three pairs by the rule that two tetrads of X
each intersect both columns of the pair in two elements. Any three of these
pairs of columns we refer to as a col pair of X. From [(3.1);2], the 12 orbits of
B on & are as follows:-
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B-ORBIT | SIZE DESCRIPTION
{So} 1 standard sextet
o) 96 | both mixed cols in O
a(()mz) 192 | both mixed cols either in O; or in O3
03384) 384 | one mixed col in O3, one mixed col in O3
aou 58] 768 | one mixed col in Oy, one mixed col either in O, or in O3
o\ 16 | both 3-cols in O;
a?z) 32 both 3-cols either in Oy or in O3
a&“’ 64 | one 3-col in Oy, one 3-col in O3
U?m 128 | one 3-col in Oy, one 3-col either in O; or in O3
aéﬁ) 6 each col pair contained in one of Oy, O,, O3
o 12 | one col pair in Oy, no col pairs either in O or in O3
a:(,w 24 | one col pair in O3, no col pairs either in O; or in O3 or
one col pair in O, no col pair either in O; or in Oy
o;.(*“) 48 | no col pairs in any of Oy, O3, O3

Theorem 1 The chambers in C; and C, are described in Tables I and 2 respec-

tively. Moreover

(i) ICz| = 375, |C,| = 959;

(i) {co}UD (eo) € Ca, ID2(co) NCal = 36, | Da(co) N Caf = 40, [Da(co) N Cy| =
96, |Ds(co) NCz| = 160 and [Dg(co) NC,| = 32; and

(i4i) {co} U D1(co) U Da(co) € Cy, |Da(co) N Cy| = 136, | D4(co) NC,| = 160,
[Ds(co) NCy| = 224, |Dg(co) NCy| = 256 and | D7(co) NC,| = 128.
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0] CHAMBERS,c | SIZE | ROW | DISC |
So all chambers incident with Sp(see [(3.2);2])
T 1|3 3]5 5
1 1(8 3]5 5/ @ | 123456 1x6 1 1
2 2[4 4|6 6| 12|34]56, 12|34)56 26 2 2
2 24 4|6 6 12(35(46, 12/36|45 2x6 3 2
6
27 1]3 5[4 6 12/34/56 1x4 1 2
1 2|3 5[4 6|  ax | 12[34]56, 12|3456 2x4 3 3
1 1|4 6|3 5| 12/35]46, 12|36(45 2x4 2 3
2 2/4 6/3 5 P 4x4 5 4
4
3 5]1 2[4 6 12/34J56 1x8 1 3
4 6|1 113 5( oo 123456, 123456 2x8 3 4
3 52 1|4 6|73 12|35/46, 12|36]45 2x8 2 4
4 6|2 2|3 5 P 4x8 5 5
4 B B 12/34(56 1x@x8) | 1 | 4
> al1 6l4 6 eol®™ | 12/34/56, 12)34/56 | 2x(3x8) 3 5
1 al1 sls s 13[24]56, 14[23|56 | 2x(3 x 8) 2 5
3Ix8
2 5]2 5]1 3 12/34/56 1x8 1 4
3 6[1 5(2 3| s | 1234]56, 123456 2x8 3 5
3 5{1 6|1 4|7 12/35|46, 12|36]45 2x8 2 5
4 6|2 6/2 4 P 4x8 5 6

Table 1 C; (P; = {15|34/26, 16|34]25, 13]24|56, 14/23|56 })
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5(¢) CHAMBERS, ¢ [SIZE | ROW | DISC |
) all chambers incident with Sp(see (3.2) of [2])
T 3[5[1[3 5 12/3456 1x32 | 1 5
2 4/6|1[3 6| g 13[24]56, 14|23|56 2x32 | 2 6
3 2(2|5(5 4|€% 12|34|56, 12(34/56 2x32 | 3 6
4 1|2]|6|6 4 P2 4x32 | 4 7
32
2 1]3 3[3 3
1 2|4 4[4 4 (16) 12[34/56, 12/35}46, 3x16 1 3
1 2|5 5|5 s5|€° 12[36]45 ax16 | 2 4
1 216 6lé 6 12(34(56, 12|34|56
36
1 1]3 3]5 5
1 1|3 3|5 5 . ,
=y 2la ale 6|98 | all chambers incident with S'(see(3.2) of [2])
2 2|4 4|6 6
2
H EE M 12{34/56 1x4 1 1
2 2l4 4l6 6 eal® 12)34/56, 12|34|56 2x4 2 2
T 1ls 3ls s 12/35/46, 12|36]45 2x4 3 2
4
T 2]3 4[5 6
2 1|3 4|5 6 o .
$"=15 215 6|3 4|98 | sl chambers incident with S"(see(3.2) of (2))
1 1|5 6[3 4
: f i g g 2 12/3456 1x8 1 2
o 103 6l4 s € ol 12|35(46, 12/36[45 2x8 2 3
S A B 12|34/56, 12|34/56 2x8 3 3
3 1[5 6]4 2 12{34]56 1x8 1 3
3 1[6 54 2| qof 13]24/56, 14/23)56 2x8 2 4
4 2|6 6|3 1[€% 12|34/56, 12{34|56 2x8 3 4
4 2|5 5|3 1 P2 4x8 4 5
1 4]2 6[3 5 12/34|56 1x16 | 1 4
2 3[2 5(3 6 _a 13[24/56, 14|23|56 2x16 | 2 5
2 4|1 6|4 6| 12/3456, 1234/56 2x16 | 3 5
1 3|1 5|4 5 P, 4x16 | 4 6
16
Table2 C, (P2 = { 13|24/56, 13|24]56, 14/23|56, 14|23|56 })
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The first column of Table 1 gives a representative sextet (not necessarily a
Cp(z)—orbit representative) which is fixed by z. Under the sextet we record the
number of sextets it represents. The second column describes all the chambers
which are fixed by z and are incident with the sextets in the first column. In
columns three and four we record the number of the chambers (in column two)
and the row the chambers are to be found in (3.2) of [2]. The final column gives
i for which the chambers belong to D;(co) - this data follows from the fourth
column and (3.2) of [2]. Table 2 gives the analogous information for y. The sets

o$12* o3Y* and o will be defined later.

- -

Observe that p, € B and that {1, p, p?, 7, o7, p>7} is & complete set of right
coset representatives for Cg(z) in B.

1 412 6|3 5
2 3|2 5|3 6 2
Set S; = 2 4|1 64 6,52=Sf, S3 =8 and Sy = 8] =
1 3|1 5[4 §
4 1(6 2[5 3
3 2|5 216 3 (48) (12)+ . (24)+
3 105 115 4t Note that S; € o5 . Let g3 " (respectively o3~ ')
4 2|6 1(6 4

denote the sextets in 0'312) (respectively agu)) all of whose tetrads intersect the
partition of Q given by the <z>—orbits in 1.

Lemma 2 (i) S; = {So}uo{®us{! P uoP*us e @usse(=lysye @yglel=)
where la:(f)l =6, Ia':(,lz)' = 4, |a§24)* = 8 and S‘-CB(") =8 fori=1234;
an

(i) = induces a permutation of cycle type 1222 on the teirads of sextets in
o$®usCe® 5P |y §F5) ond of type P on the tetrads of the sextets in
0§12)t U a§24)- U 5408(:).

Proof. Let S € ;. Suppose S € og. Then S will have a mixed col and
hence, as z is fixed-point-free on the MOG columns, = must interchange (say)
tetrads 1 and 2 and tetrads 3 and 4 of S. Now there will be a MOG column
intersecting tetrad 1 of S in two elements and intersecting tetrads 5 and 6 of S
each in one element. This is incompatible with = interchanging tetrads 1 and 2

311



of S, and thus S ¢ og. If S € 01, then S would have a 3-col, whence z cannot
fix S. Therefore we must have S € o3. Clearly Sp € S:; and, by inspection,
aés) C S; (a:(;s) consists of the sextets in the third column of the MOG). The
fifth and sixth columns of the MOG comprise the set agm) and 0(24)15 obtained
from 0(12) by moving (bodily) the left-most brick to either the O, or O3 position.
Checking reveals that S; N a§'® = o§{*** and 8; No{** = ¢@**. Turning to

(48) we observe that StabgS; < Cg(x) and hence o (48) is the union of six
CB(:c) —orbits each of size 8. For representatives of these orbits we may take
Sl,Sg,Sg,S,;,S{"',Sf?T. It is readily seen that the latter two sextets are not
fixed by = and therefore S, is as stated. The action of z on the tetrads of the
sextets in S; is clearly observed, so proving Lemma 1. =

375 13 3 T 42 6]3 5

|2 416 1|3 6 (96) 12 3|2 5(3 6
LetSs=l3 ol 5|5 4f(€00 JandSe=lo I 6|4 ¢

4 1|2 6|6 4 1 3{1 5]4 5
(€ a§™®).

Let o§“" be the set of sextets X in a:g“) with the property that if T is a

tetrad of X with TN Oy # @, then TN (0, UO,) is a < x >-orbit.

Lemma 3 (i) S, = {So} UST2W Ua{"® Uol® LGP Ut USSR where
Iscm)l 32, | (16)| = 16, I (6)' =6, I (12)| 12, l (24)1l =8 and 'SCB(!I)I =
16; and

(i) y induces a permutation of cycle type 15 on the tetrads of two of the
seztets in o) and four of the sextets in o§'? and of cycle type 12%on the
remaining four sextets of ) and eight sextets in o. (12) On the tetrads of the
sga:tzets in ch Wy S‘Ca (y) y induces type 1*2 and on those in ag ® y induces
1222,

Proof. Let S € 5,.We first consider the case S € 0. If S € 0(192) U

(384) U 0(768) then S has a mixed col in Oz U O3 whence y acts fixed-point-
free on thls column. But S has a tetrad which has a non-empty intersection

with this mixed col and O,, a contradiction. Therefore S € 0696). Noting that
StabpSs < Cp(z) € Syla B we see that 0(96) is the union of three Cg(y)—orbits
each of size 32. As representatives for these three orbits we may take S5, SE
and S” and readily we see that y fixes S5 but fixes neither of S and S” Thus

S:Nog = SCB(”)

Because the sizes of the B—orbits of o1 are all coprime to 3, they are also
Cpg(y)—orbits. Checking B—orbit representatives (see (3.2) of [2]) reveals that
SyNoy = 0(16) That a:(,s) u a:glz) U a§"‘” C S, is also reachly checked. Finally,

looking at a( ®) we note that StabgSe < Cp(y) and so 0'3 ) is the union of
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three Cp(y)—orbits each of size 16 with representatives Sg, S, ng. Thus, as y
fixes Sg but not S£ and ng, we obtain S; Nas = o{® U D U a:(fm usSeW),
so giving (i), and (ii) follows by inspection. ®

Proof of Theorem 1

From Lemma 2 we have S;. Let X € S;. Now if z induces 16 on the tetrads
of X, then all 45 chambers containing X will be fixed by z. While z inducing
1222 on the tetrads of X (suppose z induces (34)(56)) means that z fixes the
chambers determined by {12|34|56, 12|34|56, 12{34|56, 12|35|46, 12|36|45}. And
if z induces 23 on the tetrads of X (say z induces (12)(34)(56)) then z fixes the
chambers given by {12|34|56, 12|34|56, 12|34|56, 12|35{46, 12|36|45, 15|34|26,
16|34|25, 13|24|56, 14|23|56}. These observations together with the information
supplied by Lemma 2 yields C. as given in Table 1. Similarly, Lemma 3 gives
us Cy.
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