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Abstract

Fouquet and Jolivet conjectured that if G is a k-connected n-
vertex graph with indeEendence number > k > 2, then G has
circumference at least % ""':"‘ . This conjecture was recently proved
by O, West and Wu. In this note, we consider the set of k-connected
n-vertex graphs with independence number o > &£ > 2 and circum-
ference exactly ﬂ'—‘-":"—"kl We show that all of these graphs have a
similar structure.
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1 Introduction

We only consider finite graphs without loops or multiple edges. For a graph
G, we use V(G) and E(G) to denote the vertex set and edge set of G, respec-
tively. For any S C V(G), define G — S to be the subgraph of G with vertex
set V(G)—S and edge set {e € E(G) : e is not incident with any vertex in

S}. We use G[S] to denote the subgraph of G induced by S. A graph G is
k-connected if |V(G)| > k and every subgraph obtained from G by deleting
fewer than k vertices is still connected. The connectivity of G, denoted by
#(G), is the maximum integer k such that G is k-connected. An independent
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set of a graph G is a set of pairwise nonadjacent vertices. The independence
number of G, denoted by a(G), is the maximum size of such a set. The
circumference of a graph G, denoted by ¢(G), is the length of a longest
cycle in G. A spanning cycle (respectively, spanning path) is often called a
Hamilton cycle (respectively, Hamilton path).

In 1972, Chvétal and Erdds (2] proved that every k-connected graph with
independence number o < k contains a Hamilton cycle. There are infinitely
many graphs showing that the condition a < k is sharp. For a > k, Fouquet
and Jolivet [3] proposed the following conjecture.

Conjecture 1.1 Let G be a k-connected n-vertez graph with independence
number a. If a > k > 2, then ¢(G) 2 ﬂ'—'i:;kz

The following two graphs H; and H,; demonstrate the lower bound of
¢(G) in Conjecture 1.1 is best possible. Let a,k and m be three positive
integers such that & > k > 2 and m > 2. Let G be an arbitrary graph with
k vertices, and let K; and K,, be the complete graphs of order & and m,
respectively. Let oK, be the union of a vertex disjoint copies of K,,. We
define H; to be the join of the two graphs G and aK,,, and H; to be the
graph obtained from the join of the two graphs Kx and aK, by deleting an
edge (or even more edges) with one end in K} and the other end in aK,,.
It is easy to check that for each ¢ = 1,2, we have |V(H;)| = n = k + am,
K(H:) =k, o(H;) = o and c(H;) = k(m + 1) = Kotezk)

Kouider (6] proved that if G is a k-connected n-vertex graph with inde-
pendence number a then the vertices of G can be covered by at most [§]
cycles. This implies that G contains a cycle of length at least TE%T' which

is close to the conjectured threshold of 2k + ﬂ%‘—ﬂ Fournier [4] proved
Conjecture 1.1 for the case that « = k 4+ 1 or @ = k + 2 in his doctoral
dissertation. In 1984, he [5] further showed that Conjecture 1.1 holds for
k = 2. The case that k = 3 was verified by Manoussakis [7]. Chen, Hu and
Wu (1] proved that if & > k > 4 then ¢(G) > k(""': = (k's)z(k_4). This
shows that Conjecture 1.1 is true for £k = 4. In the same paper, they also
proved this conjecture for & = k + 3. Recently, O, West and Wu [8] proved
Conjecture 1.1 completely.

In this note, we consider the structure of k-connected n-vertex graphs
with independence number a > k > 2 and circumference exactly ﬂ"++'kl
We prove the following result.

Theorem 1.2 Let G be a k-connected n-vertez graph with independence
number a > k > 2. Then ¢(G) = ﬂn_-*;q_—_kl if and only if there exists a
k-cut S in G such that G — S contains ezactly o components, each of which
is a complete graph of order m (m € N).
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The two graphs H; and Hj defined above show that the subgraph of
G induced by S may not be a complete graph or some vertex in S may
not be adjacent to all the vertices of G — S. Hence Theorem 1.2 is best
possible in some sense. Note that Theorem 1.2 is not true for o = k. Let
k,my,ma,..., mr_1 be k positive integers such that £ > 3 and m; > 3. As
before, let K and K,,, (1 < i < k — 1) be the complete graphs of order
k and m;, respectively. Let H be the union of the k¥ — 1 vertex disjoint
complete graphs K,,,. We define H3 to be the graph obtained from the join
of the two graphs K; and H by deleting an edge with both ends in Kp,,.
Clearly, xK(H3) = a(H3) = k and Hj has a Hamilton cycle. But H3 —V(K})
contains exactly k — 1 components and some component of Hz — V(K}) is
not a complete graph.

We conclude this section with some notation and terminology. Let G be
a graph. A block in G is a maximal subgraph of G containing no cut vertex.
Let F and H be two vertex disjoint subgraphs of G. A path from F to H
(or an (F, H)-path) in G is a path with one endvertex in V(F'), the other
endvertex in V(H) and no internal vertex in V(F) U V(H).

We write A := B to rename B as A. For any graph G and any v € V(G),
we use Ng(v) to denote the neighborhood of v in G. For any subset S of
V(G), we let Ng(S) := (U,es No(v)) — S. For a specified orientation of a
cycle C and for distinct vertices z,y of C, we use zCy to denote the subpath
of C from z to y in the given orientation.

2 Proof of Theorem 1.2

In this section, we prove the main result of this paper.

The following result was virtually proved by O, West and Wu [8, Lemma
3.2 and Corollary 3.3]. Since we only consider the set of k-connected n-
vertex graphs with independence number a > k > 2 and circumference
ﬂ"—":’—"—kz, we state this result as follows.

Lemma 2.1 Let G be a k-connected n-vertez graph with independence num-
ber a > k > 2 and circumference ¢(G) = M and letl = a—k. Then
there exist cycles Co,Cy,...,C1 in G such that

(i) (G —Uio V(Ci)) =a—k—i for0< i<,
(i) |V(C)| = Hote=h) for0< i<, and
(ili) [V(Ci) = V(Co)l = [V(Ci) —Uio V(Cy)| = K@U —1 for1 <<

Proof. By [8, Lemma 3.2], there exist cycles Co,C},...,C; in G such that
a(G - U;.=0 V(C;)) La-k—ifor0<i<!and |V(C;) - U;.;}, V(C))| <
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Iﬂgﬂl —1for 1 £i <. Since ¢(G) = E('H;;—’Q, it follows from the proof
of [8, Corollary 3.3] that |V(Co)| = X2te=8) and |V(C;) — Uiz, V(Ci)l =
lﬂk‘ill —1for 1 < i <. Then by the construction of C; (0 < i < {)
in 8, Lemma 3.2], we see that a(G Ujﬁo V(Cj))=a—-k—ifor0<i<],
IV(Ci) = V(Co)l = [V(C:)—UiZh V(Cy)| and [V(C)| = [V(Co)l for 1 S i <
l. Hence the assertion of Lemma 2.1 holds. [ |

We can now prove Theorem 1.2. The idea is partially inspired by O,
West and Wu [8, Theorem 3.1}.

Proof of Theorem 1.2. If there exists a k-cut S in G such that G — S
contains exactly o components, each of which is a complete graph of order m
(m € N), then n = k+ am. Now it is easy to check that ¢(G) = k(m+1) =
—(2""—“-_—-1 So we need only to consider the opposite direction.

Suppose oG) = JM Then by Lemma 2.1, there exist cycles
Cy,Cy,...,C1in G satlsfymg (1), (i) and (111) By (i) and (iii), |V(C;) —
V(Co)|—14—°'—)-l—l=&f§; 1=2z%for 1 <i<1l Since 2=k isa
positive integer, we have n =k +am (m € N). Foreach 1 <i <[, let V; =
V(C;) = V(Ch) and let G; = G[V;]. Then |V (Cy)| = ﬂﬁi‘fﬂl =k(m+1)
and |V;| = ""‘ = m. By (iii), we see that ViNV; =0 for 1 <i<j<lif
1>2.

We first consider G;. By (i), we have a(G;) = a(G — U Y V(Cy)) =1.
This implies that G; is a complete graph of order m. Let B be the block
of G — V(Co) containing G;. Since G is a k-connected graph, by Menger’s
Theorem, for each b € V(B), there exist k& paths from b to Cy in G that
pairwise share only b (since |V(Co)| > k). We call these k paths a (b, Cp)-
fan. For a fixed orientation of Co, let S = {s1,52,...,8,} be the set of
endvertices on Cp of all the (B, Co)-paths, and assume that s;,s3,...,5p
occur on Cp in the given orientation. Then p > k. By the maximality of B,
any two (B, Cp)-paths with distinct endvertices in B are internally disjoint.

We claim that
(1) p=k and |V(5;Copsi41)| =m+2for 1 <i<k.

First, suppose that |V(B)| = 1. Then B = G; and m = 1. Let b be the
only vertex in B. By the maximality of B, we have Ng(b) = S. Choose s; €
S such that |V (s;Cos:41)| is minimum, where s, := s;. Then by the pi-
geonhole principle, we have |V (3;Cpsi41)| < m+2 = 3. Let C := 3,4,Cps;U
{bs,-,bs,-+1}. If |V(s,~C’os.-+1)| = 2, then IV(C)' = |V(Co)| + 1, which con-
tradicts the assumption that ¢(G) = |V(Co)|. Hence |V (s;Cpsiy1)| = 3. By
the choice of s;, we deduce that p = k and |V (5;Cpsi41)| =3 for 1 <i < k.
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So we may assume that |V(B)| > 2. Let S; = {s;,,8i;,...,8;,} € S
be the set of endvertices on Cp such that for each s;; € S, there exist
two disjoint (B, Cp)-paths P;; and P;, 41 in G with V(P;;) 0 V(Co) = {sy;}
and V(P 4+1) N V(Cy) = {8i;41}. Clearly, S; # 0. Let b;; € V(B) and
bi;+1 € V(B) be the other endvertices of F;; and P;; 41, respectively. Since
B is a block of G — V(C)) and G; is a complete graph, by Menger’s Theo-
rem, we can always find a path P in B from b;; to b;;4; containing V; (by
considering |{b;,,bi;41} N Vi| = 0,1 or 2). Now let C := s;,41Cps;; UF;; U
PUP;, 4. If |V(s4;Co8i;41)] £ m +1, then we have |V(C)| > [V(Co)| + 1,
which contradicts the assumption that ¢(G) = |V(Cy)|. So we know that
|V (si,C0s1;+1)] = m+2 for 1 < j < g, and hence g < k.

Let S = § — S;. By the definition of Sy, for each s; € S, there exist
two internally disjoint paths P; and Pj41 in G from the same vertex of G —
V(Co), say v;, to Co such that V(P;)NV(Co) = {s;} and V(P;1)NV(Co) =
{sj+1}. It is possible that v; ¢ V(B). Let C := s;41Cos; U P; U Pjy. If
|V(s;Cos;+1)| = 2, then |V(C)| = |V(Co)|+1, contradicting the assumption
that ¢(G) = |V(C)p)|. Hence we have |V (s;Cos;4+1)| = 3 for each s; € Ss.
For each b € V(B), a (b, Cp)-fan has k endvertices on Cy. Since ¢ <, at
least k — g of them are contained in S2. Moreover, again by the definition of
8, for distinct vertices of B, these endvertices contained in S, are pairwise
distinct. Therefore, we see that |S2f =p — ¢ > |V(B)|(k — q).

Then we have k(m + 1) = |V(Co)| 2 g(m + 1) +2(p—q) 2 ¢(m + 1) +
2|V(B)|(k—q) = g(m+1) +2m(k — q) = (2k — g)m + q. Since |V(B)| > 2,
it is easy to check the above inequality holds if and only if p = ¢ = k. So
we have |V (s;Cys; +1)| =m + 2 for 1 < ¢ < k. This proves (1).

We also claim that
(2) B=aG,.

Suppose for a contradiction that B # G;. Then |V(B)| > 2. By (iii),
G-V, is 2-connected. Then by Menger’s Theorem, there exist two internally
disjoint (B — V;, Co)-paths Py and P, in G — V; with distinct endvertices
on Cy. Without loss of generality, let by € V(B) — V; and s; be the two
endvertices of P, and let b, € V(B)—V; and s; # s; be the two endvertices
of Pg.

First, assume that & = 2. Then s; = s2. Suppose b; # by. Since B is
a block of G — V(Cp) and G is a complete graph, by Menger’s theorem,
we can always find a path P in B from b, to by containing V;. Let C :=
59Cos1UPLUPUP,. Since by, € V(B)—Vz, we have lV(C)l > |V(Co)|+2,
which contradicts the assumption that ¢(G) = |V(Cj)|. So we may assume
that b; = bo. Then there must exist a path P; (disjoint with P;) in G from
B—{b1} to Co with V(P3)NV(Co) = {s2} or a path P; (disjoint with P) in
G from B — {b1} to Cp with V(P§) NV (Co) = {s1}; for otherwise, b; would
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be a cut vertex in G, a contradiction. By symmetry between s; and ss, let
P; be a path (disjoint with P,) in G from B — {b;} to Cp with endvertices
bs € V(B) — {b1} and s3. As before, let P’ be a path in B from b, to b3
containing V}, and let C’ := s3Cps; U P, U P’ U P;. Since b, € V(B) -V},
[V(C")| 2 |V(Co)| + 1, a contradiction.

Hence we may assume that £ > 3. Then there must exist a path P,
(disjoint with P;) in G from B — {b;} to Cp with V(P;) N V(Co) = {s2}
or V(Py) NV(Co) = {sk}; for otherwise, S’ := (S — {s2,8%}) U {b1} would
be a (k — 1)-cut in G, a contradiction. By symmetry between s and s,
let by € V(B) — {b1} and s, be the two endvertices of P;. By the same
argument as before, we can find a path in B from b; to by containing V; and
construct a cycle of length at least |[V(Co)| +1 in G (since b, € V(B) - V),
again a contradiction. So (2) holds.

We further claim that
(3) No(Vi) = 5.

Suppose to the contrary that Ng(V;) # S. Then by the argument in (1)
and by (2), we have [V}| = |V(B)| 2 2. Since G is a k-connected graph,
[Ne(Vi)| 2 k = |S|, and hence Ng(V;) — S # 0. Let uv be an edge in G
with v € V; and v € Ng(V}) — S. By (iii), G — V; is 2-connected. Then by
Menger’s Theorem, there exist two internally disjoint (u, Cp)-paths @/ and
Q3 in G — V; with distinct endvertices on Cp. Then Q; := Q] U {uv} and
Q2 := Q4 U {uv} are two paths in G from G; to Cp with |V(Q;)| > 3 and
|V(Q2)| = 3. Without loss of generality, let s; and s; # s; be the other
endvertices of @, and Q, respectively.

Suppose that k£ = 2. Therefore, s; = s5. Then there must exist a path Q3
(disjoint with Q) in G from G;— {v} to Co with V(Q3)NV(Co) = {s2} or a
path Q5 (disjoint with Q) in G from G, — {v} to Cp with V(Q5)NV(Cy) =
{s1}; for otherwise, v would be a cut vertex in G, a contradiction. By
symmetry between s; and sp, let Q3 be a path (disjoint with Q,) in G
from G; — {v} to Cp with endvertices w € V; — {v} and s;. Let Q be a
Hamilton path in G; from v to w, and let C := 33Cps; UQ1 UQU Q3. Since
|V(@Q1)| 2 3, we have |V(C)| 2 |V(Cy)| + 1, a contradiction.

So we may assume that k > 3. Then there must exist a path Q4 (disjoint
with @1) in G from G| — {v} to Cp with V(Q4) NV (Co) = {s2} or V(Q4) N
V(Co) = {sk}; for otherwise, S’ := (S—{s2, s })U{v} would be a (k—1)-cut
in G, a contradiction. By symmetry between s; and si, let w’ € V/(B)—{b;}
and ss be the two endvertices of Q4. By the same argument as before, since
[V(Q1)| = 3, we can find a cycle of length at least |[V(Cp)| + 1 in G, again
a contradiction. So we have (3).

We then consider G;—, if | > 2. By (i), a(G[Vi-.1 U V}]) = (G -

|5 V(C))) = 2. Since Ng(Vi) NViy = 0 (by (3)), we know that G;_,

320



is also a complete graph of order m. Let B’ be the block of G — V(Cyp)
containing G;_;. Let T = {¢;,¢s,...,tp } be the set of endvertices on Cp of
all the (B’, Co)-paths, and assume that ¢1,t2,...,t, occur on Cp in the given
orientation. Then by the same argument as for G}, we can also conclude
that p’ = k, IV(tiCot,'+1)| =m+2forl1 <i<kand Ng(Vi—1)=T.

We claim that
(4) S=T.

Suppose for a contradiction that S # T. Then SNT = §. By symmetry
between S and T, we may assume that s;,ty, 82,%2,...,5k,tx occur on Cp
in the given orientation. Let sju;, soug € E(G) with uy,us € V;, and let
t1v1, tovg € E(G) with vy, vg € Vi1, If m > 2, we can choose uy, uz, v1, vz so
that u; # ug and v; # v,. Let P be a Hamilton path in G, from »; to ug, and
let Q be a Hamilton path in G;_; from v; to v2. (If m =1, then let P:=0
and Q := @) Now let C :=£2Cps UPUthosquU{slul, Saug, t1v, tz’vz}.
Since |V (51Cot1)| = |V (s2Cot2)| < m + 1, we have |V(C)| > |V(Co)| + 2,
contradicting the assumption that ¢(G) = |V(Cp)|. This proves (4).

By (i) and by the same arguments as for G| and G;—,, we know that
(5) G; is a complete graph of order m and Ng(V;) = Sforeach1 <i <.

We now consider Co. For each 1 < ¢ < k, let U; = V(8;Cosi41) —
{si,si4+1} and let Giy; = G[U;). Then |U;] = m (by (1)) and U; NU; = §
forl1<i<j<k

We claim that

(6) there is no edge in G with one end in U; and the other end in Uj for
1<i<j<k

For otherwise, let 7;7; be an edge in G with r; € U; and r; € U;. Let
Sil, S5U2, Si+1V1, Sj+1V2 € E(G) such that uy,u,v1,v2 € V1. If m > 2,
we can further choose uj,us,v1,v2 so that u; # us and v; # ve. Let P
be a Hamilton path in G; from u; to u2, and let @ be a Hamilton path
in Gy from v; to vo. (If m = 1, then let P := @ and Q := §.) Now
let C = TiCon U 7‘_7'0085 uUPU {s,-ul,sjug,rirj} and let C' := s,-+1Corj U]
$j+1Com U QU {Si+11}1,8j+1'l)2,7‘;7‘j}. Since ]U,I = IUjl = m, it is easy
to check that [V(C)| + |[V(C")| = 2|V(Co)| + 2. But this implies either
[V(C)| = |V(Co)| +1 or |V(C')| = |[V(Co)] + 1, which contradicts the
assumption that ¢(G) = |V(Co)|. So (6) holds.

By (5) and (6), we have G — S contains exactly ! + k = o components.
Since a(G) = a, we see that Gj.; is also a complete graph of order m for
each 1 < i < k. This completes the proof of Theorem 1.2. |
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