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Abstract

Our paper deals about identities involving Bell polynomials. Some
identities on Bell polynomials derived using generating function and
successive derivatives of binomial type sequences. We give some
relations between Bell polynomials and binomial type sequences in
first part, and, we generalize the results obtained in [4] in second part.
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1 Introduction

Recall that the (exponential) partial Bell polynomials B, i are defined by their
generating function:

oo i 1 00 m k
(l) ZB"”“ ($1,$2,...) ;‘- = F (zzm_n?) .

n=k m=1

and the (exponential) complete Bell polynomials A, are given by:

n
An (:L‘l,a,’g, ) = ZB""‘ (221,:1:2, ...) with Ao (2:1, Za, ) =1,
k=1
Comtet [3] studies the Bell polynomials and gives some basic properties for them.
Some applications of Bell polynomials are given by Riordan [5] in combinatorial
analysis and by S. Roman [6] in umbral calculus. Recently, by using the Lagrange
inversion formula (LIF), Abbas and Bouroubi [1] give some identities for the
partial Bell polynomials, and, Mihoubi [4] also gives some extensions involving
to the partial and complete Bell polynomials. For any sequence (z,;n > 1) with
z1 = 1 and any nonnegative integers , s, recall that Proposition 4 in [4] gives:

B((r+1)(m—1)+s,r(m—1)+5s)
2)  Bak|l,.. N
@ (B )
= (n)skB((r +1)(n — k) + sk,r (n — k) + sk)
T =B (T
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where B (n, k) := By, (21, 22, Z3, ...) . Then if we put
B((r +1)(n—k) + sk,r (n — k) + sk)
€)) Y (n,k):= ( )sk Tk Ts )
k (r(n— k) + sk) (¢ t(lls-k)-m; ")
we conclude, from (2), that the sequence (Y (n, k)) satisfies the equation:
4) Bn.x (Y (1,1),Y(2,1),Y (8,1),..) =Y (n,k).
In general, from the definition (1), if we put
1
¥ ()= me and Y (n, k) = 55 Dfo (¥ ()",

m=1

then for all integers n, k, with » > k > 1, the sequence (Y (n, k)) satisfies (4).
Hence, to find identities for the partial Bell polynomials, it suffices to find se-
quences (Y (n, k)) satisfy the equation (4).

Similarly to the partial Bell polynomials, for any sequence (zn;n > 1) with
z; = 1 and any nonnegative integers r,s (r > 1), another relation for the com-
plete Bell polynomials is given by Proposition 8 in [4] by:

Zg B((r+1)n,nr) B((r+1)n+s,nr+s)
5) Ap|s—,.., = ,
&) (s 2 s nr((r:’l.)n) 8 (n,r + s) ((1‘+l)n+s)

nr+-3a

where B (n, k) := B, i (21,22, %3, ...) , and if we put

B((r+1)n+s, nr+s)
(nr + 8) ((r+1)n+s)

nr+s

6) Z (n,s) :=

k)

we conclude, from (5), that the sequence (Z (n, s)) satisfies the equation:
) An (sZ(1,0),sZ(2,0),...,8Z (n,0)) = sZ (n,s),

Hence, to find identities for the complete Bell polynomials, it suffices to find se-
quences (Z (n, s)) satisfy the equation (7). Therefore, to determine solutions for
(4) and (7), we exploit the strong connection between Bell polynomials and bino-
mial type sequences. For any binomial type sequence (f,, (z)), with fp (z) := 1,
one of such connections is given in [6, p. 82] by:

n

®) fo(z) = ZB""‘ (z1,22,...)zF with z, = -j—x Jn (@) gm0 -

k=1
On the basis of the results obtained in [4] and the relation (8), we derive in this
paper some interesting identities and relations related Bell polynomials and bino-
mial type sequences.
For the next of this paper, we will denote by D, f (t), DIf (t), Dizf (t) or
Df (z) and Di_, f (t), respectively, for the derivative of f, the j — th deriva-
tive of f, the derivative of f evaluated at t = z, and the j — th derivative of f
evaluated at ¢ = .
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2 Main results

For the next of this work, for any sequence (f,, (z)) of binomial type with initial
term fo (z) = 1 and for a given real number a, we define:
z

()] fn(z50) := prary xf" (an +z) with fo(z;0) =1.

The sequence (f, (z; a)) is of binomial type, see [4].
To simplify any expression below we put
T=T(nk):=r(n—k)+sk, R=R(n,s):=nr+s
and (f, (z)) denotes a sequence of binomial type with fo (z) = 1.

The two following theorems give some interesting relations between Bell poly-
nomials and binomial type sequences. These relations are used to deduce several
identities for partial and complete Bell polynomials as it is illustrated below. To
prove these theorems, we use the following Lemma:

Lemma 1 Let n, k be integers, n > k > 1, and a, a be a real numbers. We have
(10) Bn,k (a7 eeey sz::O (eazfm—l (.'t + 2z a)) ’ )

n

= <k) Dﬁ:o (eazfﬂ—k (x + 2 a)) :
This identity can be replaced when a = 0 by:
1
11 Bn,k (szl (:L‘; a) yoos Dzfm (.’l!; a) ) ) = ',Jszofn (kz + z;a).

Theorem 2 Let a, z, & be real numbers and n, k,r, s be integers withn 2 k > 1
and r + s 2> 1. Then the sequence

12) Y (n, k) = (:) 2 DLy (6 foek (T2 + 5;0)

satisfies (4). For a = 0 the sequence (Y (n,k)) can be replaced by:
'_ 'n! Sk T .

(13) Y (n3 k) = k! (T +n— k)! T Dz:OfT+n—k (Tz + 2 a’) .

Forr =s=0,weputY (n,k) := (}) fa-k (z;0).

Theorem 3 Let a,z, o be real numbers and n,r,s be integers with n > 1,
r 2> 1. Then the sequence

& #Dfo (e fn (Rz + 2;0)) fa#0

14)  Z(n,s):=
(149)  Z(n,s) {(D?Wlo ey Ditofrin (Re + z;0) ifa=0

satisfies (7).
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More generally, Theorem 2 can be generalized as follows:

Theorem 4 Let (ap;n > 1) be a real sequence; n,k,r,s,u,v be integers with
n>k>1,7r+s82>1landz,a,q,B, ) be real numbers. Then the sequence

(15) Y (nk) =

U Z $J
( k) =T! ;Ba,T (a1,a2,.. )DL;;ZAT {e* fa-k (2;0)} 7
12

satisfies (4). For o = 0 the above sequence can be replaced by:

(16) Y (n,k) =
h+T Ju+vT . .

n! sk D =83 )\Tf(u+v)T+n—k (z!a) z7

—_—— lz : z=Pi+ &

I TTJ_TB’T L R (e L By | R

where h = [22%] foru > 1, h = 0o for u = 0 and [z] is the largest integer < z.
More generally, Theorem 3 can be generalized as follows:

Theorem 5 Let (an;n > 1) be a real sequence; n,r,s,u,v be integers with
r > 1 and a, a, B, ) be real numbers. Then for a # 0, the sequence

an Z(n,s) =
R 3 Bik (01,02, ) DIGp {e™ o (5 A)}5 ifa#0

IR! Bt_,n(a 83,...) pju+vR Nz e
y ¥R E n+ ufi-‘v z=ﬁg+Aan+(u+v)R (z, a) %:T ifa=0

satisfies (7), where g = [2] foru > 1,and, g = 00 foru = 0;7; = a’p (za¥);

— a1z (Dfy (0¥ ifu>1 L=
—{ (lDf(l(Oi)(”zo)(z) :I;Z=0 andga(:c)—igla,-ﬂ-,

Remark 6 For a, =0 (n > 2) in Theorem 4 we obtain Theorem 2. For a, =0

(n > 2) in Theorem 5 we obtain Theorem 3. For £ = o = 0 in Theorem 2 we

obtain Corollary 5 in [4]. For x = a = 0 in Theorem 3 we get Corollary 9 in

[4]. From (12) the sequence Y1 (n, k) := lin}) a~TY (n, k) satisfies (4) and gives
a—

Proposition 1 in [4]. From (14) the sequence Z (n,s) := linha""”Z (n,s)

satisfies (7) and gives Proposition 3 in [4]. By using (8) and (9) we can construct

several binomial type polynomials as py, (t) :=tY 3., Y (n, k) (bn + t) %=1 with
po (t) := 1, where (Y (n, k)) is given by (13) or (12).
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3 Applications
We give in this section another versions of Theorems 2, 3 and we present some

particular cases of the above results.

3.1 Some applications of Theorem 2

The following corollaries gives a practical version of Theorem 2.

Corollary 7 Under the hypothesis of Theorem 2 the sequence
n—k

as) Y= (}) f,_,i\;o (5)Peratocs i)

satisfies (4).

Proof. From (12), we have

Y (n,k) = ()& (T )DI=§ (€¥/%) Di—gfa-i (Tz + 2;0)

T 1\
(n) ( )D]~0fn—k (T:L' + z; a) ( ) .
To terminate, it sufﬁces to remark that oTY (n, k) satisfies (4). m

Example 8 For f, (z) = z™ the sequence (Y (n, k)) in (18) becomes:

Y (n,k) :=
n\ sk =X /T (n - k) neke—j—1
(k)—szz:o(J)m(Tx+a(n k)**"1(Tz + aj) o/

and for a = 0, a = 1 the last sequence becomes:
n\ sk= (n — k\ (Tz)" "%
=T - —_
Y (nk):=T (k) ngo( ; ) T—7)
The following corollary gives a practical version of Theorem 2 when a = 0.
Corollary 9 Under the hypothesis of Theorem 2 the sequence

(19) Y (n,k) —ﬁ(k) (T:f;k)—lg(T;izl)x

7=0
BT +n-kT+35)(((r+1)e—b)j+b(n—k)+csk) x
(b(n — k) + csk)TH !
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satisfies (4), and in particular the sequence

T AN
(20) Y (n k)———(k)( :"k ) x
n—k .
Z(T“‘1)B(T+n-k,T+j)(T+n-k)fxﬂ‘

satisfies (4), where B (n, k) := Bp i (z1,%2,23,..).

Proof. Let (z,;n > 1) be a sequence of real numbers. From (13), it suffices to
express Y (n, k) by considering the binomial type sequence:

@n fn(z;a) = mZBn,k (z1, 22, .--) (an + :z:)k_1 with fo (z) =1,
k=1

put after b := ra + rz + a, ¢ := z + a. To obtain (20), it suffices to choice
=(r+1l)c,c=zin(19). m

Example 10 By using the well-known identity By, . (1,2,...) = (R) k"%, if z, =
n, the sequence given by (20) becomes:

Y (n,k) = k‘(T+n k)IZ(T+n k)(T‘i‘j)n-k_j(T'l'n—k)j%a

and by using the well-known identity By 1. (11,2!,...) = (}) H (the Lah num-
bers), if z,, = nl, the sequence given by (20) becomes:

n—k
Y (n,k) = <T+n k

__sk ey e
k‘T+n kz T+j )(T‘”‘ S

More examples can be obtained by choosing x,, in (19) or(20) as 1,nfn—1 (z;0a),
Dz fn (z;0).

Example 11 For f, (z) = B, (z) = E (j)S(n,j) ,7=0,s=landa=0in
i=
(13), with S (n, j) are the Stirling numbers of the second kind, we obtain:

B (1 €Bm41 (am + z) — (22 +am:z:—am)B (am + z)
nk ey (am+x) yore

= kx Z<‘+")S(n,z+k)(an+kz)’ -t

=0
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Forr =0,s=1, a=0and f,(z) = [z], = Z:s(n,]):::J in (13), where
J—
s (n, ) are the Stirling numbers of the first kind, we obtain:

m-—1 \
am —1
Bn,k (1, reey [a,m +z - I]m—l (m - E m——i) y ...)

t=1
n-k
= ke Z(’*’“) (n,0 + k) (an + kz) 1.
=0

n .
Forr=0,8s=1, a=0and f,(z):=[z]" = X |s(n,5)| 27 in (13), where
j=1
|s (n, 7)| are the absolute Stirling numbers of the first kind, we obtain:

m=1 il a.m+z
Bk wlam+z 1] preernernpell RIS

i=1

n—k

= kzy (l + ’“) Is (n, L + k)| (an + ka)! L.

1=0
3.2 Some applications of Theorem 3
The following corollaries gives a practical version of Theorem 3.

Corollary 12 Under the hypothesis of Theorem 3 the sequence

@2) Z(n,s) = —E( ') Dlepefn i)
j=0

satisfies (7).

Proof. From (14) we have

Z(n,8) = § Dilo (¢ fa (Rz + 7))
= 9 5 (B)DiL (fn (Ro+7;0)) g

_7—0
= 43 (B)DI_g (fu (Re + 730)) S5
j=0

To terminate, it suffices to remark that a™" Z (n, s) satisfies (4). m

Example 13 For f, (z) = z" and r > 1 the sequence given by (22) becomes:

Z(n,s) = RZ( )(n ol (Rz + an)* 7" (Rz + aj) o/

j=0
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and for a = 0, z = 1, the last sequence becomes:

Z(n,s) = RZ( ) = !J)‘R""jaj.

Corollary 14 Under the hypothesis of Theorem 3 the sequence
1 R+4n '1"(R+j-1)
@ zeo0=grarr(ta) LRl )"

=0

B(R+n,R+j)(en+bs)  {((r +1)b—c)j +cn + bs}

satisfies (7), and in particular the sequence

1 1/R+n\"!
(24) Z(n,s) = (_DW—R_( n ) X
J};‘a(R;f;I)B(R+n,R+a‘)(R+n)J‘zﬂ'

satisfies (7), where B (n, k) := By, i (21,22, %3,..).

Proof. Let (z,;n > 1) be a sequence of real numbers. From (14), it suffices
to express Z (n, s) by considering the binomial type sequence defined in (21),
put after b = a + z, ¢ = a + ar + zr. To obtain (24), it suffices to choice
b=(r+1)c,c=zin(23). =

Example 15 If x,, = n, the sequence given by (24) becomes:

z( )(R+J "I"L(R+n) g7

J=0

2059 = R @y

and if ¢, = n!, the sequence given by (24) becomes:

_ (R4n=1IN(n) (R+n)!
Z(n,s)= (Df1 (0))° ;(3) (R‘f‘j)!x]

3.3 Some applications of Theorem 4
Some particular cases of Theorem 4 are given by the following corollaries:
Corollary 16 Under the hypothesis of Theorem 4 and v > u the sequences

k .
25Y1(n,k) : = (Z) %;Z( )D’u-;gIAT {€%* i (2;0)} 7 T—]'

j=0

IyT-I

T jutvT
Yz (n, k) n! sk ( ) D; a:+,\vaT+n—k (2;a)

k! TJ_=0 @WT +n-k)!
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satisfy (4).

Proof. Leta; = = 2q and a,, = 0 for m > 3. To obtain (25) it suffices to

use the identity B, T (p, 2¢,0,0,...) = (JfT)pzT‘J ¢’~T in (16) and in (15). m
Some particular cases of (26) are given by:

Forr =u =0, v=10ru = v =r = 0in (25), the sequences

Sk k . .
@0 Yy (k) = = (Z)Z(z )Diiﬁj+,\k {€%* fak (z;0)} 29y** 3,

=0
n! & 2=, fn g— (2 a,) sk
neh ¢ = g3 (]) R
Ya(n,k) : = (:)Z(‘; )fn—k (8] + Mk; @) Ty,

j=0
satisfy (4), and if s = 1 the last sequences give

27 Bux(ay,...,m(ayfm-1 (A a) +2D.=pfm-1(z0)),...) =

(Z) io(f) Do (e fa-i (B= X)j + Mk + z;0)} 27y,
i=

(28) B ((z+y)Df1(0),....yDo=rfn (2;0) + D2zpfn (z10),...) =

1 (k
%l =0Jn A Ak fe—
k‘lj;o(j) b ofn (B= N+ M+ za) Iy~

(29) Bn,k (y +z,..,m (yfm—l (,\;a) + xfm—l (ﬂ’ a)) , ) =

k
n k 3 . —
(k)Z(j)fn-k ((B = ) j + Mk; a) 2iyk—7
j=0
Example 17 For fn (IZI) =z" a=0 andu =0o0r1in(25) the sequences

sk (n\ (T wn—k T—j j
Yi(nk) = T(k)Z(j)(aT+ﬁJ) =" 7y’ and

Jj=0

Ys (n, k) g T=dyd

nl sk nok (T) (aT + ﬁj)‘n—k-j

lej:O J (n—k—j)!

331



satisfy (4), and for f, (x) = z™, a =0, v = 00r 1, a, = n in Theorem 4 the
sequences ‘

new = 7S 7463y T ong

J=
sk (n nk n—k n—k—j
k) = F(HX (") er+a o @y
=0
satisfy (4).

An interesting relation between Bell polynomials and Appell polynomials can
be viewed as a special case of Theorem 4 and it is given by:

Corollary 18 For the sequence of polynomials (An (z,y, 2)) defined by:

An (z7ys z) =
2. /n
Z(J)% (c+y)i+z+y+2)(gi+yntz+y+2)" "7
=0
we have

Bn,k (AO (:l:, y’z) y oy MAm—1 (-'L'a Y, Z) ) ) =

n

Z(?) Bjx (a0, 2a1,3az,...) (jz +ny + k)" ((z+y) 5+ k2),
Jj=k

and in particular when z = y = 0 we get:

(30)  B.x(Ao(2),241(2),..) = Z(;‘) B;x (ag,2ay,...) (kz)*77,

i=k

where A, (2) := (")aJ "7 is an Appell polynomial.
=0

Proof. If suffices to use (16) with f,, (z;a) = a(an+z)* ', r=v=0,z =1,
s =u = l and replace a, by na,—_;. ® )

Example 19 For any sequence (@,;n 2 1) for real numbers, let I,, be the iden-
tity matrix of order n. and (Ay) be the sequence of matrices defined by: Ag :=
1, Ap :=(aij) for1 < 4,5 < n witha;j; = Pij—it1 fJ24ai5-1=1—1and
ai; = 0 otherwise. Then from {7, p. 110] and from (30) we get:

B i (1,..,mdet (Apm—1 +2Im_1),...) =

n

Z(;‘) Bix(1,..,mdet Ap_y,...) (kz)" 7.

i=k
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3.4 Some applications of Theorem 5
A particular case of Theorem 5 is given by the following corollary:

Corollary 20 Under the hypothesis of Theorem 5 and v > u the sequences

3Bl Z;(n,8) @ =

R ¢ o . o
'Yi’R ( ) DIttt \r{e* fa (2;0)} y" 7 and

i=0
+vR
—-pj+)‘an+(u+v)R (Z; a,) i, R—j
Z3(n,s) ,),2312_:0( ) (n+ (u+v)R)! vy

satisfy (7), where vy, = o* (za* +y) andy, = { (:z:y-l(— Dy}fﬁ)‘l;l),so))v ,}fuujol

Proof. It suffices to put in Theorem 5 z = 1; a3 = p, a2 = 2¢ and ap, = 0 for
m > 3 and use the identity B; g (p, 2¢,0,0,...) = (ij)pzn_J ¢~k m

Example 21 For f, (z) =z, a = 0 and u = 0 or 1, the sequence given by (31)
becomes: 7y (n,s) = (z +4) ™" % >: (%) (Bs + aR)" 2?yR~3 and

Zo (n, 3) z zn—_ﬁ; (R) (ﬁ] + aR)""’ .'BJ
and for §, (z)=z" a= 0 z= 1 w=00rl, a, = nt""! the sequence given

by (17) becomes: Z3 (n,s) = % Z (5) (B3 + aR)"™? Rit! and
=0

Z4(n,s) = ﬂ,;—’ﬂjg:o (B3 + aR)" 2L

4 Proof of the main results

Proof of Lemma 1. Let F (t;a)” := 1+ Z fn (z;0) &5. Now, because f, (z;a)
isa polynomlal of degree n, then the proof follows from the following expansions
of g (£) := z DE_o (e%% o (kz + 2;0)) T

9k (t) = E (,,—_Ey;Dz—o (€°* fa—k (kz + z;0)) &, and

01(0) = Do (¢ £ fu (b2 + 510 —r)
n=0

= Dk_y (e F (t0)**+" )
=tkF (t; a)kz Df-_-o (e(a+ln F(t;a))z)

333



= t*F (t;0)** (@ +In F (t;a))*

= the~*k= ((e2F (t;0))° In (e°F (t;0)))*
= tke—ok= (D, (e*F (t; a)):c),c x
=tk ( § e~ Dy (€** fm (z; a)) :n:')

m=0

= ( § me~%% D  (€°® frn—1 (7;a)) %)k

m'~1
= k! E Bk (a,...,me™ %% D, (e°® frn—1 (z; @) ,...)) ‘;nr
Then by 1dent1ﬁcatlon we get:
n

Bnx (a,...,mDz (e°% fn—1 (z;0)),...) = (k) 2=0 (€%* frn-k (kz + z;a)).

To obtain (10), it suffices to remark that for m > 1 we have:
e~ %" Dy (€°® fmm (x;a)) = D3=0 (€°* fm (z + 2;0)).

When o = 0, it’s easy to verify that the identity (10) is equivalent to (11). m

Proof of Theorem 2. When we replace z,, by az, in (2) and we use the well-
known identities

Bn ik (azy, az2, az3...) = a"B,.,k (z1,29,23,...) and

(32) Bn i (az1,0%z2,0%23...) = "By i (21, 22, T3, ...)

it results that the identity (2) remains true for z; # 1. Then for r + s > 1 and for
the choice z, = nD,—q (€** fo—1 (z + 2; @)) in (2), the identity (10) proves that
the sequence (Y (n, k)) given by (3) becomes:

Y (n,k)= (") sk Bryn—_x, T(2,.. .mD;=o(i°‘fm 1(z+2a)),...)

+n-

= (R) Do {e* fak (T:c +za)}.
For the particular case a = 0, if we take =, = D,—o (fa (z + ¥;a)) in (2) and
we use the identity (11), the sequence (Y (n, k)) given by (3) becomes:
n— -1 z
Y(nk)= (;c:) %,’E(T"'T k) Brin—k, 7 (D.=0 (e** 1 (z + z; a)),...)
= H¥ T PrcofT4n-k (T2 + z,0).

Note that for the case 7 = s = 0, the sequence (Y (n, k)) given by (12) is not
defined. We put in this case Y (n,k) = (})fa—k (z;@). Proposition 1 in [4]
proves that this sequence satisfies (4). m

Proof of Theorem 3. Casea: #0:
Letz, = 2D, {€**fa-1(z + 2;a)}. We have z; = 1 and then the identity
(10) proves that the sequence (Z (n, s)) given by (6) becomes:
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Z(n, 3) = —IR'BR""" R(a: -mD}szO(:a'fm—l(z*'zva))r .)

= kDR (e fa (Ra + z;0)).
Case a = 0 : Because D fy (z) = zDf, (0), then for z,, = %:—g‘{ﬁ} we get
D, fi (z;a) = (z+¢f1 (z+ a,)) = Df; (0) # 0. We have z; = 1 and then
by using the identity (11), the sequence (Z (n, s)) given by (6) becomes:

_ Bryn, R(D:zo(f1(z+2;0)),...;Ds=0(fm (z+2;a)),...
Z(n,s) = R(*E™)(D. fr(za))*

= Wﬁmz—!ﬂﬁDfﬂfnﬂ (kz + z;0).
Note that if Z (n, s) satisfies (7) then A" Z (n, s) satisfies (7). m
Proof of Theorem 4. Let (an, n > 1) be a real sequence; u, v be a nonnegative
integers, F (t)* zj fa(2) 5, (fo(z) = 1), and Gk (t) := z F(n, k) el

with F (n, k) = ,-§k By (01,a3,..) DI5™ (e fo (B + Mo + 1))

Then we have

Gk (t) = tka>:kBj,k (a1, a2,...) %jl- ( > z'i"(;"k {e* fn (BF + Ak + 2;a)} f‘—’})
=tk Z Bj(a1,02,...) 2 z Difg"k (e"“ngofn (Bj + Ak + z;a) ‘;’:)
=t E B (e1,02,..) #Dﬁ':a"" (e (P (i) ?5+5+7)
=tk z; By (a1,02,...) 51 (F (0))7H* DILEY (02 F (5; 0)")
=t z Bjx (a1,02,...) 5 (F (t0))*** (a + In F (t;0))"+*
=tk z: Bjx (a1,02,..) 5 F (t; ) (Do (2% (F (t;))))* ™"

=tk Z Bj,k (ul,'llq, ) %:-
2k

k
tk m
7l 2 umby
m2>1

k
z amDmu+v e** F (t; a)ﬂm-i-)\-i-z) %n'_"f)

]
Fol

z=0

m21 20

k
l

k
o5 (EaszZs%-v( azfj(ﬂm+)\+z;a)%) fn—":)
( k

amD;"_“o*"’ (e** f; (Bm + A + z;a)) %’;—)
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k
=4 ZFGDY
j20

k
—m(ZJF(J—l 1)”)
ji21
= 3 Bnik(F(4,1),...,dF(F-11),. )n!’

n>k
where um = ap P (£0)"™* (D=0 (€% (F (£0))) )™, m>1.
Then we obtain By x (F (0,1),..,jF (j —1,1),..) = k!(} )F(n k,k), and
this means that the sequence
X (n,k) =
G KI(R) T B (a1,a2,) DI {2 faurk (B + Mo+ z30)} 51
iz

satisfies (4). To obtain (15), it suffices to take z, = X (n,1) in (2), where
(X (n, k)) is given by (33). Indeed, the sequence given by (3) becomes:
Y k) = Q"5 Bryne r (X (L1, X (211),..)
=AECFHTXT+n-k, T)
= (P) & ;T B; 1 (ay,a2,..) DI {€2* fri (BF + AT + z; a)}
j

For the particular case @ = 0 and u > 1 we remark that X (n,1) = 0 for

u+ v > n — 1 and then the identity (33) becomes:
(34) Bax (0,...,0,X(u+v+ 1, 1),X(u+v+2,1),...) =X (n,k),
+
uT+v

or, equivalently, by using the well-known identity

_ n! a1y mlapy4r
Bn,k (0, eeey 0, Qpry1, ) = (n — rk)!Bn—rk,k ((1 + 7‘)' PRI (m ¥ ’I‘)' e

the identity (34) becomes:
nlX (n+ (v +v)k, k)
(n+ (u+v)k)!
To obtain (16) it suffices to take z, = X* (n, 1) in (2). Indeed,
n\ sk (T4+n—k -1 " *

Y (n’ k) ( ) ( ) BT+n—k, T (X (1’ 1) X (2a 1) ) )

= (n)-'f (T+n—lc) X* (T +n— k, T)

= ”“ ‘ZB, (a1,a2,...) X

DJ‘u+1JT azf(u+u)T+u—k(Bj+'\T+z;a) xd -
z=0 ((u+v)T4+n—k)! e

(35) Bk (X*(1,1),X*(2,1),..) = X* (n, k) :=
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Proof of Theorem 5. For a # 0 it suffices toput z,, = X (n,1) /X (1,1) in (5),
where (X (n, k)) is the sequence given by (33). Indeed, we have:
=X(,1)= Ea,a’“*”ﬂf- = o’ (za*) with o (z) := Ea_.,
The sequence (Z (n, s)) given by (6) becomes:
-1
Z(n,s) WF(R-'- ) X R+Tl,R)
W'ﬁ E Bjr(a1,a3,...) X
DIR {e“fn (Bj + AR+ z0)} 5.
For a = 0 it suffices to put in (5) z, = X* (n,1) /X‘ (1,1), where
(X* (n, k)) is the sequence given by (35). We have
X(u+v+11) { a1z (Dfy (O ifu>1
(u+v+1)! (Df1(0))" ¢(z) ifu=0.
The sequence (Z (n, s)) given by (6) becomes:
Z(n 8) -()(—_(;—WE(R+R) X‘ (R+n,R)
(X._(llka 2 Bj.r(a1,02,...) X

u+vR fn+ wtv)R(BI+AR+2;a :J
Diyof { festeparlitoyteel | o
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