(k, α_{n-1}) -Fibonacci numbers and P_k -matchings in multigraphs

Urszula Bednarz, Dorota Bród, Krzysztof Piejko, Andrzej Włoch

Rzeszów University of Technology
Faculty of Mathematics and Applied Physics
al. Powstańców Warszawy 12, 35-359 Rzeszów, Poland
e-mail: ubednarz@prz.edu.pl, dorotab@prz.edu.pl,
piejko@prz.edu.pl, awloch@prz.edu.pl

ABSTRACT: In this paper we generalize the Fibonacci numbers and the Lucas numbers with respect to n, respectively n+1 parameters. Using these definitions we count special subfamilies of the set of n integers. Next we give the graph interpretations of these numbers with respect to the number of P_k -matchings in special graphs and we apply it for proving some identity and also for counting other subfamilies of the set of n integers.

Keywords: *H*-matching, Fibonacci numbers, Lucas numbers, multigraph MSC 2010: 05C70, 05C69, 11B39,

1 Introduction

We use the standard terminology and notation of the combinatorics and the graph theory, see [1, 2].

The *n*-th Fibonacci number F_n is defined recursively in the following way $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$. The *n*-th Lucas number is defined by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$, for $n \ge 2$.

Many concepts have arisen generalizing the Fibonacci numbers and the Lucas numbers, but a very natural is the concept of the generalized Fibonacci numbers F(k,n) and generalized Lucas numbers L(k,n) introduced by Kwaśnik and Włoch in [7]. This generalization is directly related to studying the concept of k-independent sets in graphs [11, 12, 13]. It is worth mentioning that k-independent sets (and also k-kernels in digraphs) are intensively studied by Galeana-Sánchez and Hernández-Cruz, see for example their last interesting papers [3, 4, 5].

Let $k \geq 2$ be integer and let $X = \{1, ..., n\}$ be the set of n integers, $n \geq 1$. Let $Y \subset X$ such that for each $i, j \in Y$ holds $|i-j| \geq k$. Note that in particular Y can be empty. The number F(k,n) is defined as the number of all subsets Y and it was proved,(see [7]) that F(k,n) = n+1 for n = 0, 1, ..., k and F(k,n) = F(k,n-1) + F(k,n-k) for $n \geq k+1$. Let $Y^* \subset X$ such that for each $i, j \in Y^*$ holds $k \leq |i-j| \leq n-k$. Then the number L(k,n) is the number of all subsets Y^* including also the empty set, and it was proved that

L(k,n)=n+1 for n=0,1,...,2k-1 and L(k,n)=(k-1)F(k,n-(2k-1))+F(k,n-(k-1)) for $n\geq 2k$. Recently some properties of the generalized Fibonacci numbers F(k,n) and the generalized Lucas numbers L(k,n) were given in [10]. Among other things more comfortable recurrence relation for the generalized Lucas numbers was proved, namely L(k,n)=L(k,n-1)+L(k,n-k), for $n\geq 2k$. Clearly for k=2, $F(2,n)=F_{n+2}$, for $n\geq 0$ and $L(2,n)=L_n$ for $n\geq 2$.

In this paper we give a generalization of the Fibonacci numbers and the Lucas numbers with respect to n, respectively n+1 parameters. Next we give a graph interpretation of introduced numbers with respect to the number of all P_k -matchings in special multigraphs.

Let G and H be two graphs. By an H-matching M of G we mean a subgraph of G such that all connected components of M are isomorphic to H. Moreover the empty set also is a H-matching, for every graph H. We can observe that if $H = K_2$, then K_2 -matching is a matching in the classical sense. If $H = K_1$, then an induced K_1 -matching is an independent set in the classical sense. The definition of H-matching naturally extend the concept of independent sets and matchings.

There are many papers related to the counting problems of induced K_1 -matchings and K_2 -matchings in graphs, see for example [6].

In 1971 the Japanese chemist Hosoya introduced to the chemical literature the parameter Z(G) of a molecular graph as the number of all K_2 -matchings of a graph G. He showed that certain physicochemical properties of alkanes are well correlated with Z(G). In 1989 the American chemists Merrifield and Simmons introduced another graph parameter $\sigma(G)$ as the number of all induced K_1 -matchings of a graph G, see [8]. From the formal point of view the definition of the Merrifield-Simmons index is analogous to the definition of the Hosoya index.

In the mathematical literature a real interest in counting of independent sets (i.e induced K_1 -matchings) and matchings in graphs was initiated by Prodinger and Tichy in [9]. In this paper among other things they showed the connections between the number of all independent sets $\sigma(G)$, for special graphs and the Fibonacci numbers and the Lucas numbers. In particular for an n-vertex path P_n and an n-vertex cycle C_n they proved that $\sigma(P_n) = F_{n+2}$ and $\sigma(C_n) = L_n$. Consequently $Z(P_n) = F_{n+1}$ and $Z(C_n) = L_n$. This short paper gave impetus for counting independent sets and matchings in graphs.

In recent years a lot of work has been done in counting field and the last survey of Gutmann and Wagner [6] collects and classifies the results concerning these two indices. Most of them have been achieved quite recently, see its references where this type of the problem was studied.

Generalization of the Fibonacci numbers 2

Let $X = \{1, 2, ..., n\}, n \geq 2$ be the set of n integers. Let \mathcal{X}_n be a multifamily of subsets of X such that $\mathcal{X}_n = \{\mathcal{X}_{i,i+1}; i = 1, 2, ..., n-1\}$, where the family $\mathcal{X}_{i,i+1}$ contains $p_i, p_i \geq 1$ subsets $\{i, i+1\}$. In the other

the family
$$\mathcal{X}_{i,i+1}$$
 contains $p_i, p_i \geq 1$ subsets $\{i, i+1\}$. In the other words we can write $\mathcal{X}_n = \{\underbrace{\{1,2\}, \{1,2\}, ..., \{1,2\},}_{p_1-\text{times}}, \underbrace{\{2,3\}, \{2,3\}, ..., \{2,3\}, ...,}_{p_2-\text{times}}, \underbrace{\{n-1,n\}, \{n-1,n\}, ..., \{n-1,n\}\}}_{p_{n-1}-\text{times}}, n \geq 2.$

Let $k \geq 2$ be an integer. For fixed $1 \leq t \leq n-k+1$, by $\mathcal{Y}(k,t)$ we denote a subfamily of \mathcal{X}_n such that $\mathcal{Y}(k,t) = \{\{t+j,t+j+1\}, j=0,...,k-2\}$

Let $\mathcal{Y} \subset \mathcal{X}_n$ be a subfamily of \mathcal{X}_n such that

(i) $|\mathcal{Y}| = m$, for fixed $m \geq 0$

(ii) for each $\mathcal{Y}(k,t), \mathcal{Y}(k,q) \in \mathcal{Y}$ such that $t \neq q$ holds $|q-t| \geq k$.

Let $\alpha_{n-1} = (p_1, p_2, ..., p_{n-1})$ be the sequence of values p_i , where i =1, ..., n-1 and next let $\alpha_{n-i} = (p_1, p_2, ..., p_{n-i})$ be the subsequence of α_{n-1} obtained by deleting words $p_{n-i+1},...,p_{n-1}$, for $1 \leq i \leq n-1$. If $f^{(\alpha_{n-1})}(k, n, m)$ is the number of all m-elements subfamilies \mathcal{Y} then $F^{(\alpha_{n-1})}(k, n) = \sum_{m \geq 0} f^{(\alpha_{n-1})}(k, n, m)$ is the number of all subfamilies \mathcal{Y} .

The number $F^{(\alpha_{n-1})}(k,n)$ will be named as the (k,α_{n-1}) -Fibonacci number. If $p_i = p$ for all i = 1, ..., n-1, then the number $F^{(\alpha_{n-1})}(k, n)$ we will denote by $F^p(k,n)$.

Theorem 2.1 Let
$$n \ge 2, m \ge 0, 2 \le k \le n$$
 be integers. Then $f^{(\alpha_{n-1})}(k, n, 0) = 1, f^{(\alpha_{n-1})}(k, n, 1) = \sum_{i=1}^{n-k+1} \prod_{j=0}^{k-2} p_{i+j}$. For $m \ge 2$ we have

$$f^{(\alpha_{n-1})}(k,n,m) = \prod_{i=1}^{k-1} p_{n-i} f^{(\alpha_{n-k-1})}(k,n-k,m-1) + f^{(\alpha_{n-2})}(k,n-1,m).$$

PROOF: For m = 0, 1 the initial conditions are obvious. Let $m \ge 2$ and $|\mathcal{Y}| = m$. Let $f_n^{(\alpha_{n-1})}(k, n, m)$ (respectively $f_{-n}^{(\alpha_{n-1})}(k, n, m)$) be the number of all m-elements subfamilies \mathcal{Y} such that $\mathcal{X}_{n-1,n} \cap \mathcal{Y} \neq \emptyset$ (respectively: $\mathcal{X}_{n-1,n} \cap \mathcal{Y} = \emptyset$). Then $f^{(\alpha_{n-1})}(k,n,m) = f_n^{(\alpha_{n-1})}(k,n,m) + \emptyset$ $f_{-n}^{(\alpha_{n-1})}(k,n,m)$. Two cases occur now:

1. $\mathcal{X}_{n-1,n} \cap \mathcal{Y} \neq \emptyset$.

Then there exists $\mathcal{Y}(k,q) \in \mathcal{Y}$ such that exactly one subset $\{n-1,n\}$ from $\mathcal{X}_{n-1,n}$ belongs to $\mathcal{Y}(k,q)$. Then the definition of the family \mathcal{Y} implies that ${n-k+i, n-k+i+1} \in \mathcal{Y}(k,q), i=1,...,k-1 \text{ hence } q=n-k+1.$ Moreover for each $\mathcal{Y}(k,t) \in \mathcal{Y}, t \neq q$ we have $\{n-k, n-k+1\} \notin \mathcal{Y}(k,t)$ (otherwise the condition (ii) does not hold). This means that each sub-

family $\mathcal{Y}(k,t) \in \mathcal{Y}$ is the subfamily of $\mathcal{X}_n - \bigcup_{i=0}^{k-1} \mathcal{X}_{n-k+i,n-k+i+1} = \mathcal{X}_{n-k}$.

Thus $\mathcal{Y} = \mathcal{Y}^* \cup \mathcal{Y}(k,q)$, where \mathcal{Y}^* is (m-1)-elements subfamily of \mathcal{X}_{n-k} satisfying conditions (i) and (ii).

Since each subset of the subfamily $\mathcal{Y}(k,q) \in \mathcal{Y}$ such that $\mathcal{X}_{n-1,n} \cap$ $\mathcal{Y}(k,q) \neq \emptyset$ could be chosen on $p_{n-1}, p_{n-2}, ..., p_{n-k+1}$ ways, respectively we have that $f_n^{(\alpha_{n-1})}(k,n,m) = \prod_{i=1}^{k-1} p_{n-i} f^{(\alpha_{n-k-1})}(k,n-k,m-1)$.

Then for each $\mathcal{Y}(k,q) \in \mathcal{Y}$ we have $\mathcal{X}_{n-1,n} \cap \mathcal{Y}(k,q) = \emptyset$. So \mathcal{Y} is m-elements subfamily of $\mathcal{X}_n \setminus \mathcal{X}_{n-1,n} = \mathcal{X}_{n-1}$. Then $f_{-n}^{(\alpha_{n-1})}(k,n,m) = f^{(\alpha_{n-2})}(k,n-1)$ 1, m).

Finally from the above cases $f^{(\alpha_{n-1})}(k,n,m) = \prod_{i=1}^{k-1} p_{n-i} f^{(\alpha_{n-k-1})}(k,n-1)$ $k, m-1) + f^{(\alpha_{n-2})}(k, n-1, m).$ Thus the Theorem is proved.

Theorem 2.2 Let $k \geq 2$, $n \geq 2$ be integers. Then for $n \geq 2k$

$$F^{(\alpha_{n-1})}(k,n) = F^{(\alpha_{n-2})}(k,n-1) + \prod_{i=1}^{k-1} p_{n-i} F^{(\alpha_{n-k-1})}(k,n-k)$$

with initial conditions

$$F^{(\alpha_{n-1})}(k,n) = 1 + \sum_{j=1}^{n-(k-1)} \prod_{t=0}^{k-2} p_{j+t} \text{ for } n = 2,...,2k-1.$$

PROOF: Let
$$n \leq 2k - 1$$
. Then

$$F^{(\alpha_{n-1})}(k,n) = \sum_{m\geq 0} f^{(\alpha_{n-1})}(k,n,m) = f^{(\alpha_{n-1})}(k,n,0) + f^{(\alpha_{n-1})}(k,n,1) =$$

$$1 + \sum_{j=1}^{n-(k-1)} \prod_{t=0}^{k-2} p_{j+t} \text{ by Theorem 2.1.}$$

Assume now that $n \geq 2k$. Then

$$F^{(\alpha_{n-1})}(k,n) = \sum_{m\geq 0} f^{(\alpha_{n-1})}(k,n,m) =$$

From that
$$n \ge 2n$$
. Then
$$F^{(\alpha_{n-1})}(k,n) = \sum_{m \ge 0} f^{(\alpha_{n-1})}(k,n,m) = f^{(\alpha_{n-1})}(k,n,0) + f^{(\alpha_{n-1})}(k,n,1) + \sum_{m \ge 2} f^{(\alpha_{n-1})}(k,n,m) = f^{(\alpha_{n-1})}(k,n,m)$$

$$1 + \sum_{j=1}^{n-(k-1)} \prod_{t=0}^{k-2} p_{j+t} + \sum_{m \ge 2} f^{(\alpha_{n-2})}(k, n-1, m) +$$

$$\prod_{i=1}^{k-1} p_{n-i} \sum_{m \ge 2} f^{(\alpha_{n-k-1})}(k, n-k, m-1) =$$

$$1 + \sum_{j=1}^{n-(k-1)} \prod_{t=0}^{k-2} p_{j+t} - 1 - \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + \sum_{m \geq 0} f^{(\alpha_{n-2})}(k, n-1, m) + \sum_{j=1}^{n-(k-1)} \prod_{t=0}^{k-2} p_{j+t} - 1 - \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + \sum_{m \geq 0} f^{(\alpha_{n-2})}(k, n-1, m) + \sum_{j=1}^{n-k} \prod_{t=0}^{n-k} p_{j+t} - 1 - \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + \sum_{t=0}^{n-k} p_{j+t} - 1 - \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + \sum_{t=0}^{n-k} p_{j+t} - 1 - \sum_{t=0}^{n-k} \prod_{t=0}^{n-k} p_{j+t} + \sum_{t=0}^{n-k} p_{j+t} - 1 - \sum_{t=0}^{n-k} \prod_{t=0}^{n-k} p_{j+t} - 1 - \sum_{t=0}^{n-k} p_{j+t} - 1 - \sum_{t$$

$$\prod_{i=1}^{k-1} p_{n-i}(-1 + \sum_{m \ge 0} f^{(\alpha_{n-k-1})}(k, n-k, m)) =$$

$$1 + \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + p_{n-k+1} \cdot \ldots \cdot p_{n-1} - 1 - \sum_{j=1}^{n-k} \prod_{t=0}^{k-2} p_{j+t} + \sum_{m \geq 0} f^{(\alpha_{n-2})}(k, n - 1) = 0$$

$$1,m) - p_{n-1} \cdot \ldots \cdot p_{n-k+1} + \prod_{i=1}^{k-1} p_{n-i} \sum_{m \ge 0} f^{(\alpha_{n-k-1})}(k,n-k,m) = F^{(\alpha_{n-2})}(k,n-1) + \prod_{i=1}^{k-1} p_{n-i} F^{(\alpha_{n-k-1})}(k,n-k)$$
 which ends the proof

which ends the proof.

Thus the Theorem is proved.

If $p_i = 1$, for i = 1, ..., n - 1 then for $k \ge 2$ the number $F^{(\alpha_{n-1})}(k, n)$ gives the generalized Fibonacci number F(k, n - (k-1)). Moreover if additionally k=2 then F(2,n-1) gives the Fibonacci number F_{n+1} defined in the classical sense.

Let $X = \{1, 2, ..., n\}, n \geq 3$ be the set of integers. For $i, j \in X \cup \{0\}$ let $i \oplus j = i + j$ when $i + j \le n$ or $i \oplus j = i + j - n$ when $i + j \ge n + 1$.

Let \mathcal{X}_n^* be a multifamily of subsets of X such that $\mathcal{X}_n^* = \{\mathcal{X}_{i,i+1}^*; i = 1\}$ $1, 2, ..., n-1 \} \cup \{\mathcal{X}_{n,1}^*\}$, where the family $\mathcal{X}_{i,i+1}^*$ contains p_i subsets $\{i, i+1\}$ 1}, i = 1, ..., n-1 and $\mathcal{X}_{n,1}^*$ contains p_n subsets $\{n,1\}$, $p_i \geq 1$, for i = 1, ..., n. In the other words we can write $\mathcal{X}_{n}^{*} = \{\{1, 2\}, ..., \{1,$

$$\underbrace{\{2,3\},...,\{2,3\}}_{p_2-\text{times}},...,\underbrace{\{n-1,n\},...,\{n-1,n\}}_{p_n-\text{times}},\underbrace{\{n,1\},...,\{n,1\}\}}_{p_n-\text{times}}.$$
 Let $k \geq 2$ be an integer. For fixed $1 \leq t \leq n$ by $\mathcal{F}(k,t)$ we denote a

subfamily of \mathcal{X}_n^* such that $\mathcal{F}(k,t) = \{\{t \oplus j, t \oplus (j+1)\}, j=0,...,k-2\}.$

Let $\mathcal{F} \subset \mathcal{X}_n^*$ be a subfamily of \mathcal{X}_n^* such that

(iii) $|\mathcal{F}| = m$, for fixed $m \geq 0$,

(iv) for each $\mathcal{F}(k,t)$, $\mathcal{F}(k,q) \in \mathcal{F}$ such that $t \neq q$ holds $k \leq |q-t| \leq n-k$.

Let $\alpha_n = (p_1, p_2, ..., p_n)$ be the sequence of values p_i , i = 1, ..., n. For the future considerations we define the following subsequence of α_n .

Let $\alpha_{r,s}$, $1 \leq r \leq s \leq n$, be the subsequence of α_n obtained from α_n by deleting words $p_r, p_{r+1}, ..., p_s$. Let $\alpha_n^q, 1 \leq q \leq n$, be the subsequence of α_n obtained from α_n by deleting words $p_1, p_2, ..., p_{q-1}$. Let $\alpha_{k,q}^*$ be the subsequence of α_n obtained from α_n by deleting words $p_q, p_{q\oplus 1}, ..., p_{q\oplus (k-2)}$.

 $L^{(\alpha_n)}(k,n) = \sum_{m\geq 0} l^{(\alpha_n)}(k,n,m)$ is the number of all subfamilies \mathcal{F} . The If $l^{(\alpha_n)}(k,n,m)$ is the number of all m-elements subfamilies \mathcal{F} , then

number $L^{(\alpha_n)}(k,n)$ will be named as (k,α_n) -Lucas number.

Theorem 2.3 Let $n \geq 3$, $m \geq 0$, $2 \leq k \leq n$ be integers. Then $l^{(\alpha_n)}(k, n, 0) = 1$, $l^{(\alpha_n)}(k, n, 1) = \sum_{i=1}^{n} \prod_{j=0}^{k-2} p_{i \oplus j}$ and for $m \geq 2$ we have $l^{(\alpha_n)}(k,n,m) =$ $\sum_{q=n-k+1}^{n} \left[\left(\prod_{i=q}^{q \oplus (k-2)} p_i \right) f^{(\alpha_{k,q}^*)}(k,n-k,m-1) \right] + f^{(\alpha_{n-2})}(k,n-1,m).$

PROOF: For m = 0 and m = 1 the initial conditions are obvious. Assume that $m \geq 2$. Let $l_n^{(\alpha_n)}(k, n, m)$ (respectively $l_{-n}^{(\alpha_n)}(k, n, m)$) be the number of all *m*-elements subfamilies \mathcal{F} such that $\mathcal{X}_{n-1,n}^* \cap \mathcal{F} \neq \emptyset$ or $\mathcal{X}_{n,1}^* \cap \mathcal{F} \neq \emptyset$ (respectively: $\mathcal{X}_{n-1,n}^* \cap \mathcal{F} = \emptyset$ and $X_{n,1}^* \cap \mathcal{F} = \emptyset$). Then $l^{(\alpha_n)}(k,n,m) =$ $l_n^{(\alpha_n)}(k,n,m) + l_{-n}^{(\alpha_n)}(k,n,m)$. Two cases occur now: 1. $\mathcal{X}_{n-1,n}^* \cap \mathcal{F} \neq \emptyset$ or $X_{n,1}^* \cap \mathcal{F} \neq \emptyset$.

Then there exists $\mathcal{F}(k,q) \in \mathcal{F}$ such that exactly one subset $\{n-1,n\}$ from $\mathcal{X}_{n-1,n}^*$ or exactly one subset $\{n,1\}$ from $\mathcal{X}_{n,1}^*$ belongs to F(k,q). Then the definition of the family \mathcal{F} implies that $q \in \{n-k+1, n-k+2, ..., n\}$. This means that each subfamily $\mathcal{F}(k,t) \in \mathcal{F}$, $t \neq q$ is the subfamily of one of the

following subfamilies $\mathcal{X}_n^* - \bigcup_{i=0}^{k-1} \{q \oplus i, q \oplus (i+1)\} = \mathcal{X}_{n-k}$. Using Theorem

2.1 we obtain that

$$l_n^{(\alpha_n)}(k,n,m) = \sum_{q=n-k+1}^n \left(\prod_{i=q}^{q \oplus (k-2)} p_i\right) f^{(\alpha_{k,q}^*)}(k,n-k,m-1).$$
2. $\mathcal{X}_{n-1,n}^* \cap \mathcal{F} = \emptyset$ and $X_{n,1}^* \cap \mathcal{F} = \emptyset$.

Then for each $\mathcal{F}(k,q) \in \mathcal{F}$ we have $\{n-1,n\} \notin \mathcal{F}(k,q)$ and $\{n,1\} \notin \mathcal{F}(k,q)$ $\mathcal{F}(k,q)$ for all p_i subsets, i=n-1,n. So \mathcal{F} is m-elements subfamily of $\mathcal{X}_n^* - (\mathcal{X}_{n-1,n} \cup \mathcal{X}_{n,1}) = \mathcal{X}_{n-2}$. Then by Theorem 2.1 we have that $l_{-n}^{(\alpha_n)}(k,n,m) = f^{(\alpha_{n-2})}(k,n-1,m).$

Finally from the above cases $l^{(\alpha_n)}(k, n, m) =$

$$\sum_{q=n-k+1}^{n} \left[\left(\prod_{i=q}^{q \oplus (k-2)} p_i \right) f^{(\alpha_{k,q}^*)}(k, n-k, m-1) \right] + f^{(\alpha_{n-2})}(k, n-1, m).$$
 Thus the Theorem is proved.

Theorem 2.4 Let
$$n \ge 3$$
, $2 \le k \le n$. Then for $n \ge 2k$
$$L^{(\alpha_n)}(k,n) = \sum_{q=n-k+1}^n \left(\prod_{i=q}^{q \oplus (k-2)} p_i\right) F^{(\alpha_{k,q}^*)}(k,n-k) + F^{(\alpha_{n-2})}(k,n-1)$$

with initial conditions $L^{(\alpha_n)}(k,n)=1+\sum\limits_{i=1}^n\prod\limits_{i=0}^{k-2}p_{i\oplus j}$ for n=1,...,2k-1.

PROOF: Let
$$n \leq 2k-1$$
. Then $L^{(\alpha_n)}(k,n) = \sum_{m\geq 0} l^{(\alpha_n)}(k,n,m) =$

$$l^{(\alpha_n)}(k, n, 0) + l^{(\alpha_n)}(k, n, 1) = 1 + \sum_{i=1}^n \prod_{j=0}^{k-2} p_{i \oplus j}$$
, by Theorem 2.3.

Assume now that $n \geq 2k$. Then

$$L^{(\alpha_n)}(k,n) = \sum_{m>0} l^{(\overline{\alpha_n})}(k,n,m) =$$

$$l^{(\alpha_n)}(k,n,0) + l^{(\alpha_n)}(k,n,1) + \sum_{m \geq 2} l^{(\alpha_n)}(k,n,m) = 1 + \sum_{i=1}^n \prod_{j=0}^{k-2} p_{i \oplus j} +$$

$$\sum_{m\geq 2} \left(\sum_{q=n-k+1}^{n} \left(\prod_{i=q}^{q\oplus(k-2)} p_i \right) f^{(\alpha_{k,q}^*)}(k,n-k,m-1) + f^{(\alpha_{n-2})}(k,n-1,m) \right) = \sum_{i=1}^{n} \prod_{j=0}^{k-2} p_{i\oplus j} - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i + \sum_{i=1}^{n} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{m\geq 0}^{n} \prod_{j=0}^{q\oplus(k-2)} p_i \right) f^{(\alpha_{k,q}^*)}(k,n-k,m-1) - \sum_{i=1}^{n} \prod_{j=0}^{n} p_{i+j} + \sum_{m\geq 0}^{n} f^{(\alpha_{n-2})}(k,n-1,m) = \sum_{q=n-k+1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_i \right) F^{(\alpha_{k,q}^*)}(k,n-k) + F^{(\alpha_{n-2})}(k,n-1) + \sum_{j=1}^{n} \prod_{j=0}^{k-2} p_{i\oplus j} - \sum_{i=1}^{n} \prod_{j=0}^{k-2} p_{i+j} - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i - \sum_{j=1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_i - \sum_{j=1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_{i+j} - \sum_{j=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i = 0$$

$$\text{Proof: } \sum_{i=1}^{n} \prod_{j=0}^{k-2} p_{i\oplus j} - \sum_{i=1}^{n-k} \prod_{j=0}^{k-2} p_{i+j} - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i = \sum_{j=1}^{n-k} \prod_{j=0}^{k-2} p_{i\oplus j} + \sum_{i=n-k+1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_{i+j} - \sum_{j=1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_{i+j} - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i = \sum_{i=n-k+1}^{n-k+2} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i = \sum_{j=n-k+1}^{n} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{q=n-k+1}^{n} \prod_{j=0}^{q\oplus(k-2)} p_i - \sum_{q=n-k+1}^{n} \prod_{i=q}^{q\oplus(k-2)} p_i = \sum_{j=n-k+1}^{n} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{j=n-k+1}^{n} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{j=1}^{n} \prod_{j=0}^{n} p_{i+j} - \sum_{j=n-k+1}^{n} \prod_{j=0}^{n} p_{i\oplus j} - \sum_{j=1}^{n} \prod_{j=0}^{n} p_{i+j} - \sum_{j=1}^{n} p_{i+j} - \sum_{j=1}^{n} \prod_{j=0}^{n} p_{i+j} - \sum_{j=1}^{n} \prod_{j=0}^{n} p_{i+j} - \sum_{j=1}^{n} \prod_{j=0}^{n} p_{i+j} - \sum_{j=1}^{n} p_{i+j}$$

If $p_i = 1$ for i = 1, 2, ..., n, $n \ge 3$ then $L^{(\alpha_n)}(k, n)$ gives the generalized Lucas number L(k, n). Additionally if k = 2 and $n \ge 3$, then L(2, n) gives the Lucas number L_n .

3 Graph interpretations and their applications

In this section we give some graph interpretations of the (k, α_{n-1}) -Fibonacci numbers and the (k, α_n) -Lucas numbers with respect to the number of H-

matchings of special graphs. It is interesting that the set X can be represented as the vertex set of the multipath $P_n^{(\alpha_{n-1})}$, where vertices from $V(P_n^{(\alpha_{n-1})}) = \{x_1, ..., x_n\}, n \geq 2$ are numbered in the natural fashion. Moreover the family \mathcal{X}_n corresponds to $E(P_n^{(\alpha_{n-1})}) = \{x_i x_{i+1}; x_i x_{i+1} \text{ repeats } p_i \text{ times, } p_i \geq 1, i = 1, ..., n-1\}$. Then \mathcal{Y} corresponds to a P_k -matching of a multigraph $P_n^{\alpha_{n-1}}$. Thus in the graph terminology the number $F^{(\alpha_{n-1})}(k,n)$, for $n \geq 2$, $k \geq 2$ is equal to the number of all P_k -matchings of the graph $P_n^{(\alpha_{n-1})}$.

Let $\#_H(G)$ be the number of all H-matchings of a graph G. From the above it immediately follows:

Theorem 3.1 Let $n \geq 2, k \geq 2, p_i \geq 1, i = 1, ..., n-1$ be integers. Then $\#_{P_k}(P_n^{(\alpha_{n-1})}) = F^{(\alpha_{n-1})}(k, n-(k-1)).$

The graph interpretation of the number $F^{(\alpha_{n-1})}(k,n)$ can be used for proving some identities.

Theorem 3.2 Let
$$n \ge 2, k \ge 2$$
 be integers. Then for $2 \le m \le n - k + 1$ $F^{(\alpha_{n-1})}(k,n) = F^{(\alpha_{m-2})}(k,m-1)F^{(\alpha_{n-1}^{m+1})}(k,n-m) + \sum_{i=0}^{k-1} \prod_{j=1}^{k-1} p_{m-k+i+j}F^{(\alpha_{m-k+i-1})}(k,m-k+i)F^{(\alpha_{n-1}^{m+1+i})}(k,n-m-i).$

PROOF: To prove this identity we use the graph interpretation of the number $F^{(\alpha_{n-1})}(k,n)$. Consider the multipath $P_n^{(\alpha_{n-1})}$ with $V(P_n^{(\alpha_{n-1})}) = \{x_1,...,x_n\}, \ n \geq 2$ and with the numbering of its vertices in the natural fashion. Let $x_m \in V(P_n^{(\alpha_{n-1})})$ and $2 \leq m \leq n-k+1$ and let M be an arbitrary P_k -matching of a multipath $P_n^{(\alpha_{n-1})}$. Let $\#_{P_k}^{-m}(P_n^{(\alpha_{n-1})})$ (respectively $\#_{P_k}^{m}(P_n^{(\alpha_{n-1})})$) be the number of P_k -matchings of $P_n^{(\alpha_{n-1})}$ and there is an element $P_k^* \in M$ such that $x_m \notin P_k^*$ (respectively; $x_m \in P_k^*$). We consider two possibilities:

1. $x_m \not\in M$.

Then it is clear that $M=M_1\cup M_2$, where M_1 is a P_k -matching of a graph $P_n^{(\alpha_{n-1})}\setminus\bigcup_{i=0}^{n-m-1}\{x_{n-i}\}$ which is isomorphic to the graph $P_{m-1}^{(\alpha_{m-2})}$. Moreover

 M_2 is a P_k -matching of a graph $P_n^{(\alpha_{n-1})} \setminus \bigcup_{i=1}^m \{x_i\}$ which is isomorphic to the graph $P_{n-m}^{(\alpha_{n-1}^{m+1})}$. Hence $\#_{P_k}^{-m}(P_n^{(\alpha_{n-1})}) = F^{(\alpha_{m-2})}(k, m-1)F^{(\alpha_{n-1}^{m+1})}(k, n-m)$.

 $2. x_m \in M.$

Since x_m is a vertex of P_k -element of a matching M, then it is clear that there are exactly k different subsets of $V(P_n^{(\alpha_{n-1})})$ which give a P_k -element

of M which can belong to M. Proving analogously as in Case 1 and considering these k possibilities we obtain that $\#_{P_k}^m(P_n^{(\alpha_{n-1})}) =$

$$\sum_{i=0}^{k-1} \prod_{j=1}^{k-1} p_{m-k+i+j} F^{(\alpha_{m-k+i-1})}(k, m-k+i) F^{(\alpha_{m-1}^{m+1+i})}(k, n-m-i).$$

Finally from the above cases we have that

$$F^{(\alpha_{m-1})}(k,n) = F^{(\alpha_{m-2})}(k,m-1)F^{(\alpha_{m-1}^{m+1})}(k,n-m) + \sum_{i=0}^{k-1} \prod_{j=1}^{k-1} p_{m-k+i+j}F^{(\alpha_{m-k+i-1})}(k,m-k+i)F^{(\alpha_{m-1}^{m+1+i})}(k,n-m-i).$$

Thus the Theorem is proved.

From the above Theorem it immediately follows:

Corollary 1 If $p_i = p$ for all i = 1, ..., n-1, then for $k \ge 2$ we have

$$F^{(p)}(k,n) = F^{(p)}(k,m-1)F^{(p)}(k,n-m) + p^{k-1}\sum_{i=0}^{k-1}F^{(p)}(k,m-k+i)F^{(p)}(k,n-m-i).$$

If p = 1 and k = 2, then $F_{n+1} = F_m F_{n-m+1} + F_{m-1} F_{n-m+1} + F_m F_{n-m}$.

Now we show an application of the graph representation for counting of another family of subsets of the set of n integers. Let $k \geq 2$ be an integer. Let $X = \{1, 2, ..., n\}$, $n \geq 3$, be the set of n integers and let $K = \{\mathcal{Y}^*(i,k); i=1,2,...,n-k+1\}$, where $\mathcal{Y}^*(i,k)$ is a family of all necessarily different two elements subsets of the set $\{i,i+1,...,i+k-1\}$ providing that subsets $\{i,i+1\}$ repeats p_i -times, i=1,...,n-k-2, respectively and remaining subsets appear exactly once.

Let \mathcal{Y}^* be a subfamily of \mathcal{K} such that

(v) for each $\mathcal{Y}^*(i,k), \mathcal{Y}^*(j,k), i \neq j$ holds $|j-i| \geq k$.

Denote by $\eta(k,n)$ the number of all subfamilies \mathcal{Y}^* of the multifamily \mathcal{K} . To count the number $\eta(k,n)$ we will use given earlier the graph interpretation of the number $F^{(\alpha_{n-1})}(k,n-(k-1))$. Firstly, auxiliary, we need the concept of the d-power of a graph G. Let $d \geq 1$ be an integer. For a given graph G by d-th power of a graph G we mean the graph denoted by G^d such that $V(G^d) = V(G)$ and $xy \in E(G)$ if and only if $d_G(x,y) \leq d$, where $d_G(x,y)$ denotes the distance between x and y in a graph G.

Theorem 3.3 Let $n \geq 3, k \geq 2, p_i \geq 1, i = 1, ..., n-1$ be integers. Then $\eta(k,n) = F^{(\alpha_{n-1})}(k,n-(k-1))$.

PROOF: In the graph interpretation the set X corresponds to the vertex set of the graph $(P_n^{(\alpha_{n-1})})^{k-1}$ and the family \mathcal{K} corresponds to the set $E((P_n^{(\alpha_{n-1})})^{k-1})$. Using the graph interpretation of the number $F^{(\alpha_{n-1})}(k, n-1)$

(k-1)) and the operation of (k-1)-power of a graph $P_n^{(\alpha_{n-1})}$ we have that every P_k -matching of a graph $P_n^{(\alpha_{n-1})}$ induces to a K_k -matching in a graph $(P_n^{(\alpha_{n-1})})^{k-1}$, hence the result immediately follows. Thus the Theorem is proved.

Now we give the graph representation of the (k, α_n) -Lucas number.

The set $X = \{1, 2, ..., n\}$ can be regarded as the vertex set of the multicycle $C_n^{(\alpha_n)}$ with $V(C_n^{(\alpha_n)}) = \{x_1, x_2, ..., x_n\}, n \geq 3$, where vertices from $V(C_n^{(\alpha_n)})$ are numbered in the natural fashion. Then the multifamily \mathcal{X}_n^* corresponds to $E(C_n^{(\alpha_n)}) = E(P_n^{(\alpha_{n-1})}) \cup \{x_n x_1; x_n x_1 \text{ repeats } p_n \text{ times}\}$. Thus, we have the following

Theorem 3.4 Let $n \geq 3$, $k \geq 2$, $p_i \geq 1$, i = 1, 2, ..., n be integers. Then $\#_{P_k}(C_n^{(\alpha_n)}) = L^{(\alpha_n)}(k, n)$.

Now we show another application of this graph interpretation. We will use it for counting of another subfamily of the set of n integers.

Let $X = \{1, 2, ..., n\}$, $n \geq 3$, $k \geq 2$ be integers. Let $\mathcal{L} = \mathcal{K} \cup \mathcal{L}_1$, where $\mathcal{L}_1 = \{\mathcal{Y}^{**}(i, k); i = n - (k - 2), n - (k - 3), ..., n\}$, where $\mathcal{Y}^{**}(i, k)$ is a family of all necessarily different two elements subsets of the set $\{n - s, (n - s) \oplus 1, (n - s) \oplus 2, ..., (n - s) \oplus (k - 1), s = 0, 1, ..., k - 2\}$ providing that subsets $\{i, i \oplus 1\}, i = n - (k - 2), n - (k - 3), ..., n$ appear p_i times and remaining subsets appear exactly once.

Let \mathcal{Y}^{**} be a subfamily of different elements of the multifamily \mathcal{L} such that (vi) for each $\mathcal{Y}^{**}(i,k), \mathcal{Y}^{**}(j,k), i \neq j, k \leq |j-i| \leq n-k$.

Let R(k, n) be the number of all subfamilies \mathcal{Y}^{**} of the multifamily \mathcal{L} .

Proving analogously as in Theorem 3.3 we obtain

Theorem 3.5 Let $n \geq 3$, $2 \leq k \leq n$, p_i be integers, i = 1, 2, ..., n. Then $R(k, n) = L^{(\alpha_n)}(k, n)$.

References

- [1] C. Berge, *Principles of combinatorics*, Academic Press New York and London (1971).
- [2] R. Diestel, Graph theory, Springer-Verlag, Heidelberg, New-York, Inc. (2005).
- [3] H. Galeana-Sánchez, C. Hernández-Cruz, On the existence of (k,l)-kernels in infinite digraphs. A survey, submitted.
- [4] H. Galeana-Sánchez, C. Hernández-Cruz, Cyclically k-partite digraphs and k-kernels, Discussiones Mathematicae Graph Theory 31 (2011), 63-78.

- [5] H. Galeana-Sánchez, C. Hernández-Cruz, k-kernels in generalizations of transitive digraphs, Discussiones Mathematicae Graph Theory 31 (2011), 293-312.
- [6] I. Gutman, S. Wagner, Maxima and minima of the Hosoya index and the Merrifield-Simmons index. A survey of results and techniques, Acta Applicandae Mathematicae 112/3 (2010), 323-346.
- [7] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria 55 (2000), 139-146.
- [8] R.E. Merrifield, H.E. Simmons, Topological methods in chemistry, John Wiley & Sons, New York (1989).
- [9] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982), 16-21.
- [10] A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, submitted.
- [11] A. Włoch, On generalized Fibonacci numbers and k-distance k_p-matchings in graphs, Discrete Applied Mathematics 160 (2012), 1399-1405.
- [12] A. Włoch, I. Włoch, Generalized sequences and k-independent sets in graphs, Discrete Applied Mathematics 158 (2010), 1966-1970.
- [13] A. Włoch, I. Włoch, Generalized Padovan numbers, Perrin numbers and maximal k-independent sets in graphs, Ars Combinatoria 99 (2011), 359-364.