(k, a_1)-Fibonacci numbers and FPi-matchings
in multigraphs

Urszula Bednarz, Dorota Bréd, Krzysztof Piejko, Andrzej Wioch

Rzeszéw University of Technology
Faculty of Mathematics and Applied Physics
al. Powstaricow Warszawy 12, 35-359 Rzeszéw, Poland
e-mail: ubednarz@prz.edu.pl, dorotab@prz.edu.pl,
piejko@prz.edu.pl, awloch@prz.edu.pl

ABSTRACT: In this paper we generalize the Fibonacci numbers and the
Lucas numbers with respect to n, respectively n+1 parameters. Using these
definitions we count special subfamilies of the set of n integers. Next we
give the graph interpretations of these numbers with respect to the number
of P,-matchings in special graphs and we apply it for proving some identity
and also for counting other subfamilies of the set of n integers.
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1 Introduction

We use the standard terminology and notation of the combinatorics and
the graph theory, see [1, 2].

The n-th Fibonacci number F, is defined recursively in the following way
Fo=0,F =1and F, = F,_; + F,—2, for n > 2. The n-th Lucas number
is defined by Lo =2, Ly =1and L, = Ln_1 + Lp—2, forn > 2.

Many concepts have arisen generalizing the Fibonacci numbers and the
Lucas numbers, but a very natural is the concept of the generalized Fi-
bonacci numbers F'(k,n) and generalized Lucas numbers L(k, n) introduced
by Kwasénik and Wioch in [7]. This generalization is directly related to
studying the concept of k-independent sets in graphs [11, 12, 13]. It is
worth mentioning that k-independent sets ( and also k-kernels in digraphs)
are intensively studied by Galeana-Sdnchez and Hernandez-Cruz, see for
example their last interesting papers (3, 4, 5].

Let k > 2 be integer and let X = {1,...,n} be the set of n integers, n > 1.
Let Y C X such that for each i,5 € Y holds |i — j| > k. Note that in par-
ticular Y can be empty. The number F(k,n) is defined as the number of all
subsets Y and it was proved,(see [7]) that F(k,n) =n+1forn=0,1,...,k
and F(k,n) = F(k,n—1)+ F(k,n— k) forn > k +1. Let Y* C X such
that for each 4,5 € Y* holds k < |i — j| £ n — k. Then the number L(k,n)
is the number of all subsets Y* including also the empty set, and it was
proved that
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L(k,n)=n+1forn=0,1,..,2k—1 and

L(k,n) = (k—1)F(k,n—(2k—1))+ F(k,n— (k—1)) for n > 2k. Recently
some properties of the generalized Fibonacci numbers F(k,n) and the gen-
eralized Lucas numbers L(k,n) were given in [10]. Among other things
more comfortable recurrence relation for the generalized Lucas numbers
was proved, namely L(k,n) = L(k,n—1)+ L(k,n—k), for n > 2k. Clearly
for k =2, F(2,n) = F42, for n > 0 and L(2,n) = L, forn > 2.

In this paper we give a generalization of the Fibonacci numbers and
the Lucas numbers with respect to n, respectively n + 1 parameters. Next
we give a graph interpretation of introduced numbers with respect to the
number of all Pe-matchings in special multigraphs.

Let G and H be two graphs. By an H-matching M of G we mean a
subgraph of G such that all connected components of M are isomorphic
to H. Moreover the empty set also is a H-matching, for every graph H.
We can observe that if H = Kj, then Kj-matching is a matching in the
classical sense. If H = K, then an induced K;-matching is an independent
set in the classical sense. The definition of H-matching naturally extend
the concept of independent sets and matchings.

There are many papers related to the counting problems of induced
Kj-matchings and Kj-matchings in graphs, see for example [6).

In 1971 the Japanese chemist Hosoya introduced to the chemical liter-
ature the parameter Z(G) of a molecular graph as the number of all K-
matchings of a graph G. He showed that certain physicochemical properties
of alkanes are well correlated with Z(G). In 1989 the American chemists
Merrifield and Simmons introduced another graph parameter o(G) as the
number of all induced K-matchings of a graph G, see [8]. From the formal
point of view the definition of the Merrifield-Simmons index is analogous
to the definition of the Hosoya index.

In the mathematical literature a real interest in counting of indepen-
dent sets (i.e induced K;-matchings) and matchings in graphs was initi-
ated by Prodinger and Tichy in [9]. In this paper among other things they
showed the connections between the number of all independent sets o(G),
for special graphs and the Fibonacci numbers and the Lucas numbers. In
particular for an n-vertex path P, and an n-vertex cycle C,, they proved
that o(P,) = F,+2 and 6(C,) = L,. Consequently Z(P,) = F,;; and
Z(Cp) = L,. This short paper gave impetus for counting independent sets
and matchings in graphs.

In recent years a lot of work has been done in counting field and the last
survey of Gutmann and Wagner [6] collects and classifies the results con-
cerning these two indices. Most of them have been achieved quite recently,
see its references where this type of the problem was studied.
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2 Generalization of the Fibonacci numbers

Let X = {1,2,...,n},n > 2 be the set of n integers. Let A,, be a multi-
family of subsets of X such that X, = {Xi41;% = 1,2,...,n — 1}, where
the family X;i41 contains p;,p; > 1 subsets {¢, + 1}. In the other
words we can write X, = {il, 24 {1,2}, ..., {1, 2}} i2, 3}, {2,3},....{2, 3l, ey
P —Emes P2 —Emes
in -1,n},{n-1,n},....{n— l,nl}, n>2.
pn_1:times

Let k > 2 be an integer. For fixed 1 <t < n—k+1, by J(k,t) we denote
a subfamily of A, such that Y(k,t) = {{t +j,t+j+1},7=0,...,k -2}

Let Y C A, be a subfamily of X, such that
(i) |Y| = m, for fixed m 2 0
(ii) for each Y(k,t),V(k,q) € Y such that ¢t # q holds |g — t| > k.

Let an—1 = (p1,P2,..-,Pn—1) be the sequence of values p;, where i =
1,..,n — 1 and next let a,—; = (P1,P2,..-,Pn-i) be the subsequence of
o1 obtained by deleting words pn—it1,..,Pn—1, for 1 < i < n—1.
If flan-1)(k,n,m) is the number of all m-elements subfamilies ) then
Fn-1(k,n) = 3 flen-1)(k,n,m) is the number of all subfamilies ).

m>0
The number F(@»-1)(k, n) will be named as the (k, @n—1)-Fibonacci num-
ber. If p; = p for all i = 1,...,n — 1, then the number F(@n-1)(k,n) we will
denote by F?(k,n).
Theorem 2.1 Letn>2,m>0,2<k Sk n be integers. Then
n—k+1k—=2
flan-1)(k,n,0) = 1, fl@n-1)(k,n,1) = Z+ II pisj. For m > 2 we have
i=1 j=0

k~1
fen-0(k n,m) = [] pa—if@ -+ (k,n=—k,m—1)+ f@-2)(k,n—1,m).
i=1

PROOF: For m = 0,1 the initial conditions are obvious. Let m > 2
and |Y| = m. Let f,g""")(k, n,m) (respectively fi",‘f‘”(k,n, m) ) be the
number of all m-elements subfamilies } such that X,_1, NY # 0 (re-
spectively: Xp—1,NY = 0). Then f@n-(k,n,m) = flon=(k n,m) +
ian"“)(k,n, m). Two cases occur now:

1. Xn—l,n ny # 0.

Then there exists Y(k,q) € Y such that exactly one subset {n —1,n} from
Xn—1,n belongs to Y(k, q). Then the definition of the family ) implies that
{n—k+in—-k+i+1} € Y(k,gq)yi=1,...,k—1hencegq=n—k+1.
Moreover for each Y(k,t) € V,t # q we have {n — k,n — k + 1} & YV(k,t)
(otherwise the condition (ii) does not hold). This means that each sub-

k-1
family Y(k,t) € Y is the subfamily of Xn — |J Xnck4in—k+it1 = Xnok.
=0
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Thus Y = Y* U Y(k,q), where Y* is (m — 1)-elements subfamily of X, _,
satisfying conditions (i) and (ii).

Since each subset of the subfamily Y(k,q) € Y such that X,_;, N
Y(k,q) # @ could be chosen on pp_1,Pn—2; ..., Pn-k+1 Ways, respectively we

k=1
have that f**(k,n,m) = [[ pn_if @-*-D(k,n — k,m — 1).
i=1

2. Xn—l,n ny=~0.
Then for each Y(k, q) € Y we have X,_1 nNY(k,q) = 0. So Y is m-elements

subfamily of Xy \ Xn—1n = Xn_1. Then £ (k,n,m) = flen-2)(k,n -
1,m).

k=1
Finally from the above cases f(®~-1)(k,n,m) = [] pn—if(@»-*-1)(k,n—
i=1

kym —1) 4+ fler-3)(k,n — 1,m).
Thus the Theorem is proved. O

Theorem 2.2 Let k > 2, n > 2 be integers. Then forn > 2k
k=1

Flen-1)(k,n) = Fen-3)(k,n — 1) + [] pp_iF@r-+-1)(k,n — k)
i=1

with initial conditions

n—(k—1) k=2
Flen-1)(k,n) =1+ 2 H pjtt forn=2,..,2k - 1.

PROOF: Let n < 2k — 1. Then
Fen-(k,n)= 3 fln-1(k,n,m)= f@-1(kn,0)+ f@-1)(k,n,1) =
m2>0

n—(k—1) k-2
1+ E 1 pj+¢ by Theorem 2.1.
j=1 t=0

Assume now that n > 2k. Then
F(an—l)(k, n) = Z f(an—l)(k,n’ m) =

m20

f@n=1(k,n,0) + flen=1)(k,n,1) + 3 fln-1)(k,n,m) =
m>2

n—(k—=1) k—2

1+ X Il e+t z flen=a(k,n - 1,m)+
A ab

H Pn—i 2 f(an-k_l)(k:n_ krm - 1) =
i=

n-(k-l)k 2 n—kk=2
1+ 2 H Pive— 1= 3 Il pive + Z fen=2)(k,n —1,m)+

j= j=1t=0

H pn—i(“l + E f(a"_k-l)(k!n —k, m)) =
i=1 m20
n—k k=2 n—k k-2

1+ El :Hopj“ +Pn—k41* e Pro1— 1= 21 :H Pi+t + Z flen-a)(k,n -
J= =| J— —-
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1,m) —Pn_1 ' Pkl + 1‘[ P—i Z flan-x=1)(k,n — k,m) =

i=1

Flen-3)(k,n - 1) + ]"[ Pr—iF@n=r=1)(k,n — k)

which ends the proof
Thus the Theorem is proved. 0

If p; =1, for i = 1,...,n — 1 then for k > 2 the number F(®~-1)(k, n)
gives the generalized Fibonacci number F(k,n — (k — 1)). Moreover if
additionally k = 2 then F'(2, n—1) gives the Fibonacci number F,,;; defined
in the classical sense.

Let X ={1,2,...,n}, n > 3 be the set of integers. For 7,5 € X U {0} let
i@j=1i+jwheni+j<nori®j=i+j—nwheni+j>n+1.

Let X,y be a multifamily of subsets of X such that Ay = {X};,,; i =
1,2,..,n— 1} U {X 1}, where the family &, contains p; subsets {i,i +
1}, i = 1,.,n — T and X, contains p, subsets {n,1}, p; > 1, for
i=1,.,n In the other words we can write X = {{1,2},...,{1,2},

w_v__—./

py—times
{2 3},.. ,{2 3} {n 1,n},.,{n-1, n} {n,l} +{n, 1}}
P2 —times Pn-1 —times Pn —tlmes
Let k > 2 be an integer. For fixed 1 <t < n by F(k,t) we denote a
subfamily of X2 such that F(k,t)={{t®jt®(+1)}, j=0,...,k-2}.
Let F C A be a subfamily of X} such that
(iii) |F| = m, for fixed m > 0,
(iv) for each F(k,t), F(k,q) € F suchthatt Zqholds k < |g—t| <n—k.
Let o, = (p1,p2,...,Pn) be the sequence of values p;, i = 1,...,n. For
the future considerations we define the following subsequence of c,.
Let ars, 1 < 7 < s < n, be the subsequence of o, obtained from a;, by
deleting words pr,pri1,..,Ps- Let od, 1 £ g < n, be the subsequence
of a,, obtained from a;, by deleting words p1, py, ..., pg—1. Let af , be the
subsequence of o, obtained from oy, by deleting words pg, pe@1, -+-» Pe@ (k-2)-
If l{an)(k,n, m) is the number of all m-elements subfamilies F, then
L) (k,n) = 3 Uen)(k,n,m) is the number of all subfamilies 7. The
m20

number L(@»)(k,n) will be named as (k, as)-Lucas number.

Theorem 2.3 Letn >3, m >0, 2 < k <n be integers. Then

n k—2
len)(k,n,0) = 1, I@)(k,n,1) = E H pigj and for m > 2 we have

i=1 =0

1(en)(k,n,m) =

n q®(k-2) .
z l—.[ pi f(ak.q)(k,n_k’m— 1) +f(a“_2)(k7n— 1, m).
g=n—k+1 i=q
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PROOF: For m = 0 and m =1 the initial condltlons are obvious. Assume
that m > 2. Let 1) (k,n,m) (respectlvelyl (k n,m) ) be the number
of all m-elements subfamilies F such that X,’;_Ln NF#Por Xp NF#D
(respectively: Ax_; . NF =0 and X ; NF =0). Then l(*)(k,n,m) =
18 (k,n,m) + l(a")(k m, m). Two cases occur now:

LAy 1 NF#Por X; NnF#0.

Then there exists Fk, q) € F such that exactly one subset {n —1,n} from
X_1,n or exactly one subset {n,1} from X;; ; belongs to F(k,q). Then the
definition of the family F implies that ¢ € {n—k+1,n—k+2,...,,n}. This
means that each subfamily }' (k t) € F,t # g is the subfamily of one of the

following subfamilies X} U {¢g®i,g® (i+1)} = A_i. Using Theorem
2.1 we obtain that

n q9®(k-2) .

Kok n,m) = 3 ( Il m)ﬂ%ﬂwm~hm—n-
q=n—k+1 i=q

2. X jnNF=0and X;, NF=0.

Then for each F(k,q) € F we have {n — 1,n} ¢ F(k,q) and {n,1} ¢

F(k,q) for all p; subsets, ¢ = n —~ 1,n. So F is m-elements subfamily

of Ay — (Xn—1,n U AXpn1) = Xn—2. Then by Theorem 2.1 we have that

1) (k,n,m) = fl@n-2)(k,n — 1,m).

Finally from the above cases I(®~)(k,n,m) =

n 90(k-2) .
[ M » ferad(k,n— k,m— 1)} + f@n-3)(k,n — 1,m).

=n—k+1 i=q
Thus the Theorem is proved. O

Theorem 2.4 Letn > 3,2 < k <n. Then forn > 2k
n 1@ (k—2) ]
L) (kn)y= 3 ( ['[ p,-) Flio(k,n— k) + F(an-2)(k n —1)

g=n—k+1 i=q

with initial conditions L(®~)(k,n) =1 + i H pigj forn=1,..,2k - 1.

i=1j=0

PROOF: Let n < 2k — 1. Then L(*»)(k,n) = Z (@) (k, n,m) =

@) (k,n,0) + 1) (k,n,1) = 1 + i H Pig;j, by Theorem 2.3.

i=1j=0
Assume now that n > 2k. Then
L@ (k) = X 1@ (k,n,m) =
m20
n k-2
1@n)(k,n,0)+(em) (k0 1)+ 3 @) (kn,m)=1+3" szeg
m22 i=1j=0
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n q®(k-2)
)Y ( 2 ( 11 p)f“"' D (k,n~k,m—1)+f@-2)(k,n— lm))

m22 \ g=n—k+l1 i=q
n k=2 n q®(k-2)
1+Y Mlpei— > I pt
i=1j=0 =n—k+1 i=q

n q® (k-2 .
2 ( H p) f(ak.q)(k,n_k’m_l)_
m20g=n—k+1 i=q

n—k k-2

1-3 HPH-J

i=1 j=0

Y. flen-3(k,n—-1,m)=
m20
n q$(k 2)
> ( ) (ko) (k,n — k) + F@n-2)(k,n - 1)+
2

q—n—k+1 i=

n—k k— n g (k—2)

n
> H Pios — 2. H Pi+i— 2 H Pi.
i=1j5=0 i"' 3=0 g=n—-k+1 i=q
n n—k k-2 n qB(k—2)
Claim 1. 37 H Pigj — E H Pivi— 2 I p=0
i=13j=0 i=1 j=0 g=n—k+l i=gq
n k=2 n—kk—2 n B (k-2)
Proof: Y [1 pigs — Z H Pivi— 2 1 »=
i=1 j=0 i=1 g=n—k+1 i=gq
n—k k=2 n—k k=2 n q9(k-2)
> H Pigj t Z H Pigj — Z H Piri— 2 H pi =
i=1 j=0 t=n-—k+1 j=0 i=1 j=0 g=n—~k+1 i=q
k—2 n 9 (k—2)
2 [rei— X I »=
i=n—k+1 j=0 g=n—k+1 i=q

Pn—k+1P(n—k+1)@1--P(n—k+1)@(k-2) T
Prn—k+2D(n—k+2)@1--P(n—k+2)@(k—-2) T -+ +
PnPr@l-Pn@(k—2)— Pn—k+1Pn—k+2--P(n—k+1)®(k~2) —
Pn—k42Pn—k+3-P(n—k+2)®(k—2) — *+ — PnPn@l. Pn@(k-2) =
Using Claim 1 we have

n 9 (k—2) .

L) (kn)= 3 ( IT p,») Fekd(k,n — k) + Flan-2)(k,n —1).
g=n—k+1 i=q

Thus the Theorem is proved.

If p;=1fori=1,2,..,n,n> 3 then L(®»)(k n) gives the generalized
Lucas number L(k,n). Additionally if k =2 and n > 3, then L(2,n) gives

the Lucas number L,.

3 Graph interpretations and their applica-

tions

In this section we give some graph interpretations of the (k, on—1)-Fibonacci
numbers and the (k, a,,)-Lucas numbers with respect to the number of H-
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matchings of special graphs. It is interesting that the set X can be rep-
resented as the vertex set of the multipath P,(."‘""), where vertices from
V(P,(f'""‘)) = {z1,...,Zn}, n > 2 are numbered in the natural fashion.
Moreover the family X, corresponds to E(P,(,“"")) = {ZiTit1; TiTiy, Te-
peats p; times, p; > 1, i = 1,...,n — 1}. Then Y corresponds to a Pj-

matching of a multigraph P,"~'. Thus in the graph terminology the
number F(e~-1)(k,n), for n > 2, k > 2 is equal to the number of all

Pi-matchings of the graph P{*"-).
Let #x(G) be the number of all H-matchings of a graph G. From the
above it immediately follows:

Theorem 3.1 Letn > 2,k > 2,p; >21,i=1,..,n—1 be integers. Then
#p, (P~1) = Flan-1)(k, n — (k — 1)).

The graph interpretation of the number F{(®~-1)(k,n) can be used for
proving some identities.

Theorem 3.2 Letn > 2,k > 2 be integers. Then for2<m<n-—-k+1

F@n-1)(k,n) = FOm-2)(k, m — 1)F@=) (k, n — m)+
k=1k=1 1
¥ 1 pmoksirsFOm=tri=0(k,m — k + )P (k- m — ).

=0 j=1

PROOF: To prove this identity we use the graph interpretation of the
number F(n-1)(k,n). Consider the multipath P{**~*) with V(P{®»-1)) =
{z1,..vZn}, n = 2 and with the numbering of its vertices in the natural
fashion. Let z,, € V(P,(;""")) and2<m <n-k+1andlet M be an
arbitrary Pr-matching of a multipath Pen=1) Let #p, (P(a"")) (respec-
tively #7, (P,(.""“))) be the number of Pi-matchings of P{*=1) and there
is an element Py € M such that z,, ¢ P; (respectively; zm € P?).

We consider two possibilities:

L.z, €M.
Then it is clear that M = M, U M;, where M, is a Pr-matching of a graph

n—m-—1
Plan-1\ U {Zn-i} which is isomorphic to the graph P("_"‘"). Moreover

M, is a Pg-matching of a graph P(""‘")\ U {zi} which is isomorphic to the

i=1
graph P°71). Hence #5m(P*»1) = F(@m=2)(k,m — 1)FE=) (k,n -
m).
2.z, €M.

Since z,, is a vertex of Pi-element of a matching M, then it is clear that
there are exactly k different subsets of V(P, (“"“)) which give a Pi-element
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of M which can belong to M. Proving analogously as in Case 1 and con-

sidering these k possibilities we obtain that #73, (P(o‘"")) =

k=1k—1 il

S 1 PmektigF@m=rtiot)(k,m = k+ ) FCTE " (kyn —m — i),

i=0 j=1

Finally from the above cases we have that

Flan-1)(k,n) = F(em-2)(k,m — I)F(""-! Mkyn —m) +

k—1k-1 m+1+

Y 11 Pm—ktisi FEm—r+i-1)(k,m — k 4+ ) FO57) (k,n — m — i),

=0 j=1

Thus the Theorem is proved. O
From the above Theorem it immediately follows:

Corollary 1 Ifp; =p foralli=1,...,n — 1, then for k > 2 we have

FO(kn) = FOkm-1)FP(k,n—m)
k-1
p* 1Y F®(k,m — k+ ) F® (k,n - m — ).
=0

Ifp=1and k=2, then Frop1 = FnFa—mi1+ Fn—1Fn—my1 + Fn B .

Now we show an application of the graph representation for counting
of another family of subsets of the set of n integers. Let & > 2 be an
integer. Let X = {1,2,...,n}, n > 3, be the set of n integers and let X =
{V*(i,k);i=1,2,...,n—k+1}, where Y*(i, k) is a family of all necessarily
different two elements subsets of the set {i,i +1,...,i + k — 1} providing
that subsets {i,i+ 1} repeats p;-times, i = 1,...,n — k — 2, respectively and
remaining subsets appear exactly once.

Let Y* be a subfamily of X such that

(v) for each Y*(i,k), Y*(j, k),i # j holds |5 —i| > k.

Denote by n(k, n) the number of all subfamilies * of the multifamily K. To
count the number 7(k, n) we will use given earlier the graph interpretation
of the number F(*»-1)(k,n—(k—1)). Firstly, auxiliary, we need the concept
of the d-power of a graph G. Let d > 1 be an integer. For a given graph G
by d-th power of a graph G we mean the graph denoted by G¢ such that
V(G%) = V(G) and zy € E(G) if and only if dg(z,y) < d, where dg(z,y)
denotes the distance between z and y in a graph G.

Theorem 3.3 Letn>3,k>2,p; 21,i=1,..,n—1 be integers. Then
n(k,n) = Flen-1)(k,n — (k —1)).

PROOF: In the graph interpretation the set X corresponds to the ver-
tex set of the graph (P{*"~"))¥-1 and the family K corresponds to the set
E((P{*~-")*-1), Using the graph interpretation of the number F(»-1) (k, n—
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(k — 1)) and the operation of (k — 1)-power of a graph P{*"~") we have
that every Pr-matching of a graph P2 induces to a K, x-matching in a
graph (P,(f'""))""l, hence the result immediately follows.

Thus the Theorem is proved. ]
Now we give the graph representation of the (k, o, )-Lucas number.
The set X = {1,2,...,n} can be regarded as the vertex set of the mul-

ticycle ,(f‘") with V(C,(f‘")) = {z1,%2,...,Zn}, n 2 3, where vertices from

V(C,(,a")) are numbered in the natural fashion. Then the multifamily A}

corresponds to E(CS*™) = E(P{*") U {aZ1; Tn71 Tepeats p, times}.

Thus, we have the following

Theorem 3.4 Letn>3,k>2,p; 21,i=1,2,...,n be integers. Then
#p,(C™) = L(en) (K, n).

Now we show another application of this graph interpretation. We will
use it for counting of another subfamily of the set of n integers.

Let X ={1,2,...,n},n >3, k > 2 be integers. Let £L = KU L;, where
Ly = {Y*(@G,k);i =n—(k-2),n—(k-3),...,n}, where Y**(i,k) is a
family of all necessarily different two elements subsets of the set {n—s, (n—
s)®l,(n~-8)®2,...,(n-s)®(k~1),s=0,1,...,k — 2} providing that
subsets {i,i ®1},i = n — (k—2),n — (k- 3),...,n appear p; times and
remaining subsets appear exactly once.
Let Y** be a subfamily of different elements of the multifamily £ such that
(vi) for each Y**(i, k), V**(j,k),i # j,k < |j — il < n — k.
Let R(k,n) be the number of all subfamilies Y** of the multifamily L.

Proving analogously as in Theorem 3.3 we obtain

Theorem 3.5 Letn > 3, 2 < k < n, p; be integers, i = 1,2,...,n. Then
R(k,n) = L(®)(k,n).
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