Endomorphism monoids of
generalized split graphs *

Dancheng Lu, Tongsuo Wu

Abstract: We call a graph G a generalized split graph if there exists a core K
of G such that V(G) \ V(K) is an independent set of G. Let G be a generalized
split graph with a partition V(G) = KUS, where K is a core of G and S is an
independent set. We prove that G is end-regular if and only if for any a,b € S,
¢ € Aut(K), the inclusion ¢(N(a)) G N(b) doesn’t hold, and that G is end-
orthodox if and only if G is end-regular and for any a,b € S, N(a) # N(b).
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0 Introduction

Endomorphism monoids of graphs has been investigated for quite
some time. The research in this field aims at revealing the relation-
ship between semigroup theory and graph theory and at advancing
application of one to the other. Refs. [1, 4, 13, 14] may serve as a
survey. A semigroup is called regular if every element has a pseudo-
inverse. According to [10], the most coherent part of semigroup the-
ory at the present time is the part concerned with the structure of
regular semigroups of various kinds. In [18], the following question
was posed: Which graphs have a regular endomorphism monoid? To

*This research is supported by National Natural Science Foundation of China
(No.10671122), partially by Collegial Natural Science Research Program of Edu-
cation Department of Jiangsu Province (No.07KJD110179) and Natural Science

Foundation of Shanghai (No.06ZR14049).

ARS COMBINATORIA 111(2013), pp. 357-373



answer this question, we say a graph to be end-regular if it has a
regular endomorphism monoid. As is pointed out in [6] that end-
regular graphs do have some kind of graphical symmetry although
they are defined in the semigroup sense. This viewpoint can also be
seen by the characterization of end-regular split graphs that a split
graph G is end-regular if and only if there is a maximal complete
subgraph K of G such that V(G) \ V(K) is independent and all the
vertices in V(G) \ V(K) have the same degrees ([16, Corollary 2.14
and Theorem 3.3] or Corollary 2.9). However it seems difficult to
obtain a characterization of all end-regular graphs. In [15], a regular
endomorphism of a graph was characterized by means of idempo-
tents. In [3] and [19], Fan and Wilkeit characterized independently
end-regular bipartite graphs. In [11], the authors gave all non-local
rings whose zero-divisor graphs are end-regular.

We call a graph G a generalized split graph if there exists a core
K of G such that V(G) \ V(K) is an independent set. The class of
generalized split graphs is much larger than the class of split graphs.
In this paper, through a path completely distinct from the one in
(16], we obtain an explicit characterization of generalized split graphs
which are end-regular and thus provide a large class of end-regular
graphs. Finally, generalized split graphs which are end-orthodox are
determined.

1 Basic notions

Our graphs are finite undirected graphs without loops and multiple
edges. Let G be a graph, we denote by V(G) (or just G) and E(G)
its vertex set and edge set, respectively. The neighborhood of a vertex
u, denoted by N(u), is the set of vertices adjacent to u. A graph H is
called a subgraph of Gif V(H) € V(G) and E(H) & E(G). Moreover,
if for any a,b € V(H), {a,b} € E(G) implies {a,b} € E(H), then
H is called an induced subgraph of G. Let S & V(G). The induced
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subgraph H with V(H) = S is denoted by [S]. A graph G is complete
if any two of its vertices are adjacent. A subset S & V/(G) is said to
be independent if {a,b} ¢ E(G) for any a,b € S.

Let G and H be graphs. A mapping f : V(G) — V(H) is called
a homomorphism from G to H if for any a,b € V(G), {a,b} € V(G)
implies {f(a), f(b)} € E(H). Moreover, if f is bijective and its
inverse mapping is also a homomorphism, then f is called an iso-
morphism from G to H. A homomorphism (resp. an isomorphism)
from G to itself is called an endomorphism (resp. automorphism) of
G. An endomorphism f is said to be half-strong if f(a) is adjacent to
f(b) implies that there exist ¢ € f~}(f(a)) and d € f~(f(b)) such
that c is adjacent to d. By End(G) and Aut(G), we denote the set
of all the endomorphisms and automorphisms of G respectively. It
is well-known that End(G) is a monoid (i.e., a semigroup with an
identity element) and Aut(G) is a group with respect to the compo-
sition of mappings. If K is a subgraph of G, then a homomorphism
f : G — K such that f(k) = k for all k € V(K) is called a retraction
of G onto K and K a retract of G. A subgraph K of G is called a
core of G if there is a homomorphism G — K but no homomorphism
G — H for any proper subgraph H of K. A graph which is its own
core will be called simply a core. Cores have been called minimal
graphs, unretractive graphs in the literature. We give the following
natural definition.

Definition 1.1. A graph G is called a generalized split graph if there
is a core K of G such that V(G) \ V(K) is an independent set of G.

We have known following graphs are cores.

(1) The x-critical graphs such as complete graphs, cycles of odd
length, etc. ([8] or [7, Chapter 6.2]) (2) The join of two cores ([12,
Theorem 2.2]). (3) The lexicographic products Caop+1[X] and K,[Y],
where Y is a core ([12, Theorem 3.11]). (4) The complements of
cycles of odd length ([17, Propositin 2.2]).
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A generalized split graph is a split graph if and only if its core is
a complete graph. Hence the generalized split graph is a large class
of graphs containing split graphs properly.

Recall from [10] that an element a in a monoid S is regular if
there exists b in S such that aba = a, a monoid S is regular if each
element in S is regular. An element e in S is an idempotent if e = 2.
A regular monoid S is orthodoz if the product of any two idempo-
tents is an idempotent. A graph G is said to be end-regular (resp.
end-orthodoz) if its endomorphism monoid End(G) is regular (resp.
orthodox). By definition, an end-regular graph is end-orthodox if
and only if for any retractions f and g of G, the composition fg is
also a retraction of G.

For undefined concepts in graph theory and semigroup theory,
one may refer to [7] and [10] respectively.

The following observations about a core are useful.

Lemma 1.2. (1) If K is a core of G, then K is a core.
(2) Every graph G has a core of G, which is a retract, so an induced
subgraph of G.
(3) The core of a graph is unique, up to isomorphism.
(4) A subgraph H of G is a core of G if and only if it is a core and
there is a homomorphism from G to H.
(5) Let f be an endomorphism of G. Then every core of [f(V(G))]
is a core of G.
Proof. (1)-(4) See [9, Observations] or {7, Chapter 6.2].

(5) Let K be a core of [f(V(G))]. Then there is a homomorphism
[f(V(G))] — K, and so a homomorphism: G — K. Now, the result
follows from (4). O
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2 End-regular graphs

The main result of this section is given in Theorem 2.7. We begin
with a characterization of generalized split graph, which provides a
way to construct such graphs from a core.

Proposition 2.1. A graph G is a generalized split graph if and only
if its vertez set V(G) can be partitioned into disjoint sets S and K,
i.e., V(G) = KUS, such that S is an independent set of G, K is
a core and W (a) is not empty for all a € S, where W(a) = {z €
K|N(a) & N(z)}.

Proof. Assume that G is a generalized split graph. Then there
exists a core of G, say K, such that V(G) \ V(K) is an independent
set of G. Set S = V(G)\ V(K). By Lemma 1.2, there is a retraction
e: G — K. Given any a € S and z € N(a), we obtain {z,e(a)} =
{e(z),e(a)} € E(G) and so = € N(e(a)), which implies e(a) € W(a)
and thus W (a) is not empty. Conversely, fix w(a) € W(a) for any
a € S and define f : V(G) — V(K) by f(z) = w(z) if z € S and
f(z) = = otherwise. Then f is a homomorphism from G onto K and
so K is a core of G, as desired. a

In what follows, we will call a partition V(G) = KUS to be a
split partition of G if S is an independent set and K is a core of
G. The proof of the following proposition is similar to that of [16,
Proposition 2.2].

Proposition 2.2. Let G be a generalized split graph with o split
partition V(G) = KUS. If there exist u,v € S and ¢ € Aut(G) such
that ¢(N(u)) G N(v), then G is not end-regular.

Proof. Let {W(a) : a € S} be as in Proposition 2.1 and fix w(a) €
W (a) for any a € S. Define f : V(G) — V(G) as follows:
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o(z), ifze K
flz)=<, ifr=u 1)
d(w(z)), ifzeS)\{u}.

It is routine to check that f € End(G). Suppose that f is half
strong. Fix y € N(v) \ ¢(N(u)). Since {y,v} € E(G) and f~1(v) =
{u}, there exists = € f~!(y) N N(u), which implies y = f(z) €
f(N(u)) = ¢(N(w)), a contradiction. Hence f is not half strong and
it follows that G is not end-regular by [16, Lemma 2.1]. a

For convenience, we often use the notion z ~ y to denote {z,y} €
E(G). The cardinality of a set S is denoted by |S|.

Proposition 2.3. Let G be a graph. Then for any f € End(G) and
any core K of G, [f(K)] is also a core of G, and the restriction map
i : K = [f(K)] is an isomorphism.

Proof. Let f € End(G) and K be a core of G. By Lemma 1.2(2),
there exists a retraction e from G to K. Consider e : G — K as
an endomorphism of G, we obtain fe € End(G), and by Lemma
1.2(5), [fe(G)] contains a core of G, say H. As f(K) = fe(G), f(K)
contains V' (H), which implies f(K) = V(H) by the fact |K| = |H|.
Hence H = (f(X)] by Lemma 1.2(2) and so [f(K)] is also a core of G.
Finally fx is an isomorphism since K & [f(K)] and fx : K — [f(K)]
is a surjective homomorphism. a

Remark 2.4. Let u,v be distinct vertices of a graph G. If N(u) &
N(v), then G is certainly not a core since f : G — G defined by
f(u) = v and f(z) = z otherwise, is a retraction from G to G\ {u}.
In other words, if u,v are vertices of a core K with N(u) & N(v),
then u = v.

Lemma 2.5. Let G be a generalized split graph with a split partition
V(G) = KUS. Fiz w(a) € W(a) for anya € S. Assume H is a core
of G and denote V(G)\V(H) by T. Let e be a retraction from G to
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H. Then the following statements hold.

(1) For any a € S, at most one of vertices a and w(a) lies in H.

(2) For anya € S, if w(a) € T and a € H, then e(w(a)) = a and
N(w(a))NH=N(@)NH.

(3) For any ay # ag € S, if w(a1) = w(az) € T, then at most one of
vertices a; and ag lies in H.

(4) For any a € S, set S(a) = {b € Slw(b) = w(a)} and T(a) =
S(a) U {w(a)}. Then |T(a) NT| = |S(a)|. Moreover, T & S U

{w(a)|a € S}.

(5) For any a € S, if w(a) € T, then there exists b€ SNH such that
w(b) = w(a).

(6) After indexing properly, we can write S = {a1,as, -+ ,an} and

T = {by, b2, ,bn} such that N(a;) & N(b;) for 1 < i < n and if
b; # a;, thena; € H and b; ¢ S.

Let S,T be as in (6) and leti,j € {1,2,--- ,n}.
(7) If b; # ai, then a; = e(b;) and N(b;)NH = N(a;) N H.
(8) If b; ~ bj, then either b; = a; or b; = a;. If assume further that
bi = aj, then b; # a; and a; ~ e(b;).
(9) If b; = a;, then N(a;) € N(e(ai)).

Proof. (1) Assume that {a,w(a)} & H. By N(a)NH & N(w(a)) N
H, we obtain a = w(a) by Remark 2.4, a contradiction.

(2) Given any z € N(w(a)) N H, we obtain that z = e(z) ~
e(w(a)), which implies N(w(a)) N H & N(e(w(a))) N H. It follows
that N(a)NH S N(e(w(a)))NH and so a = e(w(a)) by Remark 2.4
and now the equation N(w(a)) N H = N(a) N H is clear.

(3) If both a; and ag lie in H, then a; = e(w(a1)) = e(w(az)) =
ag, a contradiction by (2).

(4) If w(a) ¢ T, then S(a) € T by (1), and so |[T'(e)NT| = |S(a)|.
If w(a) € T, then at most one of S(a) lies in H by (3) and so
|T(a) NT| > |S(a)|- Hence {T(a) NT| > |S(a)| for any a € S.

Let S; be a subset of S such that § = U,es, S(a) and S(a) N
S(b) = 0 for any distinct a,b € S;. Then |S| = Zses,|S(a)| and
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IT| 2 Zaes[T(a) NT| 2 Taes,|S(a)]- As |S| = [T|, we have that
a5 [ T(a) NT| = Eaes,|S(a)|, which implies |S(a)| = |T'(e) NT)| for
any a € S. Moreover, T' = U,es, (T(a)NT) and so T & Ugzes, T(a) =
SuU{w(a)la € S}.

(5) Since |T'(a)NT| = |S(a)|, there exists b € S(a)\T, as desired.

(6) It follows from (4).

(7) Note that in this case, b; € W(a;). Now, the result follows
from (2).

(8) If b; # a; and b; # aj, then a; = e(b;) and a; = e(b;) by (7)
and then a; ~ a;, a contradiction. Now, assume that b; = a;. Then
bj 75 aj and so a; = e(bj) ~ e(b,-).

(9) Let z € N(a;). If z € N(e;) N H, then z = e(z) ~ e(a;),
implying z € N(e(a;)). Suppose 2 € N(a;) NT. Then z = b;
for some j, and so a; ~ e(b;) = e(a;) by (8). As N(a;) & N(b;),
we obtain that e(a;) € N(b;), which implies z = b; € N(e(a;)),
completing the proof. O

Lemma 2.6. Let G, K, H, S, T be as in Lemma 2.5. Then the
following statements hold for any i€ {1,2,--- ,n}.

(1) If b # ai, then N(b;)) N H = N(a;) N H = N(a;).

(2) There exzists an isomorphism ¢ from H to K such that p(z) = z
ifze V(H)NV(K).

Proof. Without loss of generality, we can assume
T= {al,ag, ot aak’bk+l)bk+2) st ,b‘n}

such that b; # a; fori =k + 1,k +2,--- ,n by Lemma 2.5(6).

(1) By Lemma 2.5(8), [T is a bipartite graph with parts {a;,az, - - -

and {bk+1,bk42, -+ ,bn} and so |E([T])| = |N(bk+1) NT|+|N(bes2)N
T|+--++|N(bs)NT|. Counting the number of E(G), we obtain that
|E(G)| = |[E(K)| + |N(a1)| + |N(a2)| + -+ + |N(an)| and |E(G)| =
|E(H)|+|N(a1)|+- - -+|N(ar)|+|N (be41)|+- - -+ N (bn)| = | E([T])].
Observing that |[N(b;)| = |[N(b;))NH|+|N(b)NT| for i = k+1,--- ,n,
we obtain that |[N(ax41)|+|N(akt2)|+- - -+|N(an)| = N (bpy1)NH|+
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|N (bks2)NH|+- - -+|N (b )NH|, and it follows that N (b;)NH = N(a;)
from the fact N(b;) N H S N(a;) for i > k + 1 by Lemma 2.5(7).
(2) Note that V(H) = (V(H) N V(K)) U {@k41,0k+2, " 1@n}
and V(K) = (V(H) N V(K)) U {bk+1,bk+2, - ,bn}, we can define a
bijective map ¢ : V(H) — V(K) by p(a;) =b; fori=k+1,--- ,n
and ¢(z) = z otherwise. Let z € V(H)NV(K) and i € {k +
1,--- ,n}. If {ai,z} € E(H), then z € N(a;) = N(b;) N H and
so {p(z),¢(a;)} = {z,b;} € E(K). Since {ar+1,ak+2, " ,an} is
an independent set of K, we obtain that ¢ is an isomorphism as

required. O
Now, we are ready to prove our main result of this section.

Theorem 2.7. Let G be a generalized split graph with a split par-
tition V(G) = KUS. Then G is end-regular if and only if for any
a,b € S, any ¢ € Aul(K), the inclusion $(N(a)) G N(b) doesn’t
hold, i.e., either ¢(N(a)) \ N(b) # 0 or ¢(N(a)) = N(b).

Proof. The “only if” part follows from Proposition 2.2. For the
“if” part, we need to show that End(G) is a regular monoid. Let
f € End(G). Then H = [f(K)] is a core again by Proposition
2.3. Let e be a retraction from G to H and set T = V(G) \ V(H).
Write S and T as in Lemma 2.5(6). Since f; : K — H defined
by fi(z) = f(z) for any z € K is an isomorphism, there exists a
homomorphism ¢g; : H — K such that fig1 = 1y,q1f1 = 1g. For
any a € f(V(G))NT, fix a vertex t(a) € S such that f(t(a)) = a.
Now, we define a map g : V(G) — V(G) as follows:

a1(z), ifre H
g9(z) = « t(z), ifze fV(G)NT (2)
ai(e(z)), ifzeT\f(V(G)).
We first show that g € End(G). Let z,y € V(G) with z ~ y. We
need to check that g(z) ~ g(y) in each case. Let ¢ be as in Lemma
2.6(2).
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Case 1: z,y € V(H). 1t is clear that g(z) ~ g(y) in this case.

Case 2: x € H and y € f(V(G))NT. Then y = b; for some 7 and
9(y) = ar € S for some k. As f(ax) = b;, fi(N(ax)) = f(N(ak)) &
N(b;)NH = N(a;) N H by Lemma 2.5(7). Assume on the contrary
that {g(z),9(y)} ¢ E(G). Then g(z) ¢ N(a¢) and so z = fig(z) ¢
fi(N(ax)) since f1 is one-to-one. Since x € N(y)NH = N(b;))NH =
N(a;) N H, we obtain fi(N(ax)) G N(a;) N H £ V(K) N V(H).
It follows that ¢ f1(N(ax)) G N(a;) N H & N(a;) by Lemma 2.6(2),
which is impossible since ¢ f; € Aut(K). Hence {g(z),g(y)} € E(G).

Case 3: z € H,y € T\ f(V(G)). Then y = b; for some j and
z € Nbj)N H & N(e(b;)) N H by Lemma 2.5(9) and (7), which
implies = ~ e(b;). Since g(z) = g1(z) and g(b;) = gi(e(b;)), we
obtain g(z) ~ g(y).

Case 4: z,y € T. Then z = b; and y = b; for some ¢,j. By
Lemma 2.5(8), we can assume b; = a; and b; # a; without loss of
generality. As N(a;)NH & N(a;)\{b;}, we claim that a; ¢ f(V(G)).
For otherwise, f(ax) = a; for some k and f3(N(ax)) E N(a;)NH C
N(a;) \ {bj}, which implies ¢ f1(N(ax)) & N(a;), a contradiction.

Ifb; ¢ f(V(G)), then g(b;) = gi1(e(b;)) ~ g1(e(ai)) = g(a;). That
is g(z) ~ g(v)-

Suppose that b; € f(V(G)). Then t(b;) € S and t(b;) = a; for
some !. Since f(a;) = b;, we obtain that f1(N(a;)) € N(b;) N H =
N(a;) € V(H)NV(K) by Lemma 2.6(1). In the same reason as
above, it is impossible that fi(N(a;)) G N(a;) and so fi(N(a;)) =
N(aj). It follows that N(a;) = g1(N(a;j)). On the other hand, as
a; ~ bj, we obtain e(a;) ~ e(b;) = aj, ie., e(a;) € N(a;). Hence
gi(e(a;)) € g1(N(aj)) = N(a;). Note that g(y) = g(b;) = a; and
g(z) = g(as) = g1(e(a:)), we conclude that g(z) ~ g(y).

Thus we prove that g(z) ~ g(y) for any z,y € G with z ~ y, and
so g € End(G).

Finally, we check that fgf(z) = f(z) forany z € G. If f(z) € H,
then fgf(z) = fiaif(z) = 1k(f(z)) = f(z). If f(z) € T, then
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faf(z) = f(t(f(z)) = (ft)(f(z)) = f(z). Hence f is regular and G
is end-regular. a

Let =z be a vertex of G. The number of vertices adjacent to
z is called the degree of z and denoted by d(z). We say that a
generalized split graph with V(G) = KUS satisfies Condition (a) if
for any a,b € S, ¢ € Aut(K), the inclusion ¢(N(a)) G N(b) doesn’t
hold, and satisfies Condition (8) if for any a,b € S, d(a) = d(b).
Clearly, Condition (3) always implies Condition (o) and the converse
implication is true if K is a complete graph. However, Condition ()
doesn’t imply (B) in general as shown by the following example.

Example 2.8. Let K = C5 + K3, where Cs is the cycle of length
5. Write V(Cs) = {1,2,3,4,5} and V(K3) = {6,7,8}. By [12,
Theorem 2.2], K is a core. Construct a graph G such that V(G) =
V(K)U{a,b} and E(G) = E(K)U {{a,i}|i = 1,2,3,4} U {{b, j}|i =
6,7,8}. It is not hard to see that G is a generalized split graph with
V(G) = V(K) U {a,b}, which satisfies (), but not (3).

Since Condition (8) can be checked more easily than Condition

(e), the following corollary may be useful.

Corollary 2.9. Let G be a generalized split graph with a split par-
tition V(G) = KUS. If d(a) = d(b) for all a,b € S, then G is
end-regular.

A graph G is called a spider graph if its vertex-set can be par-
titioned into disjoint sets K and S, satisfying the following three
conditions: (1) K is a complete set and S is an independent set; (2)
|S] = |K|; (3) there exists a bijective mapping ¢ : S — K such that
either: (i) N(s) = {¢(s)} for s € S or (ii) N(s) = K \ {¢(s)} for
s € S (cf. [2]). We call G a generalized spider graph if the condition
that K is a complete set is replaced by the condition that K] is a
core of G in the definition above.

Corollary 2.10. Any generalized spider graph is end-regular.
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Proof. This follows from Corollary 2.9 immediately.

Note that a tree of diameter 2 or 3 is either a star graph or a
double star graph, we immediately obtain part of the main result of
[19] (cf. [19, Theorem 3.4.]).

Corollary 2.11. Any tree of diameter 2 or 8 is end-regular.

It is clear for a split graph G with V(G) = KUS, K is a core
of G if and only if K is a maximal complete subgraph of G, so
we immediately obtain the following corollary, which is actually the
combination of the main results of [16] i.e., [16, Corollary 2.14 and
Theorem 3.3].

Corollary 2.12. Let G be a split graph with V(G) = KUS and
|K| = n, where S is an independent set. Suppose that K is a mazimal
complete subgraph of G. Then G is end-regular if and only if there
exists r € {0,1,2,--- ,n — 1} such that d(z) =r for anyz € S.

3 End-orthodox graphs

In this section, we will determine which generalized split graphs are
end-orthodox. We begin with a general result about end-orthodox

graphs.
Lemma 3.1. If a graph G contains pairwise distinct vertices a,b,c
such that N(a) € N(b) € N(c), then G is not end-orthodoz.

Proof. Define f to be the retraction that maps a to b and fixes all
other vertices, and define g to be the retraction that maps b to ¢ and
fixes the other vertices. Now fg(a) = b and fg(b) = ¢, so fg is not
a retraction, proving the lemma. O

Corollary 3.2. Let G be a generalized split graph with a split
partition V(G) = KUS. If there exist distinct a,b € S such that
N{a) & N(b), then G is not end-orthodoz.
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Proof. By Proposition 2.1, there is ¢ € V(K) such that N(b) €
N(c). Now, the result follows from Lemma 3.1. O

Lemma 3.3. Assume that G is a generalized split graph with a
split partition V(G) = KUS such that N(a) \ N(b) # @ for any
a#be€S. Let H be any core of G and denote V(G) \ V(H) by T.
Set W(a) = {z € K|N(a) € N(z)} foranya € S. If thereisa € S
such that |[W ()| > 2, thena € T and W(a) & H.

Proof. Let e be a retraction from G to H. Assume that & € H.
Then W (&) € T by Lemma 2.5(1). Let u1,up be distinct vertices in
W (&). We obtain u; = b; and uz = b; for some ¢ # j by Lemma
2.5(6) and it follows that & = e(b;) = e(b;) = a; = a; by Lemma
2.5(2) and (7), a contradiction. Hence 4 € T'.

Now, assume that W(a) € H. Take u € W(a) \ H. Then there
is b € SN H such that u € W(b) by Lemma 2.5(5). Note that
N(u)NH = N(b) by Lemma 2.6(1) and that N(u)\S & N(u)NH by
Lemma 2.5(8), we obtain N (&) = N(&)\S E N(u)\SE Nu)NH =
N(b), a contradiction again, as desired. ]

The following lemma gives a description of a retraction on a gen-
eralized split graph.

Lemma 3.4. Let G be a generalized split graph with a split partition
V(G) = KUS such that N(a) \ N(b) # @ for any a # b € S. Set
W(a) = {z € K|N(a) € N(z)} and fix w(a) € W(a) for any a € S.
Set S’ = {w(a)|la € S}. Let f be a retraction of G. Then the
following statements hold.

(1) The retraction f fizes the vertices of V(G) \ (SU &').

(2) For any a € S, if [W(a)| > 2, then f fizes the vertices of W(a);
if [W(a)| = 1, then f(w(a)) = w(a) or f(w(a)) = a. Moreover, if
f(w(a)) = a, then f(a) = a.

(3) For any a € S, either f(a) = a or f(a) € W(a). Moreover, if
f(a) € W(a), then f fizes the vertices of W(a).
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Proof. Assume that H = [f(V(K))] and set T = V(G) \ V(H).
Then H is a core of G by Proposition 2.3. Without loss of generality,
we can assume by Lemma 2.5(4) that

S= {a1,a2,-.. ’a'k!ak+1,ak+2,"' ,an}
T = {a1,02, - ,a, w(ar4+1), w(ar42), - ,w(as)}

(1) By Lemma 2.5(4), we obtain if z ¢ SU S’ then z € V(K) N
V(H), and the result follows immediately.

(2) If [W(a)| > 2, then W(a) € H € f(V(G)) by Lemma 3.3 and
so f fixes on vertices of W (a). Suppose that |W(a)| = 1. If f(w(a)) #
w(a), then w(a) ¢ H and so w(a) = w(a;) for some i > k + 1. Note
that V(K) = (V(K) NV (H)) U {w(ak+1), w(@k+2), -+ ,w(as)} and
V(H) = (V(K)NV(H))U{ar41,ar+2, - ,as}. Hence f(w(a)) = a;
for some j > k + 1. Note that f fixes the vertices of V(K) NV (H)
and that N(a) = N(w(a)) N V(H) by Lemma 2.6(1), we obtain
N(a) = N(@)nV(K) = N(w(a)) N\V(K)NV(H) = N(a;) NV (K)N
V(H) = N(a;) NV (H), and so N(a;) & N(a), which implies a = a;,
ie., f(w(a)) = a. At last, if f(w(a)) = a, then f(a) = f(f(a)) =
f(w(a) = a.

(3) Let a € S such that f(a) # a. We claim that N(a) & N(f(a)).
Let x € N(a). f z € V(H)NV(K), then z = e(z) € N(e(a)). If z ¢
V(H)NV(K), then z = w(a;) for some j > k+1 (as V(K) = (V(K)N"
V(H)) U {w(ag+1), w(aks2),- - ;w(an)}) and so a; = f(w(ay)) €
N(f(a)) by (2), which implies f(a) € N(a;) € N(w(a;)) = N(z).
Hence z € N(f(a)) and thus N(a) & N(f(a)), proving the claim.
By the assumption that N(a)\ N(b) # @ for any a # b, we have that
f(a) € S and f(a) € W(a).

Now, suppose f(a) € W(a). If |W(a)] > 2, then f fixes the
vertices of W(a) by (2). If |[W(a)| = 1, then W(a) = {w(a)} and
f(a) = w(a), which implies f(w(a)) = w(a). a

Theorem 3.5. Let G be a generalized split graph with a split par-
tition V(G) = KUS. Then G is end-orthodoz if and only if for any
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distinct a,b € S and any ¢ € Aut(K), N(a) # N(b) and the inclusion
#(N(a)) G N(b) doesn’t hold.

Proof. By Theorem 2.7 and Corollary 3.2, the “only if” part is obvi-
ous. Conversely, by Theorem 2.7 and the definition of end-orthodox
graphs, we only need to prove that the composition of any two re-
tractions of G is a retraction. This can be checked routinely by virtue
of Lemma 3.4 and the result follows. O

The following corollaries follow immediately from Theorem 3.5.
Corollary 3.6. Any generalized spider graph is end-orthodoz.

Corollary 3.7. Let G be a tree of diameter 2 or 8. Then G is a
end-orthodoz if and only if G is a path.

We see that [5, Proposition 3.2.] follows immediately from Corol-
lary 3.7, which said if K r, is a star, n > 1 then End(K} ) is orthodox
if and only if n < 2.
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