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Abstract

A (k,t)-list assignment L of a graph G is a list of k colors available
at each vertex v in G such that |J,ey(g) L(v)| = t. A proper coloring ¢
such that c¢(v) € L(v) for each v € V(G) is said to be an L-coloring. We
say that a graph G is L-colorable if G has an L-coloring. A graph G is

(k,t)-choosable if G is L-colorable for every (k,t)-list assignment L.

Let G be a graph with n vertices and G does not contain Cs V Ky
and Kj41. We prove that G is (k, kn — k2 — 2k)-choosable for k > 3 and
G is not (k,kn — k% — 2k)-choosable for k = 2, which solves a conjecture
posed by Chareonpanitseri, Punnim, and Uiyyasathian [W. Chareonpan-
itseri, N. Punnim, C. Uiyyasathian, On (k, t)-choosability of Graphs: Ars

Combinatoria., 99, (2011) 321-333].
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1 Introduction

A graph is an order pair G = (V(G), E(G)), where V(G) is a finite
set of vertices and E(G) is a set of unordered pairs of distinct vertices.
A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). For
X C V(G), a graph G — X is obtained by deleting all vertices of X from
G. For § C V(G), a subgraph of G induced by S, denoted by G[S], is the
graph obtained by deleting all vertices of V(G) — S from G. In this paper,
we denote a complete graph of order k, an independent set of size k' and a
cycle with k vertices by Ky, Sk and Cy, respectively. A graph G is called
Kj-free if G does not contain K} as a subgraph.

For each vertex v in a graph G, let L(v) denote a list of colors available
at v. A k-list assignment L of a graph G is a list assignment L such that
|L(v)| = k for each v € V(G). A (k,t)-list assignment of a graph G is a
k-list assignment L such that | {J,cy gy L(v)| = t. A proper colering ¢ such
that c(v) € L(v) for each v € V(G) is said to be a list coloring or an L-
coloring. If a graph G has an L-coloring, then we say that G is L-colorable.
A graph G is k-choosable if every k-list assignment of G gives a list coloring.
The list chromatic number, denoted by x;(G), is the minimum & such that
G is k-choosable. If a graph G is L-colorable for every (k,t)-list assignment
L, then G is (k,t)-choosable. Let S C V(G). For a list assignment L of
G, we denote the restriction of L to S by L|s and we denote | J s L(v) by
L(S).

The concept of list coloring was introduced by Vizing [11] and by Erdés,
Rubin, and Taylor [4]. In 1979, Erdds et al. [4] established a character-
ization of 2-choosable graphs, especially, a characterization of bipartite
graphs which are 2-choosable. In addition, several researchers studied and
gave some properties of list coloring on specific classes of graphs. For
example, Borowiecki et al. [1] studied the list coloring of cartesian prod-
ucts of graphs, in particular, they provided the bound on list chromatic
number of cartesian products of graphs. In [7], [10], [9], [13], [14], [15],
they studied and gave the concept of choosability on plane graphs and pla-
nar graphs. In 2011, Charoenpanitseri et al. [2] established the concept
of (k,t)-choosability of graphs, they proved that an n-vertex graph G is
(k,t)-choosable if t > kn — k2 + 1. They also provided the bound on ¢ to
the K -free graph to be (k,t)-choosable in the following theorem.

Theorem 1.1. Let k > 3. A Ki41-free graph with n vertices is (k,t)-
choosable for t > kn — k? — 2k + 1.
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Moreover, they found that an n-vertex graph containing Cs V Kj_o is
not (k, t)-choosable for k > 2 and k <t < kn — k% — 2k. This implies that
for k <t < kn— k% — 2k, an n-vertex graph containing Cs V Ki_3 or Ky
is not (k, t)-choosable. After that, they gave the following conjecture.
Conjecture An n-vertex graph G is (k, kn — k? — 2k)-choosable if G does
not contain Cs V Ki_2 and Kj+1.

In this paper, we will show that the conjecture is not true for £ = 2 but

it holds for k > 3.

2 (k,t)-choosability for k =2 or 3.

In this section, we focus on (k, t)-choosability for k¥ = 2 or 3. We will

give an example to show that the conjecture does not hold for £ = 2. After
that, we will establish some important results for proving the conjecture.
Now, we begin with Example 1 which shows that the conjecture is not true
for k=2.
Example 1. Let X = {z1,%2,z3} and Y = {y1,y2,y3} be partite sets of
complete bipartite graph K3 3. We show that K3 3 is not (2, 4)-choosable.
Let L be a (2,4)-list assignment shown in Figure 1. Assume that z; is
colored by 1. Then vertices y; and y must be colored by 2 and 3, respec-
tively. Thus there is no an available color for the vertex zo. The case z; is
colored by 2 is similar. Hence, K3 3 is not (2,4)-choosable.

{1,2} T n {1,2}
{2,3} =2 y2 {1,3}
{1,4} zs yz {2,4}

Figure 1: A (2, 4)-list assignment of K3 3.

Next, we consider the graphs with 7 vertices and having no C5 V K,
and Kj4. Showing that the 7-vertex graphs having no Cs v K; and K4 are
(3, 6)-choosable, is an important part for proving the conjecture.

The following theorems and lemmas are essential tools to prove that
the 7-vertex graphs having no Cs V K and K, are (3, 6)-choosable.
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Corollary 2.1. (2] Let L be a list assignment of a graph G. If|L(S)| > |S|
Jor all S C V(G), then G is L-colorable. Moreover, there exists an L-
coloring such that each vertex of G assigned by distinct colors.

Theorem 2.2. [6] Let L be a list assignment of a graph G and let S C
V(G) be a marimal non-empty subset such that |L(S)| < |S|. If G[S] is
L|s-colorable, then G is L-colorable.

Lemma 2.3. (2] Let G be an n-vertex graph. Ifk > n—2 and G is
K 11-free, then G is (k,t)-choosable for any positive integer t.

Lemma 2.4. [2] Let G be a Kyy1-free graph with k + 3 vertices. G is
either Ky V Sy or Cs V Ky_2 if and only if G — {u,v} contains K}, for
every pair of nonadjacent vertices u,v.

Theorem 2.5. [{] The complete bipartite graph Ky s is k-choosable if and
only if s < k*.

Corollary 2.6. The complete bipartite graph K, is 2-choosable if and
only if n < 3.

Lemma 2.7. Let G be a graph of order n where n > 6. If G does not
contain K,_o and Cs V K, 5, then G is (n — 3)-colorable.

Proof. Let k = n—3. Assume that G does not contain K41 and CsV K _s.
We show that G is k-colorable.
Case1: Gis Kr_1 VS,.

Then we use k — 1 colors to color Ki_; and we assign a color different
from colors in Kj._, to vertices in S4. Thus G is k-colorable.
Case 2 : G is not K1 V S4.

Since G is Cs V K. _o-free, Lemma 2.4 implies that there are two non-
adjacent vertices u,v such that G — {u,v} does not contain Kj. Since
k—1=(k+1)—2 and G[V(G) — {u,v}] has no K, Lemma 2.3 implies
that G — {u,v} is (k — 1)-colorable. Therefore G is k-colorable. O

By Lemma 2.7, it follows that the chromatic number of 7-vertex graphs
having no Cs V K) and K, is at most 4. Thus we can divide the graphs
which we are interested into two cases that is, the graphs with chromatic
number at most 3 and the graphs with chromatic number 4.

Next, we show that 7-vertex graphs with chromatic number at most 3
and having no K4 and Cs V K are (3,6)-choosable. Since every graph with
these properties is a subgraph of complete 3-partite graph K,1,5 or K1,24
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or K1,3,3 or K2,2,3, it suffices to show that K1,1_5, K1,2,4, K1,3,3, and K2,2'3
are (3, 6)-choosable. Before showing this, the three following theorems are
needed.

Theorem 2.8. (8] If m < 25+ 1, then xi(Km 2u(k—s—1),10s) = k.

Theorem 2.9. [3] Ifk is odd, then xi(K4,2¢k—1)) = k. Otherwise x1(Kj 24(k-1)) =
k+1.

Theorem 2.10. /5] If k > 3, then xi1(K3e2,2¢(x-2)) = k.
Lemma 2.11. K1'1,5, K1,2,4, K1,3,3, and Kz’g,g are (3, 6)—choosable.

Proof. Let m = 5, k = 3, and s = 2 in Theorem 2.8. Then we have
xi(K1,1,5) = 3. It follows that K5 is 3-choosable. By Theorem 2.9,
we have y;(K2.24) = 3. Since Kj24 is a subgraph of K224, we have
K ,2,4 is 3-choosable. Consider complete 3-partite graphs K 3,3 and Kp2 3.
By Theorem 2.10, we have xi(K2,3,3) = 3. Since K33 and Kz 33 are
subgraphs of K2 33, we have K133 and K333 are 3-choosable. O

We now consider the 7-vertex graphs having no Cs v K; and K4 with
chromatic number 4. We will prove that those graphs are (3, 6)-choosable.
The next lemma determines the minimum degree and maximum degree of

the above graphs.

Lemma 2.12. Let G be a graph with 7 vertices and x(G) = 4. If G does
not contain K4 and Cs V K}, then §(G) 2 3 and A(G) = 4.

Proof. We first show that §(G) > 3. Suppose that §(G) < 2. Let v be a
vertex in G such that d(v) = 6(G). Consider G —v. Then [V(G —v)| =6
and so G — v is 3-colorable by Lemma 2.7. Since d(v) < 2, then x(G) = 3,
a contradiction. So §(G) = 3.

We next show that A(G) = 4. If A(G) = 3, then G is a 3-regular graph
because 6(G) > 3. But then the number of odd vertices is odd since G
has 7 vertices which is a contradiction. Thus A(G) > 4. Suppose that
A(G) > 5.

Case 1: A(G) =6.

Let v € V(G) be such that d(v) = 6. If G—v is bipartite, then x(G) < 3.
If G — v is not bipartite, then G — v contains C3 or Cs which contradicts
to G does not contain K; and Cs V K. Thus Case 1 cannot occur.

Case 2 : A(G) =5.
Let v € V(G) be such that d(v) = 5. Then |[N(v)| = 5. Since |G| =7,
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there exists ¥ € V(G) such that uv ¢ E(G). Thus u and v can be colored
by the same color. If G[N(v)] is bipartite, then x(G) < 3. If G[N(v)) is
not bipartite, then G[N(v)] contains C3 or Cs which contradicts to G does
not contain K4 and Cs V K;. So Case 2 cannot occur either.

Hence, A(G) = 4. This completes the proof. O

By [8], there are 22 graphs with degree sequence as in Lemma 2.12.
Among them there are 7 graphs which have no K4 and Cs V K;. So we
consider only these 7 following graphs as shown in Figure 2.

T I k3]

AN Nz LN
T T2

AN AN AN
N/ N N &

I3 I3 T3

G G, Gs

T 1 I
A for Iy Tg A
>4 ¢ x

T3 T3 I3

Gy Gs Gg

z1

Figure 2: 7-vertex graphs with chromatic number 4 and having no K,

and Cs V Kj.
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We want to show that these 7 graphs are (3, 6)-choosable. Since G,,
G2, and G4 are subgraphs of G5 while G3 and Gg are subgraphs of G, it
suffices to show that Gy and Gy are (3, 6)-choosable. Before proving that,
we establish two following lemmas.

Lemma 2.13. K342 is L-colorable if |L(V(Ka,2,2))| = 5 and each list has
size 3 except one list of size 2.

Proof. Let X = {z1,z2}, Y = {y1,¥2} and Z = {2, 22} be partite sets of
K322. Let L be a list assignment of K322 such that |L(V(Ka222))| = 5
and each list has size 3 except one list of size 2. Without loss of generality,
we may assume that |L(z;)| = 2. Then |L(u)| = 3 for each u € V(K32.2) —
{z:1}

Case 1 : L(z1) N L(z2) # 0.

Let a € L(z;) N L(zz). Consider G’ = Ky 33 — {z1,22}. Put L'(u) =
L(u) — {a} for each u € V(G’). Then |L'(u)| > 2 for each u € V(G').
Since G’ is K32, G' is L’-colorable by Lemma 2.6. It follows that K325 is
L-colorable.

Case 2 : L(z1) N L(z2) = 0.

Without loss of generality, assume that |L(z1)] = 2 and |L(z;)| =
3. Since there are 5 colors and |L(y1)| = |L(y2)| = 3, it follows that
L(y1) N L(y2) # 0. Let a € L(y1) N L(y2). Consider G’ = K222 — {y1,¥2}-
Put L'(u) = L(u) — {a} for each u € V(G'). Since L(z1) N L(z3) = 0,
either |L'(z1)| = 2 = |L'(z2)| or |L'(z1)| = 1 and |L'(z2)| = 3. In either
case, we can color each vertex in G’ by increasing order of the size of lists.
So K322 is L-colorable. [m]

Lemma 2.14. Let G be a graph in Figure 3. If each list has size 2 except
eractly two lists of size 3 and |L(z4)| = 2 or |L(zs)| = 2, then G is L-
colorable.

Proof. Let L be a list assignment of G such that each list has size 2 except
exactly two lists of size 3 and |L(z4)| = 2 or |L(zs)| = 2.
Case 1 : |L(z;)| =3.

Then |L(z;)| > 2 for 2 < i < 5. Since G[{z2,x3,z4,75}] is K2, it is
2-choosable by Lemma 2.6. After we color G[{z2, z3,z4,Z5}], Wwe can color
z; because |L(z;)| = 3 and d(z,;) = 2.

Case 2 : |L(z,)| = 2.

If |L(z4)] = 3 or |L(zs)| = 3, then it is easy to verify that G is L-

colorable.
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Suppose |L(z4)| = 2 and |L(zs)| = 2, then |L(z2)| = |L(z3)| = 3 by the
hypothesis of Lemma 2.14. If L(z,)NL(z4) # 0, then we can choose a color
a € L(zy) N L(z4) to color both vertices z; and x4, and we can color the
vertices z5, 23 and z3 orderly. Thus G is L-colorable. If L(z;)NL(z4) = 0,
then we can choose a color a € (L(z1) U L(z4)) — L(z2), say a € L(x,).
Assign a to vertices z, and color the vertices z3, =5, £4 and 3 orderly.
Thus G is L-colorable. O

1

o)) T3

Tg Ty

Figure 3: A graph G in Lemma 2.14.
Lemma 2.15. Gs is (3, 6)-choosable.

Proof. Let L be a (3, 6)-list assignment of Gg.
Case 1 : L(z4) N L(zs) # 0 or L(ze) N L(z7) # 0.

By the symmetry of G5, we may assume that L(z4) N L(zs) # @ and
1 € L(z4) N L(zs). Consider G' = G5 — {z4,z5}. Put L' (u) = L(u) — {1}
. for each u € V(G"). Since G’ is Cs, a graph G’ is L'-colorable if there are
vertices u and v such that L'(u) # L'(v) or |L'(u)| = 3 which implies that
Gs is L-colorable. Now, we suppose that L' (u) = L' (v) and |L'(u)| = 2 for
u,v € V(G'). Without loss of generality, assume that L'(u) = {2,3} for
each u € V(G'). Thus L(u) = {1, 2,3} for each v € V(G'). Since G' is Cs,
G is L-colorable. Since there are 6 colors and 1 € L(z4) N L(zs), it follows
that there are a € L(z4) — {1,2,3} and b € L(zs) — {1,2,3}. Thus we can
assign colors a to the vertex z4 and b to the vertex zs. It follows that Gy
is L-colorable. This completes the proof of Case 1.
Case 2 : L(x4) N L(z5) = @ and L(zg) N L(z7) = 0.

Without loss of generality, we may assume that L(z4) = {1,2,3} and
L(zs) = {4,5,6}.
Subcase 2.1 : L(z3) N L(z4) # 0.

Without loss of generality, we may assume that 1 € L(z3) N L(z,).
Then color vertices z3 and x4 by 1. Consider G' = G5 — {r3,z4}. Put
L'(u) = L(u) — {1} for each u € V(G').
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Subcase 2.1.1 : 1 € L(zg).

Then 1 ¢ L(z;) because L(zg) N L(z7) = 0. Thus |L'(z7)| = 3. We
now define a list coloring c as follows. We assign any color from L'(z)
to the vertex z¢ and then assign any colors from L'(z1) — {¢(zs)} and
L' (z3) —{c(z6)} to vertices z; and z3, respectively. Next, we assign a color
from L' (z5) — {c(x2),c(zs)} to the vertex rs. For the vertex 7, it obtains
a color from L'(z7) — {c(x2),c(z5)}. So G is L'-colorable. It follows that
Gy is L-colorable.

Subcase 2.1.2 : 1 ¢ L(zg).

Then |L'(z¢)| = 3. Since L(zg) N L(z7) = @ and there are 6 colors, it
follows that 1 € L(z7) and so |L' (x7)| = 2. We now define a list coloring ¢
as follows. We first assign any color from L'(z7) to the vertex z, and then
assign any color from L'(z3) — {c(z7)} to the vertex z,. Next, the vertex
x5 obtains a color from L' (zs) — {¢(x2), c(z7)}. For the vertex zs, it can be
colored by a color from L'(zg) — {c(z2), ¢(zs)}. Thus the vertex z; obtains
a color from L'(z1) — {¢(z6)}. So G’ is L'-colorable. It follows that Gs is
L-colorable. This proves Subcase 2.1.2 and completes the proof of Subcase
2.1.

The case L(z3) N L(zg) # @ or L(zy) N L(zs) # @ or L(z1) N L(z7) # 0
is similar to Subcase 2.1. Next, we may assume that L(z3) N L(z¢) = 0
and L(z;) N L(zs) = 0 and L(z,) N L(z7) = 0.

Subcase 2.2 : L(x3) N L(z4) = 0.

Since L(z4) = {1,2,3}, L(z3) = {4,5,6}. So L(ze) = {1,2,3} because
L(z3) N L(zg) = 0. Since L(zg) N L(x7) = @, L{z7) = {4,5,6}. It follows
that L(z;) = {1,2,3} because L(z1) N L(z7) = §. Since L(x;) N L(zs5) =
0, L(zs) = {4,5,6}. We now assign any color from L(z2) to the vertex
z5. Thus we can color the remaining vertices of Gs. It follows that Gs
is L-colorable. This proves Subcase 2.2 and completes the proof of our

lemma. O
Lemma 2.16. G7 is (3, 6)-choosable.

Proof. Note that z; is not adjacent to z; if and only if ¢ — j = £1(mod7).
Let L be a (3, 6)-list assignment of G.
Case 1 : There exists a unique ¢ € {1,2,...,7} and a color a such that
a € L(z;).

Without loss of generality, we may assume that a € L(z;) and then we
assign a color a to z;. Thus L(zg) N L(z7) # 0. Without loss of generality,
let 2 € L(zg) N L(z7) Consider G' = G7 — {z1,%6,27}. Put L'(x) =
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L(u)— {2} for each u € V(G'). Then |L'(u)| > 2 for each u € V(G'). Since
G'is Py, G is L'-colorable. Hence, G7 is L-colorable. This proves Case 1.
Case 2 : There exists a color a such that a appears exactly in 2 lists.

Recall that z; is not adjacent to z; if and only if ¢ — j = £1(mod?7).
We only need consider three subcases as follows.

Subcase 2.1 : a € L(z;) N L(zy).

Consider G’ = G7 — {z1,z2}. Put L'(u) = L(u) — {a} for each u €
V(G"). Then |L'(u)| = 3 for each v € V(G'). By Lemma 2.14, G’ is L'-
colorable. So G is L-colorable.

Subcase 2.2 : a € L(z;) N L(z3).

Consider G’ = Gy — {z;}. Put L' (u) = L(u) — {a} for each u € V(G").
Then |L'(z3)| = 2 and |L'(u)| = 3 for each u € V(G’) — {z3}. Since G’ is a
subgraph of K3 22, G’ is L’'-colorable by Lemma 2.13. So G is L-colorable.
Subcase 2.3 : a € L(z;) N L(z4).

Consider G’ = G7 — {z,}. Put L'(u) = L(u) — {a} for each u € V(G").
Then |L'(z4)| = 2 and |L'(x)| = 3 for each u € V(G’) — {z4}. Since G’ is a
subgraph of K2 2 2, G' is L'-colorable by Lemma 2.13. So G7 is L-colorable.
This completes the proof of Case 2.

Case 3 : There exists a color a such that a appears exactly in 4, 5, or 6
lists.

Recall that z; is not adjacent to z; if and only if i — j = £1(mod?7).
We only need consider three subcases as follows.

If a appears in exactly 4 lists, we may assume that @ € L(z;) N L(z2) N
L(z3) N L(z4) or a € L(z1) N L(z2) N L(z3) N L(zs) or a € L(z;) N L(z2) N
L(z4) N L(zs) or a € L(z;) N L(z2) N L(x4) N L(zs).

If @ appears exactly in 5 lists, we may assume that a € L(z;) N L(z2) N
L(z3) N L(z4) N L(zs) or a € L(zy) N L{z) N L(z3) N L(z4) N L(ze) or
acE L(:Bl) N L(xz) n L(.'Ea) n L(x5) N L(xs)

If a appears exactly in 6 lists, we may assume that a € L(z;) N L(zz) N -
L(z3) N L(z4) N L(xg) N L(z7).

Then we color vertices z; and z3 by a. Consider G' = G7 — {z1,z2}.
Put L'(u) = L(u) — {a} for each u € V(G'). Then |L'(u)| > 2 for each
u € V(G'). By Lemma 2.14, G’ is L'-colorable. Hence, G7 is L-colorable.
This proves Case 3.

Case 4 : Each color appears exactly in 3 lists or 7 lists.

Let = and y be the number of colors that appear in exactly 3 lists and
7 lists, respectively. Then z + y = 6 and 3z + 7y = 21. Observe that this
system of equations has no integer solution. So this case cannot occur.
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Hence, G~ is (3, 6)-choosable, as required. a

Corollary 2.17. If G is a 7-vertex graph having no CsV K, and K4, then
G is (3,6)-choosable.

Proof. This corollary follows from Lemmas 2.7, 2.11, 2.15, and 2.16. O

3 Proof of the conjecture.

We prove the conjecture in this section. Two following lemmas are
needed.

Lemma 3.1. [2] Let A, Ag,...,An be k-sets and J C {1,2,..,n}. If
|Ui=1 4il 2 p, then [Use s Ail 2 p— (n—|J k.

Lemma 3.2. (2] If a (k + 3)-vertex graph is Kyy1-free, then it is (k,t)-
choosable fort > k + 1.

Theorem 3.3. Let G be a graph with n vertices and k > 3. If G does not
contain K11 and CsV Ky_3, then G is (k,t)-choosable fort = kn—k?—2k.

Proof. Suppose that G does not contain Ki;; and Cs5 V Kix_2. Let S €
V(G) be such that |L(S)] < |S|. We prove that G[S] is L|s-colorable in
order to utilize Theorem 2.2. By Lemma 3.1, |L(S)| > t — (n - |S)k =
kn—k2 —2k—nk+|S|k = |S|k—k?—2k. Thus |S| > |L(S)| > |S|k—kZ—2k.
It follows that |S| < k+3+ £25. So [S|<k+4fork=3and |S|<k+3
for k > 4. Note that k < |L(S)| < |S| £ k+ 4. If | S| < k + 2, then G[S] is
L|s-colorable by Lemma 2.3. Now we consider |S| =k +3 or k + 4.

Case 1: |S|=k+3.

Notice that k < |L(S)] < |S| = k+ 3. If |L(S)| = k + 1, then G[S]
is L|g-colorable by Lemma 3.2. We now suppose that |L(S)| = k. Since
G[S] does not contain K,y and Cs V Ki_s, we have G[S] is k-colorable
by Lemma 2.7. This implies that G[S] is L|s-colorable.

Case 2: |S|=k+4.

Then k = 3 which implies that |S| = 7. Since |S| > |L(S)| > |S|k —
k2 — 2k = 7(3) — 32 — 2(3) = 6, it follows that |L(S)| = 6. Since k = 3 and
G does not contain Cs V Kj_s and Kj.1, it follows that G has no Cs V K
and K4. So G[S] does not contain Cs V K; and K. By Corollary 2.17,
G[S) is (3,6)-choosable. This implies that G[S] is L|s-colorable.

Hence, G is L-colorable by Theorem 2.2. |
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4 Open problem.

Chareonpanitseri et al. [2] studied the concept of (k,t)-choosability.
They provided the characterization of graphs to be (k,kn — k? — 2k + 1)-
choosable. Moreover, they gave a conjecture on n-vertex graphs to be
(k,kn — k% — 2k)-choosable. In this paper, we showed that K33 is not
(2,4)-choosable and we proved that an n-vertex graph having no Cs v K,
and K, is (k,kn — k® — 2k)-choosable for k¥ > 3. That is, the conjecture
does not hold for £ = 2 and it is true for k > 3. However, there is no result
on (k,kn — k% — 2k — 1)-choosability of n-vertex graphs up to date. This
leads to the following open problem.

Open Problem What is a characterization of graph that is (k, kn — k2 —
2k — 1)-choosable?
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