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ABSTRACT. In this paper, we obtain some generating functions for
the generalized Zernike or disk polynomials P3 , (z,2*) which are
investigated by Wilnsche [13]. We derive various families of bilinear
and bilateral generating functions. Furthermore, some special cases
of the results presented in this study are indicated. Also, it is possible
to obtain multilinear and multilateral generating functions for the
polynomials P3 ,, (z,2*).

1. INTRODUCTION

Zernike polynomials were introduced by Zernike in [14] when discussing
his phase-contrast method in application to circular concave mirrors. They
are taken into account in a few monographs on optics and on geometrical
optical imaging. The Zernike polynomials are considered only in a very
few number of mathematical monographs and representations of orthogo-
nal polynomials and special functions. The most natural generalization of
the Zernike polynomials is to 2D polynomials which are orthogonal in the
unit disc zz* < 1 with weight function (1 — zz*)*, where a > —1 and the
special case o = 0 is equivalent to the usual Zernike polynomials. However,
different notations and variables are favorable. A comprehensive represen-
tation of 2D polynomials with taking into the account the disc polynomials
which is the first class of the considered seven classes of 2D polynomials
and some their properties were given by Koornwinder [3]. The monograph
of Dunkl and Xu [2] takes shortly into account the disc polynomials (see
also [11]).

In a recent paper [13], Wiinsche has introduced generalized Zernike or
disc polynomials Py , (2,2*), generalizing to pairs of complex conjugate
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variables (z,2*), the real domain relation of the Zernike polynomials to
Jacobi polynomials and then, Wiinsche has given some their properties,
such as lowering and raising operators and differential equations for the disc
polynomials and disc functions, and generating functions. In [13], it was
hoped that the generalized Zernike polynomials could find new applications
in quantum optics.

The generalized Zernike or disc polynomials Py , (z,2*) have been int-
roduced in [13] by the following definition
{ nla! zm—npé“:m"") (2zz‘ _ 1) i m>n

n+a)!

z—)—;‘"_:_"g ,z“"‘mP,(,f""_m) (22z*-1) ; n>m

(mmneNy=: {0}UN={1,2,..})

P:;,n (2,2%) = (1.1)

or equivalently,
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where (A):=A(A+1)...(A+k=-1) = Ty and (M), := 1 denotes
the Pochhammer symbol and P{*®) (1) is Jacobi polynomials of degree n.
Here, z and z* are complex conjugate variables: z = z+14y and 2* = x—1y.

Many relations for disc polynomials or generalized Zernike polynomials
can be obtained from corresponding relations for Jacobi polynomials. In
order to obtain generating functions for the polynomials P , (z,2*), we
recall some properties satisfied by Jacobi polynomials. Jacobi polynomials
have the following finite series forms (7}:

. 3 (a+1), (a+8+1), u—1\*
Py B)(u)_kzﬂk!(n——k)!(a+1)k(a+ﬂ+-,lc-l)n( 2 ) (12)

or equivalently,

o = 3 (a+1),(B+1), u—-1\*fu+1\""F
P ﬂ)('u)—Z_::ok!(n—k)!(a+1)k(ﬂ+1)n_k( ) ( ) .

2 2
(1.3)
The classical Jacobi polynomials P (u) are generated by ( see [9], [12]):
> PP (uytr
=0
= 2°tPR-1(1—-t+R)™*(1+t+R)™* (1.4)

where R = (1 — 2ut + tz)l/2 .
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In this paper, we obtain some generating functions for the polynomials
Py . (z,2*) which are investigated by Wtnsche. Furthermore, we derive
various families of bilinear and bilateral generating functions for the poly-
nomials Py, , (2,2"). Some applications of the results obtained in section

3 are presented.

2. GENERATING FUNCTIONS FOR THE GENERALIZED ZERNIKE

POLYNOMIALS

In this section, we give some generating functions for Py, ,, (z,2").

Theorem 2.1. For the polynomials Py, ,(z,2*), we have the following

generating functions

S (@), Pl las) o

n,m=0

—p1({—=2_)" %z
=R () = (s

and
(=] tm+n
Z (a + 1) m n+m (Z z ) minl
n,m=0
o1l 2 \® 22"
=R (1—t+ﬁ) exP(1+t+R

where R = (1 -2 (2z2* — 1)t +2)'/%.

Proof. For m > n, by (1.1) and (1.4), we can write

oo m+n.
Z_:_o(a-i-l) P+mn( :z)mln'

= i {i P,E‘*'"‘) (222" - 1) t“} %)11

m=0 \{n=0

= & (k)"

- R—l( —t+R)

_1_ 2tz m
m! \1+t+R

(1+t+R)

M

0

3
,,u

2.1)

which completes the proof. For n > m, we obtain the second generating

function.
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Theorem 2.2. The polynomials Pf;, , (z,2*) are generated by

m on

o0 »* t
> (atmt1), (B Pliman(527)
m,n=0

= (1-9)°'H, (a+1,,3;a+1,a+1; s((:z— ;‘)21), lt_zs>(2.2)

and
oo .
m%o(a-*-n-'-l)m (:B)n P:r,,n+m (z,z )mm
o *—1) t2*
= (1-8)*1H a+l, ;a+1,a+1;8(zz ,
(1-3s) 4( B e
for

(Isl<1,

where Horn’s Hy function is defined by ( see [9])

t
<r, ‘—:—;I<r2,4r1=(r2-1)2>

s
= 1

. . - — (a)2m n(ﬂ)nzmyn
H4(a)ﬂ)7a5,x)y)-m§;0mmm

(el <riy Wl<rs, 4r=(r-1?).
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Proof. For m > n, using (1.1) and (1.2), we have

mio (@+m+1), (Bm Prpmn(s2" %"‘,%
_ m’z:o (o + 1(7: 4:_ 11)),; (B)m PEm (227 — 1) (tzz;': s
_ m'i:; Mz; (B)m (c(xa++n;): Dt S;Zn: 2))’: (tzz;'; o
_ g nio (B)m (C(xa++n; )4k- 1) nyak (zz;!;!l)" (t,,):z fn+k
R

x (22* — 1)F (t2)™ s*
a1l (@+1),0k (B tz \™ [ s(22* - 1) F
= (1-9) 1,,,,;:0 (a+1), (afkl),,, mlk! (1—3) ( (1) )
s(zz*—1) tz )

(1-s)?* "1-s

For n > m, the second relation can be easily shown. a

= (1-s)"*'H, <a+1,ﬁ;a+1,a+1;

Other generating functions for the polynomials Pg ,, (z,2*) can be ob-
tained as follows:

Theorem 2.3. For the polynomials Py, , (2,2*), we have
— tm s™
> (@+1), Bm Plimn(227)

mln!
m,n=0 m

= Fiu:Fr(,1,1,a+1,8,a+1;a+1,1,1;8(22z" — 1) ,tz,822")

and
3 o " tn gm
m?:o (a + l)m (ﬂ)n Pm.n+m (Z. z ) F;n_l-

= Fu:Fr(,,l,a+1,B,a+l;a+1,1,1;8(22" —1),tz*, 822")

(Isl<rm, [t|<re, ri=r2(l-12)) (2.3)

where Fy4 is Lauricella hypergeometric function of three variables { and
also this function can be given by Saran’s notation Fr [8]) which is defined
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by [4] (see also [9])

Fis : FF (ala o, al)ﬂl,ﬁ29ﬂ1;7la72t T2 T Y, z)

o0

= Z (Ql )m+n+p (ﬁl)m+p (ﬁz)n ™ yn 2P

(‘Yl)m (72)ﬂ+p m! n! E

m,n,p=0
(lzl<ri, lyl<rz, |zl<rs, (1= m2)(ra—r3)=r1r2)  (2.4)

Proof. It is enough to use (1.1) and (1.3). Also, the condition (2.3) is
obtained from (2.4). 0

3. BILINEAR AND BILATERAL GENERATING FUNCTIONS

In recent years by making use of the familiar group-theoretic (Lie al-
gebraic) method a certain mixed trilateral finite-series relationships have
been proved for orthogonal polynomials (see, for instance, [9]). This sec-
tion presents several families of bilinear and bilateral generating functions
for the generalized Zernike or disc polynomials Py; ,, (2,2*) given by (1.1)
without using Lie algebraic techniques but, with the help of the similar
method as considered in [6],[10].

We begin by stating the following theorem.

Theorem 3.1. Corresponding to an identically nonvanishing function
Qu(y1,--1ys ) of s complex variables yy, ..., ys (s € N) and of complez order
b, let

AW, ¥si €) 1= ) 0kQpuuk (Y1, - Ys )E* (3.1)
k=0

(ar #0, p,veC).

Then, we have

o [ri/p)
Z Z ax(a+ny —pk+1),, Poin,—pkn, (2:27)  (3.2)
ny,ny=0 k=0

k tmi—pk g yma
X (ﬂ)nl—z’k QY15 Ys M (—nl—_‘ﬁ)-ln—z,'

w(zz* — 1) tz)

(1-w)? "1-w

= (1-w)‘°“H4<a+1,ﬁ;a+1,a+1;

XAp,v(yla weey Yay 71)
provided that each member of (3.2) exists.
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Proof. For convenience, let T' denote the first member of the assertion (3.2)
of Theorem 3.1. Straightforward calculations give

00 0
T = z z A (C! +ny + l)ng (B)ﬂl P:x'i'na,ﬂn (z, z‘)

ny,ny=0 k=0
tn qph2

k22
X Quivi(Y1y 1 ¥s ) nq! ng!

oo
= z akaol-uk(yl: sy Ys )ﬂk
k=0

X Z (a +n + 1)71.2 (ﬂ)m P:H'nzyﬂz (z’ z*)

ny,n2=0

If we use Theorem 2.2, then the proof of Theorem 3.1 is completed. O

™ wn2
nyl ng!

In a similar manner, by appealing to the formula (2.1), we are led fairly
easily to the following theorem.

Theorem 3.2. Corresponding to an identically nonvanishing function ®,(u,v)
of complex variables u,v and of complex order u, let

W”!ul W2 (u’ v > T)
[= ]

= D bkky Pruvitkavatn k(1 0)7HFR2 (3.3)
k1,k2=0

(bry ke, #0, pyv1,v2€C)

and
Ohir (2, 2% u,v;()
_ [n1/p] [n2/p) R R ) M, N 1)
2o 2= T — k)l (ma — pho)! 71 +n2—(pk1+pka),n2—pka (%
X Py, +kava ke (8, v) CF1FF2 (3.4)

where ny,ng,p € N. Then, we have

o0
WL -, . T’ n n
E Gﬁh,';m; (z,z ;U U; -t—l;)t 1+n2

ny,n2=0

2 * 2tz
= . -1
= Yuriwa(w,vin) R (1 —t-l-R) exp (__1 +t+R) (3.5)

1/2

where
R=(1-2(22z" - 1)t +¢?)
provided that each member of (3.5) exists.
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Proof. For convenience, let T denote the first member of the assertion (3.5).
Then, upon substituting for the polynomials

V1,2 *, N i
Sy (z,z F U, Vs tP)

from the definition (3.4) into the left-hand side of (3.5), we obtain

oo [n1/pl[na/p] by ky (0 + 1)n2_pk2

T =
0 20 52 (1 — P! (n2 — pha)!

o =
XPn1+n2—(Pk1+pk2).n2—Pk2 (z’z ) q)k‘”"*'kzyz'”"k’(u’v)
xnk‘+k2 tmtn2—pk1—pksz (3.6)

Upon inverting the order of summation in (3.6), if we replace n; by n, +pk;
and ny by ny + pks and then we use Theorem 2.1, we may write

N bk (@ 1),

o]
T = Z Z n1+ng,n2 (Z, z‘)

nqing!
ny,n2=0 ky,ky=0 1:7%2

k1 +k:
Xy vy +hava+p,ks (u,v)n 1hhagnitn

[+ ]
= Z (a + 1)712 P:|+n2,n2 (Z, Z*)

ny,n2=0

thtna

ning!

00
ki +k
X § : br, ks <I)kl1/1-+-l\=2112+/-4.kz('u""’)"7 1T

ki1,k2=0

9 « 2tz
_ . -1 __< o ——
= ‘I’p,yl,ug(u’v)n)R (l_t_*_R) exP(1+t+R)

which completes the proof. ]

4. FURTHER CONSEQUENCES

We can give many applications of our theorems obtained in the previous
section with help of appropriate choices of the multivariable functions

Qﬂ+vk(y11 mays) (k € NO ) S€ N)

in terms of simpler function of one and more variables. For example, if we
set

s=r and Qupuk(1, ) = 00 (W1, 0r)
in Theorem 3.1, where the multivariable Lagrange-Hermite polynomials
(see [1))

hstaly-'-’af) (9:1, ey xr)
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are generated by

T [+ ]
H {(1 - mjtj)_aj} = Z h{ermer) (gL 2 ) (4.1)
J=1 n=0
where |t| < min {I:r:1|_1 , |:z-2|_1/2 s ey Ix.-l_l/r . Then, we obtain the fol-
lowing result which provides a class of bilateral generating functions for the
multivariable Lagrange-Hermite polynomials and the polynomials Py, . (z, z*)
defined by (1.1).

(==
Corollary 4.1. If Ay u(y1,.- ¥ri ) i= kz_joakhf:ﬁ,’;,;"""(yl,...,y,)fk where
ar #0, v,p € C; then we have

oo [n1/p]
z Z 27 (a +n; — Pk + 1)112 P:; +ny—pk,na (Z, z‘) (42)
n1,n2=0 k=0

tm —pk w™

e le k
X (B) g —pe BT (1, o 0 (1 —pk)! ma!

w(zz*-1) tz )

(1-w)® '1-w

= (1-w)™™'H, <a+1,ﬂ;a+1,a+1;

XA#,V(yla e Yrs "')

provided that each member of (4.2) ezists.
Remark 4.1. Using the generating relation (4.1) for the multivariable

Lagrange-Hermite polynomials and teking ax = 1, p = 0 and v = 1, we
have

00 [ﬂl/P]
Yo N (atna—pk+ 1), B)n_pk P2 pnsephing (2027
ni ,n2=0 k=0

tm —pk w™

(Y1s-07e) k w-
th (yh reey yr)"l (nl ‘—pk)! n2!

w(zz* —1) tz )

= (1-w)"*'H 1,5; 1, 1 ,
(1-w) 4(a+ Bia+l,a+ 1_wp 'T-w

TI{ -7

=1

where
(inl < min {jsnl ™ s lgal ™72 s e V7))
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Choosing @x, v, +kavats k2 (U V) = Py tkavgtn (%) (101,02 €
C), where u© and u™* are complex conjugate variables, in Theorem 3.2, we ob-
tain the following class of bilinear generating functions for the polynomials
P (2,2%).

Corollary 4.2. If

\Ilﬂ'xul w2 (u’ u‘ ; T)
oo

= § Y - k1 +ka
- bkl sk2 Pkl vitkava+p k2 (u’ u ) T
k) k=0

(bkl,kz 79 0 y M V1,V2 GC)
and

ORLa(z, 2% u,u"; ()

/el ez br, ks (a+ l)nz"sz a »
(o — k0l (g — pla)] | mrram(Phatpka)mapi (3:7)

k1+ka

k1=0 k2=0

Y *
XPk1U1+k2V3+[A Jka (u’u ) C
where ny,ng,p € N. Then, we have

oo
Z QrV1v2 (z, PR tEP) gr1+na

n),n2,p
ny,na=0

) _ 2 o 2tz
= Yuum(u,u";n) R7? <—1—t+R) exp(1+t+1?.)

where
1/2

R= (1—2(2zz"—1)t+t2)

Remark 4.2. Using Theorem 2.1 and taking by, x, = -(-‘g.%"f-, u=0and

vy =vy =1, we have
i [r1/p] [n2/p) (v + l)kg (o + l)m_pk2
. klke! (n1 — pky)! (n2 — pke)!

ni,n2=0 k=0 k=l

« *\ DY -
X Pﬂ| +na2—(pk1+pka),na—pka (z‘ z ) Pkl +ka k2 (u’ u )
ki+kz yni+nz—pki—pka

X1
_ -1 2 « 2 v 2tz 2nu
= (RS) (1—t+R) 1-n+S P 1+t+R+1+n+S
where
R = (1-2(2zz —1)t+82)"/?

S = (1-2Q2uwu" - 1)7]+'q2)1/2.
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If we set @i, v, +kzvp4p ko (U, V) = 2P,c(f;l’fz}m2+# 'kz(u, v), (p,v1,v2 €
C), in Theorem 3.2, where two-variable analogues of Jacobi polynomials [3]
2P, () = BT () (1 - 02) ™2 P00

m—n

) s M2 20

are generated by [5]

— A -n n
> Eagn 2Pt (0, 0) t7F
n

m,n=0

226+l

- = ((1+p)2—t2)-6—%

xF [A,—é’, oy -ty - ATty b@!]

(p={1-2ut+82}'"%),

then we obtain the following result which provides a class of bilateral gener-
ating functions for the polynomials 2P,fl'n (u,v) and the generalized Zernike
polynomials.

Corollary 4.3. If

Ypvi,va (u,v;7)

o
A (6=k2) ky+k;
: - Z bklukz 2Pk1111+k3u2+}4 ,kz(u’ 'U)T
k1,k2=0

(bkx,kz # 0, IL:VI:VZGC)

and

On 2 (2, 2% u,v; ()

[n1/7] [n2/p) biey bz (@ + 1)1 iy o
iTo moo (m—pk)! (na — pha)! * m1+na=(pk1+pha)ina—pha

(2,27)

(6—kz) k1+k2
X 2Pk1"1+k2!’2+# ,kz(u’ ‘U) ¢

where ny,ny,p € N. Then, we have

[= ]
LN
> et (matu ) e

ny,ny=0

9 o 2tz
_ ) -1{__2 —
= Uuu(u,v;n) R (1—t+R) e"p(1+t+R)

R=(1-2(2z2" - 1)t+£2)"/%,

where
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Furthermore, for every suitable choice of the coefficients a, and by, &,
(k, k1, k2 € Np), if the multivariable functions Q,4,x(y1,...,¥s) (s € N) and
Dpyvy+kovatu ko (¥, v) are expressed as an appropriate product of several
simpler functions, the assertions of Theorems 3.1 and 3.2 can be applied in
order to derive various families of multilinear and multilateral generating
functions for the polynomials Py, . (z,2%).
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