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Abstract

The vertex linear arboricity vla(G) of a nonempty graph G is the
minimum number of subsets into which the vertex set V(G) can be
partitioned so that each subset induces a subgraph whose connected
components are paths. An integer distance graph is a graph G(D)
with the set of all integers as vertex set and two vertices u,v € Z
are adjacent if and only if | u — v |[€ D where the distance set D is a
subset of the positive integers set. Let Dm k3 = [1,m] \ {k, 2k, 3k}
for m > 4k > 4. In this paper, it is obtained that some upper and
lower bounds of the vertex linear arboricity of the integer distance
graph G(Dm k,3) and the exact value of it for some special cases.

Keywords Distance graph; Vertex linear arboricity; Path color-
ing; Proper coloring; Chromatic number
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1 Introduction

In this paper, R and Z denote the sets of all real numbers and all integers,
respectively. For z € R, |z| denotes the greatest integer not exceeding z;
[z] denotes the least integer not less than x; we use [m,n] for the set of
the integers from m to n (m < n) and [m,n] = ¢ if m > n. |S| denotes the

cardinality of a set S (|S| = +oo means that S is an infinite set).
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Coloring of graphs has been one of the most fascinating and well-studied
topics in graph theory. Its root goes back to the Four Color Conjecture and
more recently, it was motivated by such application problems as the fre-
quency assignment problem (i.e., L(2,1)—labeling), the control of traffic
signals (i.e., circular coloring) and other problems from wide range of in-
dustrial areas. A vertex-coloring can be viewed as a function from V to Z.
More precisely, a k-coloring of a graph G is a mapping f from V(G) to (1, k].
Given a k-coloring, let V; denote the set of all vertices of G colored with 3,
and (V;) denote the subgraph induced by V; in G. If V; is an independent
set for every 1 < ¢ < k, then f is called a proper k-coloring. The chromatic
number x(G) of a graph G is the minimum integer k for which G has a
proper k-coloring. If V; induces a subgraph whose connected components
are paths, then f is called a path k-coloring. The vertez linear arboricity
of a graph G, denoted by vla(G), is the minimum number & for which G
has a path k-coloring. Clearly, x(G) 2 vla(G) for any graph G.

Matsumoto [8] proved that for a finite graph G, vla(G) < [ -AJ%)il];
moreover, if A(G) is even, then vla(G) = [é@,}ﬂ] if and only if G is a
complete graph of order A(G) + 1 or a cycle. Goddard [5) and Poh [9]
proved that vle(G) < 3 for a planar graph G. Akiyama et al. [1] proved
that vla(G) < 2 if G is an outerplanar graph.

Let S be a subset of all real numbers and D a subset of all positive real
numbers. Then distance graph G(S, D) has the vertex set S and two real
numbers = and y are adjacent if and only if |z — y| € D, where the set D
is called the distance set. In particular, if all elements of D are positive
integers and S = Z, the graph G(Z, D), or G(D) in short, is called a integer
distance graph. The distance graphs were introduced by Eggleton et al. [3]
in 1985 to study the chromatic number. They proved that x(G(R, D)) =

n + 2, where D is an interval between 1 and J, and n satisfies 1 < n <
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d < n+1. They also partially determined the values of x(G(Dm,k)), where
Do i = [1,m] \ {k}. The complete solution to x(G(Dm,k)) is provided by
Chang, Liu and Zhu in [2]. Many people discussed the chromatic number
of the integer distance graph G(D). More results on the chromatic number
of integer distance graphs, see [3], [4], [6],[7], [10] and [11]. In (13] and [14],
it is discussed that vertex linear arboricity of the real distance graphs.
In [12], it is studied that the vertex linear arboricity of G(Dy x) where
Dy = [1,m]\ {k}. In [15], it is studied that the fractional version of the
vertex linear arboricity of some graphs.

Now the integer distance graph is applied widely to gene sequence,
sequential series, on-line computing and so on.

Let Dm ks = [1,m] \ {k,2k,3k}. In Section 3 we shall determine the
vertex linear arboricity of distance graph G(Dp,,1,3); in Section 4, we will

discuss the distance graph G(Dp, k,3) for k > 2.

2 Preliminary

We summarize the basic tactics used in the proof of the main results as

several lemmas. Suppose that m > 6k.

Lemma 2.1. Suppose that there are three vertices by < by < bs receiving
the same color in the path-coloring f of G(Dmk,3)-

(1) If there is a (by, ba)-path in G(Dmk,3), then by € {by +ik,ba+ik|i €
(1,3]} or ba > by + (m +1);

(2) if there is a (b1, bs)-path in G(Dm ,3) and by — by < m, then by €
{by + ik, b3 — ik]i € [1,3]};

(3) if there is a (bz, b3)-path in G(Dm k,3), then by € {bp —ik,b3—ik|i €
[1,3]} or by < b3 —(m+1).

Proof. (1) Otherwise, if b3 ¢ {b1 + ik, b2 + ik|i € {1,3]} and b3 < by + m,
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then b1b3, bobs € E(H) and thus the (b;, b2)-path and two edges by b3, babs
form a cycle, a contradiction.

(2) and (3) can be proved similarly. O

Lemma 2.2. Suppose that there are four vertices by, ba, bs, by Teceiving the
same color in the path-coloring f of G(Dm k,3) and bybs, bobs € E(G(Dm k,3)),
then by € {b2 + ik‘i € [1,3]} or |b4 - bzl >m+ 1.

Proof. Otherwise, four vertices b;(i € [1,4]) will induce a K 3. O

For the convenience of arguments, we introduce a new term. If six
vertices v+ik(i € [0, 5]) receive the same color 8, then such a set {v+ikli €
[0,5]} is called an F-type set associated with 8 and v and denoted by Vj, .

If there is no confusion arisen, we often call it an F-type set, for short.

Lemma 2.3. IfVj, is an F-type set associated with B and v, then f(v+i) #
B in the path-coloring f of G(Dm,x,3) for any i € [5k + 1,m + 5kJ.

Proof. Assume, to the contrary, that f(v+:) = 3 for some i € [5k+1,m +
5k]. Since v is adjacent to v+4k and v+5k, by taking by = v+4k, by = v+5k
and b3 = v + 7 in Lemma 2.1 (1), we have v + i € {v + jk|j € [6,8]} or
bs > by + (m + 1) by the hypothesis.

Since m > 6k, if ¢ = 6k then v,v + 4k,v + 5k,v + ¢ induce a K 3;
if i = 7k then v + k,v + 2k,v + 3k,v + ¢ induce a K, 3; if i = 8k then
v + 2k,v + 3k,v + 4k, v + ¢ induce a K, 3; and if b3 > by + (m + 1) then
v,v+k,v+5k,v+1 induce a K1,3. We come to a contradiction in any case.

Hence the lemma. O

Lemma 2.4. In the path-coloring f of G(Dm k,3), if vertices ap < a; <
+++ < ag receive the same color with as — ap < m, then {a;fi € [0,5]} is an

F-type set.
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Proof. We show that the lemma for & = 1 only, and the other cases can be
proved similarly. If there is an ¢ with 0 < ¢ < 5, such that a;4; —a; > 1,
then aoas,apaq,a0as € E(H) or apas,a1as,a20a5 € E(H), i.e., the same

color vertices induce a K 3, a contradiction. O

Lemma 2.5. In the path-coloring f of G(Dm,3), if vertices 0 < ap <

a; < -+ < ag < m + 5k receive the same color, then ai4s — a; > m for

i=0,1.

Proof. Assume that as — ap < m, then {a;|i € [0,5]} is an F-type set
by Lemma 2.4. Therefore agas, apas,a1as € E(H), and ag — as > m by
Lemma 2.3. Then ag > m+1+as > m+ 5k which is contrary to ag € V(H).

Therefore as — ag > m. Similarly ag — a; > m and hence the lemma. 0O
3 The vertex linear arboricity of integer dis-
tance graphs G(Dp,1,3)

In this section, we discuss the case of k = 1, i.e., D13 = [1,m]\ [1,3] =

[4,m]. For m = 4, it is obvious that vla(G(Dm,1,3)) = vla(G({4})) = 1.
Theorem 3.1. For any integer m > 4, vla(G(Dm,13)) = [F] + 1.

Proof. Let n = [2]. Firstly, we show that vla(G(Dm,1,3)) < [§] +1 for
any integer m > 4. Let f(6t+i)=tfor0<t<n=[F]and 0<i <5,
and f(6(n+ 1)s+ h) = f(h) for all h,s € Z. Since 6(n+1) > m+ 6,

V; = Urez[6k(n + 1) + 6t,6k(n + 1) + 6t + 5]

induces a linear forest for each 0 < ¢ < n. Then f is a path (n+1)—coloring
of G(Dpm,1,3), and va(G(Dpm,1,3)) < [F] + 1.

Now we show that the lower bound. For 5 < m < 6, vla(G(Dm,1,3)) <
2 by the upper bound. Since G(Dnm,1,3) has a K 3 induced by vertices
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1,5,9,10, vla(G(Dm,1,3)) = 2. We will show that the lower bound, i.e.,
vla(G(Dm1,3)) 20+ 1 for m > 6.

Assume, on the contrary, that vla(G(Dm,1,3)) < n, then G(Dp 1,3)
has a path n—coloring f. Let H be the subgraph of G(Dp,1,3) induced
by vertex subset [0,6n], then f is also a path coloring of H. Note that
|V(H)| = 6n+1. There are at least seven vertices in H, say 0 < ap < a; <

.- < ag < 6n, receiving the color a.

By Lemmas 2.4- 2.5, the following two claims are obvious.

Claim 1. Ifas —ap <m, thenas =a4+1=---=ag + 5.
By Claim 1, if 1 < 7 < @ < ¢+ 5 then it is impossible that there are
n — 1 colors for the remaining m — 1 = 6(n — 1) vertices [{,m +1] in H such

that each color has exactly an F-type set Vp, with v € [i,m + 4].
Claim 2. min{as — ap,ag — a1} > m and then ap < 3 and a; < 4.

Claim 3. m =6(n — 1) + 1.

Assume that m > 6(n — 1) + 2 > 8, by Claim 2, a5 — a9 > m and
ai <m+i—2fori € [4,6). There is a integer k with 1 < k < 5 such
that ax —ap < m and axy1 —ap > m. If k = 1, then a3 — ap > m and
ag—az < 6n—az < 6n—(m+1) < 3 which is impossible. Hence, k € [2,4].

In the following, we will come to a contradiction in any case.

Case 3.1. k=2.

Sinceag —ap>m,a6—a3 <bn-(m+1)<3,s0as=6n=as5+1=
a4+2 = a3+3and m = 6(n—1)+2. By Claim 2, a; < ag—(m+1) < 3, and
ap < 2. If @y = 3, then a, is adjacent to as, a4, as, a contradiction. If a; =
2, then aja3,a1a4 € E(H) and a2 — a;,a3 — a2 € [1,3] by Lemmas 2.1-2.2,
so m = 7,a2 = 5, and vertices az, a4, a5, ag induce a K 3, a contradiction.
Hence a; = 1, ap = 0 and 2 < ap £ m, then a; = 2 (otherwise, as is

adjacent to vertices ag,a4,as for 2 < az < m — 2, and as is adjacent to
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vertices ag, a1, a¢ for az > m — 2). Therefore a,a3, azas,a2a4 € E(H) and
there are n—1 colors for the remaining m—2 = 6(n—1) vertices 3,4,--- ,m
in H such that each color has an F-type set V3, with 3 < h < m -5 by
Claims 1 — 2. By Lemma. 2.3, the vertex 6n + 1 receives the color a and

induces a K 3 with vertices a,, a2, a3, & contradiction, too.

Case 3.2. k =3.

Thenag—ag <m,a3—ag>m+1land2<ag—ay <bn-—(m+1)<3.

If az —ao = 3, then azaq,azaq € E(H) because m+1 < ag—ap < m+2,
and |a; — a4| > m by Lemma 2.2. Thusag =m+2, a0 =0, a1 =a;+1
for i € [4,5], and m = 6(n—1)+2. There are n— 1 colors for the remaining
6(n — 1) vertices 4,--- ,m + 1 in H such that each color has exactly an
F-type set Vg, with (4 < h < m — 4) by Claim 1. By Lemma 2.3, the
vertex 6n + 2 = m + 6 receives the color a and induces a K 3 with vertices
as,as, a4, a contradiction.

Therefore a3 — ap > 4, agas € E(H), then at most one of vertices
a4,05,a6 is adjacent to a3. Thus, as — a3 < 3. Since a5 —ag > m + 2,
m > az —ap = as — ag — (as — az) = m — 1. By Claim 2, a; < 3, so that
azg—a; >m—1—3 >4, then ajaz € E(H). By Lemma 2.2, ag — a3 = 3,
and ag —ap < m+2 if a3 —ag = m—1, which is contrary to ag —ap > m+1.
Hence a3 ~ ag = m, and ag — ag = m + 3.

Clearly, az — aa < 3 (otherwise, vertices ay, a1, a3, a3 induce a K 3),
and a3 — ag = a3 — ap — (a3 — ag) = m — 3 > 3, then apas, aza6 € E(H).
By Lemma 2.2, ag —a;,a5 — a2 € [1,3), then as —a2 =3, and ag —a; < 7,

which is contrary to Claim 2.

Case 3.3. k=4.
Then a4 — ap < m and agay € E(H). If there is an i € [0, 3] such that
ait1—a; > 2 or an i € [0, 1] such that @iyj41 —aiy; =2 for 5 € [0, 2], then
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ap is adjacent to vertices ao, a3, a4, Or a4 is adjacent to vertices ap, a1, as,
a contradiction. If there are exactly a;,,a;, with 0 < ¢; < 2 < 3 such that
ai;4+1 —ai; = 2 for j = 1,2 and ai41 —a; = 1 for all i € [0,3]\ {41,42},
then agag, apay, 0104 € E(H), and a4 — ag = 6, so that asas € E(H), i.e.,
ag —ag < 3 and as — a; < 8 which is contrary to Claim 2. If there is
a unique a;, (0 < 79 < 4) such that a;p41 — ai, = 2, and aj41 —a; = 1
for i € [0,3]\ {70}, then a4 — ap = 5, and ag — as < m — 1, by Claim
2, a5 —a4 > m—4 > 4, so that vertices ag,a4,as,a6 induce a K, 3, a
contradiction.

Therefore ay — ag = 4, i.e., ai41 = a; + 1 for i € [0, 3], and a4as € E(H)
since ag —ag < 6(n — 1) + 2 < m, by Lemma 2.2, as —ag =t < 3. By
Claim 2, m<as—ap~1=as—as+a4—ap—1=3+1¢ < 6 which is
contrary tom > 6(n—1)+2 > 8.

By all above arguments, we have m = 6(n—1)+1, hence Claim 3 holds.

Claim 4. a3 <2anday > 6(n—-1)+4,ie,a =0,a6 =m+5=06n
and a;41 = a; + 1 for i € [0,1] U [4, 5].

First, we have the following subclaim.

Subclaim 4.1. as — ap < 3 and ag — a4 < 3.

It is clear that the relation of as,a¢ is symmetric with the relation of
a4, a6, S0 we need only to show that as — ap < 3.

Otherwise, assume that a; — ag > 4, we prove that az — ag < m in the
following. Suppose that az—ap > m+1, then ag = m+5 = 6n,a;4.1 = a;+1
for ¢ € [2,5], ap = 0, agaz € E(H) and ajaz € E(H) by Claim 2. By
Lemmas 2.3-2.5, there are n — 1 colors for the remaining 6(n — 1) =m—1
vertices {1, m]\{a,} in H such that each color has exactly an F-type set Vj,
with 1 < v <m -5, and the vertex 6n + 1 in G(Dp,,1,3) receives the color

« and induces a K 3 with a,, as, a2, a contradiction. Hence ag — ag < m,
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so apaz € E(H), and then at most one of a,, a3, as, as, ag is adjacent to as.

By Lemmas 2.1-2.2, if aja; € E(H), then a3 > 5, a5 — a2 = 3, and
ag > as + m+ 1 > 6n, which is impossible. Similarly, if aza; € E(H) for
some i € [3,4] , then a;41 = ag+m+ 12> m+ 5 = 6n; if agas € E(H),
thenas —a; <8,a4—a2<3,andag 2 az+m+1,sothat ag =m+5=
6n, as =4, ag =0, a4 < 7, and agaz, agas, apas € E(H), a contradiction.

Finally, if agas € E(H) then a —a; =t < 3, a5 —a2 = 3 and
ajas € E(H),s0 a2 = a5 — (a5 —az) 2m—2and 4 > a1 —ap = (as —
ag) — (as —ag+az—a1) 2 m+1-3—t > m~>5 by Claim 2, ie,
m=6n—-1)+1=7a-0a >22andaz~a <7. Ifaz-a =3,
then a; induces a K 3 with vertices a3, a4,as; if az — a; = 2, then a; is
adjacent to vertices a4,as, by Lemma 2.2 and Claim 2, a; —ap < 3 and
as —ag=as—az+az—a; +a; —ap =8, hence a; —ap =3, ag —ap =5,
and ap, az, as, a4 induce a K 3; if ag — a1 = 1, then a5 —a1 =4, a1 —ap >
m—4 =3, aga; € E(H), and az — agp = m (otherwise, az — ag < m, then
aoas € E(H), and ag, a1, az, as induce a K3 3), so that aj —ap=m—-1=6
and ag — a1 < 7 = m which is contrary to Claim 2.

Therefore the subclaim holds.

Subclaim 4.2. ay —ap = ag —aq4 = 2.
By contradiction, assume that az —ap = 3,thenm—2 < as—az <m+1
by Claim 2 and a5 < m+4. In the following, we will come to a contradiction

in any case.

Case 4.2.1. a5 —as =m + 1.

Thenaz =3, as =m+4, ag=0and ag =m+5=6n. If 6 < az <m,
then vertices ay, a1, az are all adjacent to as, a contradiction. So that a3 < 6
or a3 > m+ 1. For a3 < 6, agas, azas € E(H), then a4 — a3z, a3 — a1 € [1,3]

and as — az > m + 1 by Lemma 2.2, then a3 = 4 and a4 < 7, by Subclaim
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4.1, ag = m + 5 < 10 which is impossible. For a3 > m + 1, azas € E(H)
since a3 < m + 2, then aja3 ¢ E(H) or agag ¢ E(H), i.e., ag —a; > m or
ag — a3 = 3. In the former case, a3 = m + 2 and a; = 1, then there are
n — 1 colors for the remaining m — 1 = 6(n — 1) vertices [2,m + 1] in H
such that each color has exactly an F-type set Vg, with 2 < v < m — 4,
then vertex m 4+ 6 receives the color a and induces a cycle with vertices
ag, ag, a4, & contradiction. In the latter case, similarly, we have a; = 2 and
a3z = m+ 2, then there are n — 1 colors for the remaining m — 1 = 6(n — 1)
vertices [1,m + 1] \ {2} in H such that each color has exactly an F-type

set, which is impossible.

Case 4.22. m—1<as—az <m.

Then agas,aza4 € E(H) by Subclaim 4.1, a3 — a2 < 3 by Lemma 2.2,
and agaz € E(H), so that aq4 — a3 < 3 (otherwise, ag, as, a4, as induce a
cycle), and as — ag < 3 or ag —az > m + 1. In the former case, m =
7,a5 —az = 6 and as — a3 = azg — az = 3, then ap, a;,as3,as induce a
K, 3. In the latter case, a3 = 4,a6 = m + 5, az = 3 and ag = 0, then
m—1<as—az =as—ag+ a4 —az+az —az < 6 by Subclaim 4.1, i.e.,
m=17,a¢ =12, as = 9 and a4 = 7, so that vertices ao, a;, az, ag induce a

K, 3, a contradiction.

Case 4.23. a5 —ay =m - 2.

In this case, as — ap = m + 1, and azas,a1a5 € E(H), then as —a3z < 3
by Lemma 2.2, and a3 — ap > m — 2. Thus apa3,apaq € E(H), then
aja3 € E(H) (otherwise, ajas, ajaq € E(H), so vertices ap, a3, a4, a; induce
a 4—cycle, a contradiction), i.e., a3 — a; < 3, so that as —a; < 6 and
as —ap < 8, then as —ap = 8,m = 7 and a5 — a; = 5. By Subclaim
4.1,'ag — as < 2, then agas € E(H) and ag — a3 < 3. Since a4 — a; =

ag — a1 — (ag —ayq) > 5, ayjaq4 € E(H), then ag — a3 = 3 (otherwise, vertices
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ao, a3, as, az, s, @1, a4 induce a 7—cycle), and ag — a; < 6 < m which is
contrary to Claim 2.
In a word, we have obtained that az — ap = 2.

Similarly, we can show that ag — a4 = 2, hence the subclaim.

Subclaim 4.3. a; =2 and a4 = m + 3.
Ifay > 0, then a > 3 and @) > 2. Since ag —a; 2 m+1, a1 <

as—(m+1)<bn—-(m+1)=4,ie,2<a; <4

Case 4.3.1 a; = 4.
Henceag =m+5, ag=5,a0=3,as =m+4,a3 >26and ag =m+3

by Subclaim 4.2, then ag, a1, a2, a4, induce a K 3, a contradiction.

Case 4.3.2. a; =3.

Then ap = 2,a2 =4 and ag > m+4. Forag =m+4, a5 = m+3
and ag = m + 2, then a1, az,a4,as, induce a cycle, a contradiction. For
ag =m+5, as = m+4 and a4 = m + 3 by Subclaim 4.2, then ag, a1,a2,a4

induce a K} 3, a contradiction, too.

Case 4.3.3. a; =2.

In this case, ag = 1,a2 = 3,a5 > m + 2, and azas € E(H) by Subclaim
4.2, then a3 < 6 or a3 > a4 — 3. In the former case,if m > 7orm =7
and a4 — a3 > 3, then aszaq,asas € E(H), and a3 = 4, ag = m + 5 and
a4 = m+ 3 by Lemma 2.2, so there are n — 1 colors for the remaining
m — 1 = 6(n — 1) vertices {0} U[5,m + 2] in H such that each color has
exactly an F-type set Vp, with 5 < v < m — 3, except one color -y has six
vertices 0 < hy < --- < hs. By Lemmas 2.1-2.3, the vertice m + 6 receives
the color v and induces a Ky 3 with vertices hg, h4,hs, a contradiction.
Hence m = 7 and a4 — a3 < 3, a1a4 € E(H), ie., a4 — a1 < 7 and
a4 — a3 = ag — az = 3, 0O ag, as, as, as induce a K 3, a contradiction. In

the latter case, m +1 > a3 > a4 — 3 = m — 2, then apag € E(H), and
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a3 —a; < 3orag—a3 =3by Lemma 2.1, s0 4 < a3 < 5or az > m, and
thus vertices ao, as, a4, as induce a Kj 3 or vertices ag, a1, az,a3 induce a
K 3, a contradiction, too.

In a word, ag = 0,a; = 1 and ap = 2. Similarly, we have ag = m +

5, as =m+4 and a4 = m + 3. Hence the claim.

Claim 5. a3 =3 oraz=m+2.

Assume that 4 < a3 < m, then apas, azas € E(H), and az —a; < 3 and
ag — a3 2 m+ 1 by Lemma 2.2, so a3 = 4 and vertices ap, a3, a4, a5 induce
a K 3 by claim 4, a contradiction. If a3 = m <1, then vertices a1, a3, a3, ag
induce a K 3, a contradiction.

Therefore az = 3 or a3 = m + 2. So Claim 5 holds.

Without loss of generality, suppose that az = 3, then there are n — 1
colors for 6(n — 1) vertices [4,m + 2] in H such that each color has exactly
an F-type set Vp, with v > 4 by Lemma 2.4. Therefore, the vertex m + 9
receives the color a and induces a K 3 with a4,as and ag, a contradiction,
too.

In a word, we have proved that vla(G(Dm,1,3)) > [F] + 1.

Therefore, vla(G(Dm,1,3)) = [F] + 1. 0

4 The vertex linear arboricity of integer dis-
tance graphs G(Dy, 1 3) for k > 2

Secondly, we study the integer distance graph G(Dp,,2,3) with the distance
set Dm23 = [1,m]\ {2,4,6}. Clearly, for m < 9, there is at most one
even number in Dy, 23, then vla(G(Dm 2,3)) < 2 since f(n) = n(mod2)
is a path coloring. But vertices 0,1,4,5 induce a cycle in G(Dm,23), so

vla(G(Dm,2,3)) = 2. Suppose that m > 10 in the following.
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Theorem 4.1. For each integer m =129+ 35 > 10 with0 < j £ 12,

m+1 { 2'.{_;]7 forj=1,

r—G—] +1<vla(G(Dmp3)) <§ 2[H1+1, for2<5<4,

2(/31+1), else.

Proof. Firstly, we show that the upper bound. Let [B] = n and m =
12g+jwith0 <5 <12. If j =1, let f(12/ 4+ i+ 2t) =i+ 2 for t € [0, 5],
where i = 0,1, and 0 < ! < [§] — 1, and the other vertices be colored
periodically, then f is a path coloring, so that vla(G(Dym,2,3)) < 2[5].

If2<j <4, let f(120+ 4+ 2t) = i + 2l for ¢ € [0,5], where i = 0,1,
and 0 <! < [B] -1, f(12n) = f(12n + 1) = f(12n + 2) = 2n, and the
other vertices be colored periodically, then f is a path coloring, so that
a(G(Dm,1,3)) <2n+1=2[1]+ 1.

If5<j<12 let f(120+i+2t) =i+ 2l for t € [0,5), where i = 0,1,
and 0 <! <[] = n, and the other vertices be colored periodically, i.e.,
f(12(n + 1)t + u) = f(u) for all t,u € Z, then f is a path coloring, and
vla(G(Dm23)) < 2([B] +1).

Secondly, we show that vla(G(Dm,2,3)) = [ZL] + 1. We discuss the
case of m = 6q and ¢ > 2 at the first.

By contradiction. Assume that vla(G(Dm,2;3)) < [®E] =¢+1=mn,
then G(Dp, 2,3) has a path n—coloring f. Clearly, f is also a path coloring of
the subgraph H induced by vertex subset [0, 6n]. Note that |V (H)| = 6n+1.
There are at least seven vertices in H,say0<ap<a; <:- < ag <bn=
m + 6, receiving the color a.

By Lemmas 2.4- 2.5, we have the following two claims.

Claim 1. Suppose that as —ap < m, thenas = a4 +2=a3+4 =

a2+ 6=a;+8=ag+ 10.
Claim 2. min{as — aop,as — a1} > m.

It is straightforward to prove the following claim.
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Claim 3. If a;43 —a; < 5,0r aj43 —a; = 6 and {ai+,-+1 - a,~+,-|j €
[0,2]} \ {2} # ¢, then vertices a;+; (5 € [0, 3]) induce a K, 3 or a 4—cycle;

Hence this is impossible in the path coloring.

In the following, there is a contradiction regardless the relative positions

of ag and as.

Case 1. as —ap = 2.

Now agpai, ara2 € E(H), so a3 — a3 € {2,4,6} oraz —a; > m+1by
Lemma 2.2.

If a3 — a; € {2,4,6}, then vertices ag,a1,az,as induce a 4—cycle, a
contradiction. If az — a; > m + 1, then a3 > m + 2 and ag — a3 < 4 which

is impossible by Claim 3.

Case 2. a2 —ap = 3.

In this case, agaz € E(H),and a; —ag=1oraz —a; =1.

If a1 ~ap = 1, then apa; € E(H), and az—ag € {4,6} or az—ag > m+1
by Lemma 2.2. In the former case, vertices ao, a1,as, az induce a 4—cycle;
in the latter case, ag — a3z < 5 which is impossible by Claim 3.

If ag—ay = 1, then apaz, a1a2 € E(H), and az~a; € {2,4,6} (otherwise,
a3 —az > m+1, then a3 > m+ 4, and ag > m + 7 which is impossible) by
Lemma 2.2, so that agas,a1a3 € E(H), and vertices ag, a2, @1, a3 induce a

4—cycle, a contradiction, too.

Case 3. a3 —ag = 4.

If a; — a; # 2, then apay,a1a2 € E(H). Hence a3 —a; € {2,4,6} or
a3 —a; > m+1 by Lemma 2.2. In the former case, vertices ag, a1, az, a3
induce a 4—cycle; in the latter case, a3 > m + 2 and ag — a3z < 4 which is
impossible by Claim 3. Therefore, az — a; = a; —ap = 2.

Then a3 — a2 € {2,4,6} (for otherwise, vertices ag, a1, az, a3 induce a

K, 3, or ag — a3z < 5 which is impossible by Claim 3). Similarly, a4 — a3 €



{4,6} (if ag—a2 > m, a4 > m+5and ag > m+7, a contradiction), and then
as—az € {2,4}. It is clear that apaq € E(H) and m+1 < as —ap < m+5.
We shall show that it educes a contradiction in any subcase.

(3.1) For as — ap € {m + 1,m + 3}, the difference of as and each of
ag,as, a4 is odd and < m, so that as, az, a3, a4 induce a K 3.

(3.2) For as — ap = m + 2, a1a5,02a5 € E(H), then m = 12,a5 — a3 =
6,a3 —az = 4 and a5 — a4 = 4 by Lemma 2.2, so that apas, apa4, a1a4, a1as,
azas € E(H), and ag — as € {2,4}. If ag — a5 = 4, then asa¢ € E(H), and
vertices ag, a1, a4, ag induce a K1 3. If ag—as = 2, then apas, a4a1, a1as, asaz,
azag,a¢a3, asag € E(H), i.e., vertices ag, a4,01,0s, a2, a6,a3 induce a 7-
cycle, a contradiction.

(3.3) For a5 —ag = m+4, then as,az, a3, a4 induce a K) 3 when m > 12.
If m = 12, then a5 — a4 = 6 (otherwise, as —ay = 4, vertices a4, ap, a1, az in-
duce a K 3). Hence, aq —a2 = 6 and as—as = 2, then vertices ao, a1,0a4, as
induce a K 3.

(3.4) Foras —ag=m+5,a0 =0,a1 =2, a2 =4, as =m+5, ag =
m + 6, as € {6,8} and a4 € {8,10}, so as,a3,a4,as induce a K3 since

m = 6q > 12, a contradiction.

Case 4. az —ap =5.

Now agaz € E(H), and apa, € E(H) or aia; € E(H). If aga: € E(H),
then a3 —ag = 6 or ag—ap > m by Lemma 2.2, so that vertices ap, 21, a3, a2
induce a 4—cycle, or ag — ag < 5 which is impossible by Claim 3. If ¢ya €
E(H), then a3 — a2 € {2,4,6} by Lemma 2.2, and a1a3,a0a3 € E(H), i.e.,

vertices ag, a1, a3, az induce a 4—cycle, a contradiction, too.

Case 5. ag —ag = 6.

It is not difficult to educe a contradiction as the proof of Case 3 similarly.

Case 6. ap—ap>17.
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(6.1) If ag — ap < m, then agaz € E(H). Hence, aga; ¢ E(H) or
aja; ¢ E(H).

(6.1.1) Assume that agay ¢ F(H) and aja; € E(H), then a; —ag €
{2,4,6}, and {a; — az|i € [3,6]} = {2,4,6} which is impossible.

(6.1.2) Assume that agai,a1a2 € E(H), then ag — a2 > 6 and agzae €
E(H) by Claim 3. By Lemma 2.2, as = a4 + 2 = a3 + 4 = a2 + 6, then
agaz € E(H), ag — a5 € {2,4,6} (otherwise, as, a3, a4,as induce a K 3)
and az — a1 € {2,4} (otherwise, a2 — a; = 6 and then a1, a3, a4, a5 induce
a K 3), s0 ag — a3 = 6 by Lemma 2.1, and ag — a; = 12 which is contrary
to Claim 2.

(6.1.3) Assume that aga; € E(H) and aja ¢ E(H), then a3 —a; €
{2,4,6}, and ag —ap > m + 1 by Lemma 2.2, so ag — az < 5 which is
impossible by Claim 3.

(6.2) If ap —ap > m + 1, then ag — a2 < 5 and ag — ag < 4 which is

impossible by Claim 3.
In a word, for m = 6¢ with ¢ > 2, vla(G(Dm,2,3)) > [2£L] + 1.

For m = 69 +j > 12 with 1 < j < 5, since Dgg2,3 C Deg+j,2,3,
la(G(Dm,2,3)) 2 vla(G(Deq2,3)) 2 [ + 1 =[] + 1.

For m = 10, vla(G(Dm,2,3)) > 3: otherwise, vla(G(Dp 2,3)) = 2, then
the subgraph H; induced by vertices 0,1,2,---,12 has a path 2—coloring,
so that there are at least seven vertices in Hy, say ap < a1 < -+- < ag,
receiving the same color, then Claims 1 — 3 hold, too. So a5 = 11, ag =
12,00 = 0,a; = 1, and apay,a1as,a506 € E(H), then a;4; = a; + 2
for i € [1,3] by Lemma 2.2, and vertices ai,a2,as,a6 induce a K; 3, a
contradiction. Hence vla(G(D11,2,3)) = vla(G(Dio,z2,3)) = 3. Therefore,

the lower bound is obtained. v O

By Theorem 4.1, we have below result easily.
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Corollary 4.2. For m > 10, we have vla(G(Dmz23)) = [B1+2 if m =
0(mod 12), and vla(G(Dm2,3)) = [Z]+1 if m = 1(mod 12).

Lastly, we consider the case of k > 3.

For 3k < m < 5k, there is at most one multiple of k£ in Dp, 3,
vla(G(Dm k,3)) < k since f(n) = n(modk) is a path coloring. Let Xo =
{0,k,2k}, X1 = {1,k + 1,2k + 1}, , Xxe1 = {k — 1,2k — 1,3k — 1},
then vertices Xo U X3 U -+ U Xj—1 induce a complete k—partite graph
K(3,3,---,3), so that vla(G(Dm,k,3)) = k since any four vertices induce a
cycle or & K1,3. Hence vla(G(Dm x,3)) = k.

Similarly, ¥ < vla(G(Dm,k,3)) < 2k for 5k < m < Tk.

For m > 7k, the following conclusion can be obtained as Theorem 4.1
similarly.

Theorem 4.3. For m > 7k, [2£E+3] < vla(G(Dm,k,3)) < k[ BEEEL].
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