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Abstract

The sum of the squares of eccentricity (SSE) over all vertices of
a connected graph is a new graph invariant proposed in [13] and
further studied in [14, 15]. In this paper, we report some further
mathematical properties of SSE. We give sharp lower bounds for
SSE among all n-vertices connected graphs with given independence
number, vertex-, and edge-connectivity, respectively. Addtionally,
we give explicit formulas for SSE of Cartesian product of two graphs,
from which we deduce SSE of C4 nanotube and nanotorus.
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1 Introduction

All graphs considered in this paper are simple and connected. Let G be
a simple connected graph with vertex set V(G) and edge set E(G). For
a graph G, we use dg(v) to denote the degree of a vertex v in G. The
distance between two vertices u and v, namely, the length of the shortest
path between u and v is denoted by d¢(u, v). The eccentricity of a
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vertex v in a graph G is defined to be ecg(v) = max{dg(u, v)lu € V(G)}.
Other notation and terminology not defined here will conform to those in
[2].

The oldest and well-studied distance-based graph invariant W(G), also
termed as Wiener index in chemical or mathematical chemistry liter-
ature [4, 6], associated with a connected graph G is defined as W(G) =

dG('U., v).
{u, v}CV(G)
Recently, some eccentricity-based graph invariants or molecular topo-

logical indices in mathematical chemistry, such as eccentricity connec-
tivity index [1, 5, 9, 11, 12] and eccentricity distance sum (7, 8] have
been proposed and studied. Also, the average eccentricity of a graph
was investigated in [3].

The sum of the squares of eccentricity (SSE) over all vertices of a graph

and the sum )~ ecg(u)ecg(v) are called, respectively, the first and
uw€EE(G)

second normalized Zagreb eccentricity indices G in [13], where the

authors compared these two graph invariants for all n-vertices trees and

unicyclic graphs, where m is the size of G.

In [14], Wen first gave upper and lower bounds for SSE among n-vertices
connected graphs. Then he gave a lower bound for SSE in terms of Wiener
index and an upper bound for SSE in terms of the first Zagreb index among
n-vertices connected graphs. Finally, he gave a Nordhaus-Gaddum-type
bound for SSE. The same author [15] characterized the cactus with the
minimum SSE among all n-vertex cacti. As an application, he obtained the
tree and unicyclic graph with the minimum SSE. Finally, he gave explicit
formulas for SSE of double graph and iterated double graph of a given
nontrivial connected graph.

In this paper, we report some further mathematical properties of SSE.
We give lower bounds for SSE among all n-vertex connected graphs with
given independence number, vertex-, and edge-connectivity, respectively.
Additionally, we give explicit formulas for SSE of Cartesian product of two
graphs, from which we deduce SSE of C4 nanotube and nanotorus.

2 Lower bounds for SSE involving other graph
parameters

The following result is obvious, whose proof is omitted here.

Lemma 1. Let G be a nontrivial connected graph with at least three ver-
tices. If G is not isomorphic to K,, then SSE(G) > SSE(G + ), where



e€ E@).

A vertex subset S of a graph G is said to be an independent set of
G, if the subgraph induced by S is an empty graph. Then 8 = max{|S| :
S is an independent set of G} is said to be the independence number of
G.

Let G and H be two vertex-disjoint graphs. The join of graphs G and
H, denoted by GV H, is defined as a graph whose vertex set is V(G)UV (H)
and edge set is E(G) U E(H) U {zy|z € V(G),y € V(H)}.

Theorem 1. Let G be an n-vertez connected graph with independence num-

ber 8. Then
SSE(G) 2 n+3p

with equality if and only if G = BK; V Kn_p.

Proof. Let Gpin be a graph chosen among all n-vertex connected graphs
with independence number 3 such that G, has the smallest SSE. Let S be
a maximal independent set in G, with |S| = 8. Since adding edges into
a graph will decrease its SSE by Lemma 1, each vertex = in S is adjacent
to every vertex y in Gmin —S. Moreover, the subgraph induced by vertices
in Gpin — S is a clique in Gpin. S0 Gmin = BK; V K,,—g. An elementary
calculation gives SSE(BK, V Kn—pg) =22-8+1-(n-p) =n+30, as
claimed. a

The vertex-connectivity is the minimum number of vertices whose
deletion from a connected graph disconnects it, and the edge-connectivity
is the minimum number of edges whose deletion from a connected graph
disconnects it.

Theorem 2. Let G be an n-vertex connected graph with vertez-connectivity

k. Then
SSE(G) = 4n - 3k

with equality if and only if G is of the form K V (K, + Ka,).

Proof. We choose Gin to be the graph such that Gp,i, has the smallest
SSE within all connected graphs with n vertices and vertex-connectivity
k. Let C be a vertex-cut of Gy such that |C| = k and let Gpin — C =
G1UG,U---UG, (t > 2). By Lemma 1, we must have t = 2, for otherwise,
we can adding edges between any two components, resulting in a new graph
G’ with vertex-connectivity k and a strictly smaller SSE than that of Gpin,
a contradiction to our choice of Gpin.

The same reason leads us to that both G, and G5 are cliques of Gin
and that any vertex in G; U G, is adjacent to each vertex in C. Let n;
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denote the order of G;. Thus, we have Gpin = Ki V (K,, + K,,,), as
claimed. =)

In the following theorem, we show that K V (K, U K,,_1_) also min-
imizes SSE among all n-vertex connected graphs with edge-connectivity

k.

Theorem 3. Let G be an n-vertex connected graph with edge-connectivity

k. Then
SSE(G) > 4n — 3k

with equality if and only if G is of the form Ki V (Kn, + Kp,).

Proof. Let f(z) = 4n—3z. It is easily seen that f(z) is a strictly decreasing
function. Suppose that G is a graph on n vertices with edge-connectivity

k.
If G has the vertex connectivity A, then we have A < k. It is known from

Theorem that SSE(G) > f(A). Now, f(A) > f(k) and we get SSE(G) >
f(k) = 4n — 3k. It is easy to check that the equality holds if and only if G
is of the form K V (K,, + Kp,).

This completes the proof. O

3 SSE of Cartesian product graphs and its
chemical applications

Let R and S denote a C4 nanotube and nanotorus, respectively. In this
section, we give explicit formulas for the sum of squares of eccentricity of
these two nano structures.

The Cartesian product Gy x G3 X - -- X G of graphs G, Ga, ...,Gk
has the vertex set V(G;) x V(G3) x ---V(Gk), in which two vertices
(u1,ug, ..., ux) and (vy,vs, ..., vx) are adjacent if they differ in exactly
one position, say in i-th, and u;v; is an edge of G;. It is well known (see [10])
that for G = G; x G2 x -+« x G and its two vertices u = (uy,ug, ..., ug)

k
and v = (v1, v, ..., vx), we have dg(u,v) = 3 do(ui, v;).
&
Then we have the following relation '
eca, xG, (U1, u2) = ecg, (u1) + ecg, (uz2). (1)
As introduced in [3], for a graph G, we use §(G) = Y. ecg(v) to

veEV(G)
denote the total eccentricity of G.



Theorem 4. Let G, and Gy be graphs of order ny and ng, respectively.
Then

SSE(G) x Go) = npSSE(G1) + mSSE(Gz) + 2£(G1)E(G).

Proof. By the definition of SSE and above equation (1), we have

SSE(Gy x Gg) = > (ece,xa, (u1,u2))?
(u1,u42)eV(G1xG2)
= > (eca, (ur) + ecq, (u2))?
u1EV(G1), u2€V(Ga)

(ec, (v1))%+
u1 EV(G1), u2€V(Ga)

> (eca, (u2))?+

u1EV(G1), u2€V(G32)

2 Y ecqi(wm) Y. ecq,(u)

u1€V(G1) ‘quV(Gn)
= naSSE(G1) + miSSE(Ga) + 2£(G1)4(Ga).

This completes the proof. (]

Note that R = P, x C,, and § = Cy, X Cp,. In order to compute the
sum of squares of eccentricity of R and S, we need only to compute the
sum of squares of eccentricity of P, and C, by Theorem 4.

For any vertex v in Cp,,

n 2| n;
= 2 ’ 2
ech(v) { _-n_;_l, 2{”- ( )
If we label vertices of the path P, consecutively as vy, ..., v, then for
1<i< %], we have

ecp, (Vi) =n—1 (3)

and for [} +1 <7< n, we have
ecp, (vi) =i —1. (4)

By the definition of the sum of squares of eccentricity and the equations
(1)—(4), we have

7n3-9n242n 2|

)

SSE(P,) = 3 —éﬁt’—ni} (5)
o y  2tn
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and

3
Lo 2|n;
SSE(Cn)={ 4 .y (6)
{ _LTIL, 2¢n.
Moreover,
3n2—2n
) 2|n;
g(Pn) = { 3,-.312,,_1 2{11 (7)
4 k]
and

_[ = 2|n;
E(Cn) = { n(nz—ll’ 21,,"" (8)

In view of the equations (5)—(8),

3m3n+7mn? 2,2 g 2, 2
m n+7mn’+9mn®~6mn 9mui2mn’ 2|n,2,m;

12
3m3n4+7mn34+9m3n3—12m3n—18mn2+411mn 2 I 2{ .
SSE(R) = s 12 : el
3m3n47Tmn49m3n3 —6m3n—9mn?—3m2—mn43m 2{,” 2 I m:
) )

1 )
3min—9mn4Tmn249m3n24+3m3n—18mn?—3m34+2mn+6
dmn-Om ntTmn +9m n 43m n-l8mn —3m 2matbm  94p 24m

and
3 3 2,2
mnimngiZmn, 2|n,2lm;
mintmn®+2m?n2—2m?n~2mn?4+mn 2 | n 2’{m'
SSE(S) = m3n+mn3+2m2n24—2mzn-2mﬂz+mn, 2 ‘r n,2 | m;
m3ntmn®42min? ;4m’n—4_"£ﬁ‘!'_".'_l, 2{n,2tm.
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