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Abstract: In a search for triangle-free graphs with arbitrarily large chromatic
numbers, Mycielski developed a graph transformation that transforms a graph G
into a new graph u(G), which is called the Mycielskian of G. This paper shows
that: for a strongly connected digraph D with |V(D)| > 2, u(D) is super-x if
and only if (D) < 2x(D); u(D) is super-A if and only if D 2 K.
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1 Introduction

In this paper, D = (V, A) is a digraph with no loops and parallel arcs.
For a vertex v € V, we denote the indegree, the outdegree, the mini-
mum indegree and the minimum outdegree in D by dp(v),d} (v) (simply
d~(v),d*(v)), 6=(D),6*(D), respectively. The minimum degree of D is
8(D) = min {6~ (D), 6+(D)}. Moreover, we denote by N7 (v) the set of out-
neighbors of v, N (v) the set of in-neighbors of v, Ef;(v) the set of out-arcs
of v, E;(v) the set of in-arcs of v (simply N*(v), N~(v), E*(v), E~(v)).
More generally for S C V, the sets N (S) = U, s N3 (z)—S and N5 (S) =
Uzes Np(z) — S are called out-neighbors and in-neighbors of S, and D - S
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denotes the subdigraph of D induced by the vertex set of V — S. [X,Y]
denotes the set of all arcs with taal in X and head in Y and let |[X,Y]|
denote the cardinality of [X,Y]. Kn is the complete digraph of order n.

A vertex cut of a strongly connected digraph D is a set of vertices whose
removal makes D no longer strongly connected or becomes trivial. The
vertex connectivity «(D) of a strongly connected digraph D is the min-
imum cardinality of a vertex cut over all vertex cuts of D. A strongly
connected digraph D is super connected or super-x, if every minimum ver-
tex cut is either N (v) or Np(v) for some vertex v. The arc connectivity
A(D), super arc connected or super-A of a strongly connected digraph D
is similarly defined.

It is convenient to denote a digraph by D and let two distinguished
vertices z,y € D. An (z,y)-vertez-cut is a subset S of V' \ {z,y} whose
deletion destroys all directed (z,y)-paths. For notation and terminology
not defined here we refer to Bondy and Murty [2].

In a search for triangle-free graphs with arbitrarily large chromatic num-
bers, Mycielski [9] developed an interesting graph transformation the My-
cielskian p(G) of a graph G. For a graph G = (V, E), the Mycielskian of G is
the graph u(G) with the vertex set VUV’ U {u}, where V' = {2’ : z € V}
and edge set EU {zy’' : 2y € E} U {y'v : ¥ € V'}. The vertex z’ is
called the twin of the vertex z (and z the twin of z’) and the vertex
u is called the root of u(G). For n > 2, p™(G) is defined iteratively
#™(G) = p(u"~*(@)). From the definition, if G is connected then u(G)
is connected and 6(u"(G)) = §(G) + n.

We define the Mycielskian u(D) of a digraph D as follows [4]. For a
digraph D = (V, A), the Mycielskian of D is the digraph with the vertex
set VU V'U {u}, where V! = {2/ : 2 € V} and arc set AU {(z,¥') :
(z,y) € AU {(z',y) : (z,y) € A}U{(z',u) : ' € V'}U{(u,2) : ' € V'}.
The vertex z’ is called the twin of the vertex = (and z the twin of z')
and the vertex u is called the root of (D). For n > 2, u®(D) is defined
iteratively pu™(D) = pu(u™~1(D)). An obvious inference from the definition
of u(D) is that d7  (z') = dp(z) +1, “(D)(:c’) =df(z)+1forallze V.
Consequently, d(u(D)) = 6(D) + 1. If D is a strongly connected digraph,
then p(D) is strongly connected.

Chang et al. studied the circular chromatic numbers of the Mycielskian
#(G) of a graph G (3, 5 - 8], Balakrishnan and Francis Raj [1] investigated
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the vertex connectivity and edge connectivity of the Mycielskian u(G) of a
graph G. We investigated connectivity and arc connectivity of the Myciel-
skian of a digraph [4]. In this paper, we study the super connectivity and
super arc connectivity of the Mycielskian u(D) of a digraph D.

2 Super connectivity of the Mycielskian

Firstly, we need the following results.

Lemma 2.1. [4] For a strongly connected digraph D with |V(D)| > 2,
k(u(D)) = k(D) + i + 1 if and only if 6(D) = (D) + i for eachi,0<i <
k(D).

Remark. [4] If S is a minimum vertex cut of D with |S| = (D) and §’
is the twin of S in V', then SU S’ U {u} is a vertex cut of (D). Hence
k(D) + 1 < &(p(D)) < 26(D) + 1.

Lemma 2.2. For a strongly connected digraph D with |V (D)| = 2, &(u(D)) =
2k(D) + 1 if and only if (D) > 2s(D).

Proof. Let 6(D) > 2x(D). By Remark there is a vertex cut of u(D)
with the cardinality 2x(D) + 1, hence s(u(D)) < 2x(D) + 1. If s(u(D)) <
2k(D) + 1, then by Lemma 2.1, we have §(D) < 2k(D), which is not true.
Thus «(p(D)) = 2k(D) + 1.

Conversely, let x(u(D)) = 2x(D) + 1. Since 2k(D) + 1 = s(u(D)) <
§(u(D)) = 8(D) + 1, we have §(D) > 2x(D). O

As a consequence of Lemma 2.1 and Lemma 2.2, we have the following

corollary.

Corollary 2.3. If D is a strongly connected digraph D with |V(D)| 2 2,
then k(p(D)) = min{é(D) + 1,2x(D) + 1}.

Lemma 2.4. (Menger’s Theorem [2]) In any digraph D(z,y), where (z,y) ¢
A(D), the mazimum number of pairwise internally disjoint directed (z,y)-
paths is equal to the minimum number of vertices in an (z,y)-vertez-cut.

Theorem 2.5. For a strongly connected digraph D with |V(D)| > 2, p(D)
is super-s if and only if §(D) < 2x(D).
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Proof. Suppose u(D) is super-x, but §(D) > 2x(D). By Lemma 2.2,
k(u(D)) = 2.(D) + 1. Let F be a minimum vertex cut of D with |F| =
k(D). Then FUF'U {u} is a minimum vertex cut of (D), where F” is the
twin of F in V'. But F U F’ U {u} is neither the out-neighbor set nor the
in-neighbor set of a vertex of u(D), which contradicts the fact that u(D)

is super-x.

Now suppose 6(D) < 2k(D) but u(D) is not super-s. Then, by Lemma
2.1, k(u(D)) = 8(D) + 1. Hence there is a minimum vertex cut S of u(D)
with S| = k(u(D)) = 6(D)+1 < 2k(D) such that p(D)— S is not strongly
connected and S is not the out-neighbor set or in-neighbor set of a vertex
in p(D).

Case 1. |V N S| < &(D).

Then D — (V N S) is strongly connected, and each vertex of V/ — § has
at least (D) in-neighbors and «(D) out-neighbors in V" and so has at least
one in-neighbor and one out-neighbor in V' — S. Thus u(D) — S is strongly
connected, which is impossible.

Case 2. |V N S| = «(D).

Subcase 2.1 u ¢ S. Then (V' — S) U {u} induces a strongly connected
star in u(D) — S, say S*. In addition, since |S| = k(u(D)) = §(D) +1 <
2x(D), we have |V' N S| < (D).

If [V/N S| < k(D), then each vertex in V — S has at least one in-neighbor
and one out-neighbor in V/ — S (that is, in §*), and so u(D) — S is strongly
connected, a contradiction.

Hence, [V' N S| = (D), and so [V N S| = k(D). Then |S| = 2x(D) =
3(D) + 1. If k(D) > 1, then k(D) < §(D). So any vertex in V — S has at
least one in-neighbor and one out-neighbor in V/ — S, and so (D) - S is
strongly connected, a contradiction. In the other case, k(D) = §(D) = 1,
and |S| = 2. Let S = {z,¥’}, z € V, and ' € V’. Then, for any vertex
z € V — z, either 2z has at least one in-neighbor and one out-neighbor in
V' — 4 or ¥ is the only out-neighbor or the only in-neighbor of 2 in V".
For the latter, the twin y of ¥’ must be not equal to z (otherwise S is
the out-neighbor set or the in-neighbor set of a vertex, contradicting our
assumption). Without loss of generality, ¥’ is the only out-neighbor of z,
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thus df(z) = 1. y has an out-neighbor yj(# ') in V', then 2y} is a
directed path from z to S*. And z has an in-neighbor z{ in V'. If 2] # ¢/,
then there is a directed path from S* to z. If z{ = ¢, then z; = y and z
also is an in-neighbor of y. 2'yz is the directed path from S* to 2, that is

u(D) — S is strongly connected, a contradiction.

Subcase 2.2 u € S. Then |[V'NS| <2x(D)—|VNS|-1< k(D), and
every vertex z’ in V’ — S has at least one out-neighbor and one in-neighbor
in V — S (otherwise, S would be the out-neighbor set or the in-neighbor

set of 2/, a contradiction).

If D—(VNS) is strongly connected, then u(D)—S is strongly connected,
a contradiction. We assume that D — (V N S) is not strongly connected.
Let Dy, Dy, ---, Dy be all strongly connected components of D — S.

Claim For any two strongly connected components D, and D, (s # t),
there is a directed path from D, to D, in u(D) - S.

Proof of Claim. If the component D, has out-neighbor in D,, then there
exists a directed path from D, to D; in u(D) - S.

If D, has no out-neighbor in D,. For any vertex = € V(D,) and any
vertex y € V(D;), by Lemma 2.4, there are ¢ > x(D) internally vertex
disjoint directed paths, say Py, P, -+, P, from z to y in D. For any
t={1,2,---,t}, if the length of P; is even, set

Pi =xx1‘--xk---$2k_1y(k2 1).

Then there are two internally vertex disjoint directed paths from z to y in
w(D),

' / / '
Py =zzi - -zk- xh_yy, and Py = TZ125 -+ %), -+ Top_pTok—1Y.
If the length of P; is odd, set
P; = zz132 -+ T2k —1Z2kY-

Then there are two internally vertex disjoint directed paths from z to y in
(D),

/ 7 / '
Py = zxizo - - Th_ 1 Toxy, and Pig = 2,75 - - - Top_2To Y-
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Thus there are 2t > 2x(D) directed paths from z to y in u(D) which are
internally vertex disjoint each other, since any two directed paths from z
to y in D are internally vertex disjoint. Therefore there is at least one
directed path from z to y after deleting |S| < 2x(D) — 1 vertices. The
proof of Claim is completed.

By Claim, we have that any two strongly connected components of D are
in the same strongly connected component in y(D) —S. Also any vertex of
V' — S has at least one out-neighbor and one in-neighbor in V' — S. Thus
u(D) — S is strongly connected, a final contradiction. 0

Lemma 2.6. [4] If D is a strongly connected digraph with |V(D)| > 2,
then x(u™(D)) = k(D) + n if and only if §(D) = x(D).

Corollary 2.7. If G is a strongly connected digraph with |V(D)| > 2 and
8(D) = (D), then u™(D) is super-k for any integer n > 1.

Proof. Since §(D) = (D) < 2k(D), by Lemma 2.6, §(u"(D)) = 6(D) +
n < 2(6(D) +n) = 2(k(D) + n) = 2k(u"(D)) for any n > 1. By Theorem
2.5, we have u™(D) is super-« for n > 1. a

3 Super arc connectivity of the Mycielskian

Lemma 3.1. [{] For a strongly connected digraph D with |V (D)| > 2,
Au(D)) = é(D) +1.

Theorem 3.2. For a strongly connected digraph D with |V(D)| > 2, u(D)
is super-A if and only if D % f{-;

Proof. If D = I?;, then p(D) = Cg, where Cs is a cycle of order 5 and
each edge represents two opposite arcs. Obviously, u(D) is not super-)\.

Conversely, suppose u(D) is not super-A. By Lemma 3.1, A(u(D)) =
(D) +1 = 6(u(D)). There exists a minimum arc cut F of u(D) with |F| =
8(D) + 1 such that u(D) — F is not strongly connected but F # E; py(v)
and F # E} [, (v) for any v € V(u(D)).
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Claim Let D; be a strongly connected component of D —(ANF'). Then
there are a directed path from u to D; and a directed path from D; to u

in (D) - F.

Proof of Claim. Firstly, we show that there is a directed path from u to
D;in u(D)—F.

Suppose to the contrary that there is no directed path from u to D; in
u(D) - F.

Let X’ = Ny, (D;). Then |[u,X')] = |X'| > §(D), and 1 < |V(Dy)| <
|V(D)| (equation in the last inequality holds only if D — (AN F) is strongly

connected).

Case 1. D - (AN F) is strongly connected. Then |V(D;)| = |[V(D)| =
6(D) + 1 (otherwise, if |V(D)| > 6(D) + 1, then |[u,V’]| > (D) + 1 and
|V, V]| > 6(D) + 1. There are at least (D) + 2 arc disjoint directed
paths from u to D; and so has at least one directed path in u(D) — F,
a contradiction). Hence D is a complete digraph, and §(D) > 2 since
D 2 K;. Thus |[u, V']| = [V(D)| = 6(D) +1 snd |[V*, V]| > [V(D)I6(D) >
8(D) + 2. Since F # [u, V], there exists at least one directed path from u
to D; in p(D) — F, a contradiction.

Case 2. D — (ANF) is not strongly connected. Then |AN F| > 1 and
|(fe, X'TU X", V(D)) N F| < 8(D). If |([w, X1V [X", V(D)) N F| < §(D),
then there exists a directed path from u to D; in u(D)—F since | X'| > §(D),
which is not true. Thus we have |([u, X']U[X’, V(D;)])Nn F| = §(D) and so
|AN F| = 1. Furthermore, we have |X’| = §(D) (otherwise, if | X'| > §(D),
then there are at least §(D) + 1 arc disjoint directed paths from u to D; in
u(D) and so there is at least one directed path from v to D; in u(D) — F,
which is impossible).

Subcase 2.1. |V(D;)| > 2. Let z,y € V(D;) and y € N5(z). Then ¢/
is an in-neighbor of z in V’ and so Ny, (y) U{y'} C Ny.(y)U Ny, (z) C X'.
Thus we have |X'| > |Ny,(v)] + {¥'}| = 8(D) + 1, which contradicts
| X’| = 8(D).

Subcase 2.2. |V(D;)| = [{z}| =1. Then §(D) =1 since |[ANF|=1.
Moreover, we have |X’| = §(D) =1 and so |F| = 2. Thusdp(z) = |X'| =1
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(if not, dp(x) > 2, it is not difficult to find a directed path from u to D; in
u(D) — F, a contradiction). Let y be the in-neighbor of z in D. Since F #
E_ p)(z) and there is no directed path from u to D;, F = {(y,z), (v,¥')}.
Note that D 2 Kj, we have [V(D)| > 3. Thus Np__(y) # 0. If there is a
vertex z € Np_.(y) which has an in-neighbor v # y in D, then uv'zy'z is a
directed path from u to z in u(D)—F, which is impossible. We assume that
for any 2z € Np__(y), ¥ is the only in-neighbor of z in D. Thus y is both
an in-neighbor and out-neighbor of z. In this case, there exists a directed
path uz'yzy’z from u to = in u(D) — F, contradicting to our assumption.

Similarly, we can show that there is at least one directed path from D;
tou in u(D) - F.

The proof of Claim is completed.

By Claim, in p(D) — F, V(D;) U {u} are contained in the same strongly
connected component of u(D) — F. In particular, V U {u} are contained
in the same strongly connected component of u(D) — F. For any vertex in
V' — § has at least one out-neighbor and one in-neighbor in V' U {u}. Thus
u(D) — F is strongly connected, a final contradiction. o

Corollary 3.3. If D is a strongly connected digraph with |V| > 3, then
(D) is super-\ for any integer n > 1.

Proof is by induction on n.
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