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Abstract

A graph G is regular if the degree of each vertex of G is d and
almost regular or more precisely a (d,d + 1)-graph, if the degree of
each vertex of G is either d or d+ 1. If d > 2 is an integer, G a
triangle-free (d, d + 1)-graph of order n without an odd component
and n < 4d, then we show in this paper that G contains a perfect
matching. Using a new Turdn type result, we present an analogue
for triangle-free regular graphs. With respect to these results, we
construct smallest connected, regular and almost regular triangle-
free even order graphs without perfect matchings.
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In this paper, all graphs are finite and simple. The vertex set and
edge set of a graph G are denoted by V(G) and E(G), respectively. The
number n = n(G) = [V(G)| is called the order of G. The neighborhood
Ng(z) = N(z) of a vertex z is the set of vertices adjacent with z, and
the number dg(z) = d(z) = |N¢(z)| is the degree of z in the graph G. A
d-regular graph G is a graph such that dg(z) = d for every vertex z in G.
If d < dg(z) < d+ 1 for each vertex z in a graph G, then we speak of
an almost regular graph or more precisely of a (d,d + 1)-graph. If M is a
matching in a graph G with the property that every vertex is incident with
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an edge of M, then M is a perfect matching. The cligue number w(G) of a
graph G is the maximum order among the complete subgraphs of G. We
denote by K, , the complete bipartite graph with partite sets X and Y,
where |X| =r and |Y| = s. If G is a graph and A C V(G), then we denote
by G[A] the subgraph induced by A and by ¢(G — A) the number of odd
components in the subgraph G — A.

In his important classical work, Kénig [5] proved in 1916 that each d-
regular bipartite graph contains a perfect matching when d > 1. Clearly,
this is not valid for d-regular graphs in general. However, if the order of
the graph G is even and at most 3d + 2, then Wallis [10] has shown that G
contains a perfect matching as well. More precisely, Wallis [10] proved the
following.

Theorem 1 (Wallis [10] 1981) Let d > 3 be an integer, and let G
be a d-regular graph of order n without an odd component. If

(i) n <3d+2 when d > 4 is even or
(if) » £ 3d+ 5 when d > 3 is odd or
(i) » < 20 when d = 4,

then G has a perfect matching.

In the case that d is even, Zhao [11] has proved in 1991 the following
more general result.

Theorem 2 (Zhao [11] 1991) Let d > 2 be an integer, and let G be
a (d,d + 1)-graph without an odd component. If |V(G)| < 3d + 3, then G
has a perfect matching.

For supplements, extensions or generalizations of Theorems 1 and 2, see
the articles by Caccetta and Mardiyono [1], Volkmann [9] and Klinkenberg
and Volkmann (2, 3, 4].

In this paper, we will prove similar results for triangle-free graphs. The
proofs of our main theorems are based on the well-known theorem of Turan
(6] and Tutte’s famous 1-factor theorem (7] (for proofs of these theorems,
see e.g., [8] pp. 137-139 and 211-213).

Theorem 3 (Tutte [7] 1947) A nontrivial graph G has a perfect match-
ing (or a 1-factor) if and only if (G — S) < |S] for every proper subset S
of V(G).



Theorem 4 (Turédn [6] 1941) Let p > 1 be an integer. If G is a graph
of order n with clique number w(G) < p, then

2E(C)| < (”‘T”"Z.

Theorem 5 Let d > 2 be an integer, and let G be a triangle-free (d,d+1)-
graph of order n without an odd component. If n < 4d, then G contains a
perfect matching.

Proof. Suppose on the contrary that G does not contain a perfect match-
ing. Then Theorem 3 implies that there exists a non-empty set A C V(G)
such that g(G — A) > |A| + 1. Since n is even, the numbers ¢(G — A) and
|A| are of the same parity, and we deduce that

go(G-A)2|Al+2. 1)

We call an odd component of G — A large if it has at least 2d+ 1 vertices
and small otherwise. If we denote by o and 8 the number of large and small
components, respectively, then we deduce from (1) that

at+f=q(G-A)2|A+2 (2
In addition, we observe that
n > |Al+a(2d+1) + 8. (3)

First we will show that there are at least d edges of G joining each small
component of G — A with A. Let Q be a small component of G — A of
order ¢t with 1 < ¢ < 2d — 1. Since G is triangle-free, Theorem 4 implies
that 2|E(Q)| < t2/2. In addition, we deduce from the hypothesis that G
is a (d,d + 1)-graph that 2|E(Q)| = 3, ev () 9e(v) > dt and consequently
there are at least [dt —t2/2] edges of G joining Q with A. If we definet ==z
and g(z) = dz —z2/2, then, because of 1 <t < 2d— 1, we like to determine
the minimum of the function g in the interval I : 1 <z <2d-1. Itis
straightforward to verify that

: _ 1
min{g(z)} = 9(1) = g(2d - 1) =d - 5.
Thus there are at least d edges of G joining Q with A.

Using the hypothesis that G is (d,d + 1)-graph without an odd compo-

nent, we deduce that
a+dB < |Al(d+1). (4)
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Next we distinguish three cases.
Case 1: Assume that o > 2. The hypothesis n < 4d and (3) lead to the

contradiction

|A| + a(2d +1) + 8

4dd>n 2
> 22d+1)=4d+2.

Case 2: Assume that o = 1. Inequality (2) yields 8 > |A|+1, and thus

we obtain by (4)
|A] >d+1.

Applying (3) and the hypothesis n < 4d, we arrive at

4d>n 2> |Al+a(2d+1)+p8
> d+14+2d+14p3
= 3d+2+8

and so 8 < d — 2. Combining this with 8 > |A| + 1 and |A| > d + 1, we
obtain the contradiction

d+2<|A|+1<B<d-2

Case 3: Assume that a = 0. Inequality (2) yields 8 > |A| + 2, and thus
(4) leads to ,
|A] > 2d. (5)

Applying the bound 8 > |A| + 2, we obtain
B> |Al+2>2d+2 (6)
According to (3), (5) and (6), we finally arrive at the contradiction
4d2n>|Al+a(2d+ 1)+ B2 |A|+8>4d+2. |

In view of Theorem 5, the following examples are smallest connected,
triangle-free almost regular even order graphs without perfect matchings.

Example 6 Let d > 2 be an integer and, let Ky 441 be the complete bipar-
tite graph with the partite sets {z;,%2,...,Z441} and {y1,¥2,...,94}. If
we delete in the graph Ky 441 the edge z,y;, then we denote the resulting
graph by H;. In addition, let Kg 4.4, be the complete bipartite graph with
the partite sets {uj,u2,...,ug+1} and {v1,vs,...,va}. If we delete the
edge ujv;, then we denote the resulting graph by H,. Now let H be the
disjoint union of H; and H, together with the two edges u;y; and v;z;.
It is straightforward to verify that H is a connected bipartite (and thus



triangle-free) (d,d + 1)-graph of order |V (H)| = 4d + 2 without a perfect
matching. This example shows that the bound on n in Theorem 5 is sharp.

As Theorem 4 is not strong enough for the proof of our next main the-
orem (cf., Theorem 8 below), we need the following Turdn type result for
triangle-free graphs.

Theorem 7 Let d > 5 be an integer, and let G be a triangle-free graph of
order n = 2d + 1 such that A(G) =d and §(G) = d — 1. Then G contains
at least d vertices of degree d — 1.

Proof. Suppose on the contrary that G contains at most d — 1 and thus
at most d — 2 vertices of degree d — 1. Let w be a vertex of degree d, and

let z,, 3, ..., %4 be the neighbors of w. Assume, without loss of generality,
that d(z;) = d. Since G is triangle-free, the vertex z; has d — 1 further
neighbors ¥1,¥2,...,¥4—1. Let u be the remaining vertex of G. Assume,

without loss of generality, that d(z2) = d and {y1,¥2,...,¥4-2} C N(z2).

If u € N(z2), then N(u) C {z2,%3,...,7a} U{ya-1}. In the case that
Yd-1 € N(u), we obtain the contradiction d(y4-1) <3 <d—1=4(G). In
the remaining case we have N(u) = {z2,23,...,24} and so d(u) =d - 1.
This implies that there are at most (d — 2)(d — 2) edges joining the set
{z3,24,...,24} with the set {y1,92,...,%a-1}. Applying the assumption
that there are at most d — 2 vertices of degree d — 1, we arrive at the
contradiction

d-1
?®-2d+3 = 2d+(d-3)d-1)<)_ dw)
i=1
(d-2)(d-2)+2(d—-1)~1

0IA

d2-2d+1.

Thus u ¢ N(z) and N(z2) = {y1,¥2- -, va-1} U {w}.

Next assume, without loss of generality, that {y1,y2,...,¥4-3} C N(z;)
for an index 3 < i < d, say {v1,%2,...,¥d-3} C N(za).

If w € N(z3), then ya—1 € N(u) or ya—2 € N(u). If d(z3) = d, then we
obtain a contradiction as above. So assume that d(z3) =d — 1.

Assume first that y4_2,y4—1 € N(u). Then u has d—4 further neighbors
in N(w), say z4,%s,...,%4-1. If d(u) = d, then z4 € N(u), and we obtain
the contradiction d(yg—2) = d(y4-1) = 3 < d—1 = 6(G). Thus assume
that d(u) = d — 1. This implies d(ya—2), d(¥4-1) < 4, a contradiction when
d > 6. In the case d = 5, we observe that d(z3) = d(u) =d~1=4and
d(ys),d(ya) < 4, a contradiction to the assumption that there are most
d — 2 = 3 vertices of degree d — 1 = 4.
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Assume second that, without loss of generality, yq—1 € N(u) and y4—2 ¢
N(u). This yields to N(u) = {z3,24,...,%Z4} U {ya-1}, and we arrive at
the contradiction d(yq—1) = 3.

This shows that we obtain a contradition when u € N(z;) for an index
2 < i < d. Consequently, N(u) = {y1,¥2,...,ya-1} and thus d(u) =d - 1.
Since there are at most (d — 1)(d — 3) edges joining {y1,¥2,...,¥4—1} with
{z3,z4,...,Taq}, we finally arrive at the contradiction

d
d+(d-3)(d-1) <) d(z:)

=3

< (d-1)d-3)+d—-2=d?-3d+1. |

d®>—-3d+3

Theorem 8 Let d > 3 be an integer, and let G be a triangle-free d-regular
graph of order n without an odd component. If

(i) n<6d+2=20whend=3or
(if) n < 9d =36 when d =4 or
(iii) » < 6d+ 8 when d > 5,

then G has a perfect matching.

Proof. Suppose on the contrary that G does not contain a perfect match-
ing. Then Theorem 3 implies that there exists a non-empty set A C V(G)
such that

9(G — A) = |A[+2. (7)

We call an odd component of G — A large if it has at least 2d+1 vertices
and small otherwise. If we denote by a and 8 the number of large and small
components, respectively, then we deduce from (7) that

a+B=q(G-A)>|Al+2 (8)

As we have seen in the proof of Theorem 5, there are at least d edges
of G joining each small component of G — A with A. Using the hypothesis
that G is a d-regular graph without an odd component, we deduce that

o +dB < |Ald. (9)

This implies that 8 < |A|, and thus (8) yields to a > 2. Applying (9) once
more, we obtain 8 < |A| -1, and therefore (8) leads to a > 3. Since A # §,
we arrive at

n>|Al+o(2d+1)+8>1+3(2d+1) = 6d+4. (10)



In the case that d = 3, this is contradiction to our hypothesis, and (i)

is proved.

Assume that d = 4. Suppose that |A| = 1. As we have seen above, G— A
has at least three odd components of order greater or equal 2d +1 = 9.
Since G is 4-regular without an odd component, there are at least 2 edges
of G joining each such large component of G — A with A, a contradiction

tod=4.

It remains tha case that |A| > 2. If & = 3, then it follows from (8) that
B > |A| - 1. Using the fact that 8 < |A| — 1, we obtain 8 = |A| — 1. Since
there are at least d edges of G joining each small component of G — A with
A, and at least 6 edges of G joining the three large component of G — A
with A, we arrive at the contradiction

2a + 408 = 6+ 4(|]A] - 1) < 4|A|.
Thus « > 4, and we conclude that
n>|Al+a@d+1)+8>2+4(2d+1) =8d+6 = 38.

However, this is a contradiction to our hypothesis, and (ii) is proved.

Assume now that d > 5. Assume first that |A| = 1. Combining the fact
that @ > 3 with Theorem 7, we find that each large component of G — A
is of order at least 2d + 3, and therefore it follows that

n > |Al +a(2d+3)+ 8 > 1+ 3(2d + 3) = 6d + 10. (11)

Assume next that |A| > 2. If @ = 3, then it follows from (8) that
B > |A| — 1. Using the fact that 8 < |A| — 1, we obtain g = |A| - 1. If
|A] > 4, then

n>|Al+a@d+1)+B8>4+32d+1)+3=6d+10.  (12)

If |[A| = 3, then then each small component of G — A has order at least
d — 2. If U is a small component of minimum order, then we observe that

n2|Al+a(2d+ 1)+ BV(U)| >23+3(2d+1)+2(d - 2) =84+ 2. (13)

If | A] = 2, then the hypothesis that G is triangle-free implies that the small
component of G — A has order at least d, and it follows that

n>|Al+a(2d+1)+d>2+3(2d+1)+d=Td+5. (14)
If o > 4, then we conclude that

n2|Al+a2d+1)+82>22+4(2d+1) =8d+6. (15)
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Combining (11), (12), (13), (14) and (15), we deduce that
n > min{6d + 10,84 + 2,7d + 5,84 + 6} = 6d + 10.
This is a contradiction to our hypothesis, and (iii) is also proved. ||

In view of Theorem 8, the following examples are smallest connected,
triangle-free regular even order graphs without perfect matchings.

Example 9 a) Let H consists of a cycle z;z3 ... z7z; of length 7 together
with the cords zoz5, 2326 and z4z7. Furthermore, let Hy, H> and H; be
three copies of H such that dy, (u) = dp,(v) = dg,(w) = 2. Now let G be
the disjoint union of Hy, He, H3 and a further vertex z together with the
3 edges uz, vz and wz. Then G is a connected, 3-regular and triangle-free
graph of order 22 without a perfect matching, and therefore Theorem 8 (i)
is best possible.

b) Let H consists of a cycle 2123 ... 29z of length 9 together with the
cords z1Z5, T1Z7, TaZe, T2Zs, L3L7, 429, TsZg and Tezg. Furthermore, let
H,,Hy, Hy and H, be four copies of H such that

du,(v) = dy, () =dg,(v) = dy,(v')
= dyy(w) =dp,(w') = dy, () = dy,(z') = 3.

Now let G be the disjoint union of Hy, Hy, H3, H4 and two further vertices
z and 2’ together with the 8 edges uz, v'?/, vz, v'2/, wz, w'2’, rz and 'z’
The resulting graph G is connected, 4-regular and triangle-free graph of
order 38 without a perfect matching, and therefore Theorem 8 (ii) is best

possible.

c) Let d > 5 an integer, and let K441,441 be the complete bipartite
graph with the partite sets {z1,22,...,%a41} and {y1,92,...,9a41}. U M
is the perfect matching M = {y,22, 9223, ...,Ya%d+1,Ya+171}, then H' =
Kat1,d41 — M is a d-regular graph.

Case 1: Assume that d is odd. Then

M ={z T veey Td=1Yd=
{z1y1, 7292, .. ., a-1yaa }

is a matching of H'. Let H be the disjoint union of H' — M’ and a further
vertex w together with the edges wzi, wy,, w2, wys,...,wTe-1,wya-1.

Then H is a triangle-free graph such that dy(w) =d —1 and dy(z) = d
for all vertices different from w. In addition,

M = {zaya aegavas, . srpavasce )

470



is a matching of H. Let H, = H — M”, and let H, H3 be two copies
of H with dy,(u) = d -1 and dy,(v) = d — 1. Now let G be the dis-
joint union of Hy, Ha, H3 and a further vertex z together with the d edges
ZT 41, ZYdtd 2T 44n, ZYy - -, ET2AA 5 ZY2da,y 2U, 2V and zw. The result-
ing graph G is connected, d-regular, triangle-free and of order 6d + 10
without a perfect matching, and therefore Theorem 8 (iii) is best possible
when d > 5 is odd.
Case 2: Assume that d > 6 is even. Then

M' = {z1y1, 222, ..., Tagayapa }

is a matching of H’. Now let H be the disjoint union of H' — M’ and a
further vertex w together with the edges wz,, wyi, wze, wys, ..., wz §rwyg.
Then H is a triangle-free graph such that dH(a:g-;g) = dy(y%_z) =d-1
and dy(z) = d for all other vertices of H. In addition,

M = {gavagsaugstsge. . Sagpatags |

is a matching of H for d > 8. Define M” = @ when d = 6. Let
H; = H - M", and let Hy, H3 be two copies of H such that dy,(u;) =
dy,(u2) = d — 1 and dy,(v1) = dp,(v2) = d — 1. Now let G be the dis-
joint union of Hy, Hy, H3 and a further vertex z together with the d edges
ZTdpa, ZYdz, 2T dpa, 2Ydgs,s . - 2T 2400, ZY2doa, ZUL, 2U2, ZU) and zvg. The
resulting graph G is connected, d-regular, triangle-free and of order 6d + 10
without a perfect matching. Therefore G shows that Theorem 8 (iii) is best
possible when d > 6 is even.
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