Smallest regular and almost regular triangle-free graphs without perfect matchings

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

A graph G is regular if the degree of each vertex of G is d and almost regular or more precisely a (d,d+1)-graph, if the degree of each vertex of G is either d or d+1. If $d\geq 2$ is an integer, G a triangle-free (d,d+1)-graph of order n without an odd component and $n\leq 4d$, then we show in this paper that G contains a perfect matching. Using a new Turán type result, we present an analogue for triangle-free regular graphs. With respect to these results, we construct smallest connected, regular and almost regular triangle-free even order graphs without perfect matchings.

Keywords: Perfect matching, Regular graph, Almost regular graph, Triangle-free graph, Turán type result.

In this paper, all graphs are finite and simple. The vertex set and edge set of a graph G are denoted by V(G) and E(G), respectively. The number n = n(G) = |V(G)| is called the *order* of G. The *neighborhood* $N_G(x) = N(x)$ of a vertex x is the set of vertices adjacent with x, and the number $d_G(x) = d(x) = |N_G(x)|$ is the degree of x in the graph G. A d-regular graph G is a graph such that $d_G(x) = d$ for every vertex x in G. If $d \leq d_G(x) \leq d+1$ for each vertex x in a graph G, then we speak of an almost regular graph or more precisely of a (d, d+1)-graph. If M is a matching in a graph G with the property that every vertex is incident with

an edge of M, then M is a perfect matching. The clique number $\omega(G)$ of a graph G is the maximum order among the complete subgraphs of G. We denote by $K_{r,s}$ the complete bipartite graph with partite sets X and Y, where |X| = r and |Y| = s. If G is a graph and $A \subseteq V(G)$, then we denote by G[A] the subgraph induced by A and by q(G - A) the number of odd components in the subgraph G - A.

In his important classical work, König [5] proved in 1916 that each d-regular bipartite graph contains a perfect matching when $d \geq 1$. Clearly, this is not valid for d-regular graphs in general. However, if the order of the graph G is even and at most 3d+2, then Wallis [10] has shown that G contains a perfect matching as well. More precisely, Wallis [10] proved the following.

Theorem 1 (Wallis [10] 1981) Let $d \geq 3$ be an integer, and let G be a d-regular graph of order n without an odd component. If

- (i) $n \leq 3d + 2$ when $d \geq 4$ is even or
- (ii) $n \le 3d + 5$ when $d \ge 3$ is odd or
- (iii) $n \leq 20$ when d = 4,

then G has a perfect matching.

In the case that d is even, Zhao [11] has proved in 1991 the following more general result.

Theorem 2 (Zhao [11] 1991) Let $d \ge 2$ be an integer, and let G be a (d, d+1)-graph without an odd component. If $|V(G)| \le 3d+3$, then G has a perfect matching.

For supplements, extensions or generalizations of Theorems 1 and 2, see the articles by Caccetta and Mardiyono [1], Volkmann [9] and Klinkenberg and Volkmann [2, 3, 4].

In this paper, we will prove similar results for triangle-free graphs. The proofs of our main theorems are based on the well-known theorem of Turán [6] and Tutte's famous 1-factor theorem [7] (for proofs of these theorems, see e.g., [8] pp. 137-139 and 211-213).

Theorem 3 (Tutte [7] 1947) A nontrivial graph G has a perfect matching (or a 1-factor) if and only if $q(G-S) \leq |S|$ for every proper subset S of V(G).

Theorem 4 (Turán [6] 1941) Let $p \ge 1$ be an integer. If G is a graph of order n with clique number $\omega(G) \le p$, then

$$2|E(G)| \le \frac{(p-1)n^2}{p}.$$

Theorem 5 Let $d \ge 2$ be an integer, and let G be a triangle-free (d, d+1)-graph of order n without an odd component. If $n \le 4d$, then G contains a perfect matching.

Proof. Suppose on the contrary that G does not contain a perfect matching. Then Theorem 3 implies that there exists a non-empty set $A \subset V(G)$ such that $q(G-A) \geq |A|+1$. Since n is even, the numbers q(G-A) and |A| are of the same parity, and we deduce that

$$q(G-A) \ge |A| + 2. \tag{1}$$

We call an odd component of G-A large if it has at least 2d+1 vertices and small otherwise. If we denote by α and β the number of large and small components, respectively, then we deduce from (1) that

$$\alpha + \beta = q(G - A) \ge |A| + 2. \tag{2}$$

In addition, we observe that

$$n \ge |A| + \alpha(2d+1) + \beta. \tag{3}$$

First we will show that there are at least d edges of G joining each small component of G-A with A. Let Q be a small component of G-A of order t with $1 \le t \le 2d-1$. Since G is triangle-free, Theorem 4 implies that $2|E(Q)| \le t^2/2$. In addition, we deduce from the hypothesis that G is a (d,d+1)-graph that $2|E(Q)| = \sum_{v \in V(Q)} d_Q(v) \ge dt$ and consequently there are at least $\lceil dt-t^2/2 \rceil$ edges of G joining Q with A. If we define t=x and $g(x)=dx-x^2/2$, then, because of $1 \le t \le 2d-1$, we like to determine the minimum of the function g in the interval $I:1\le x\le 2d-1$. It is straightforward to verify that

$$\min_{x \in I} \{g(x)\} = g(1) = g(2d - 1) = d - \frac{1}{2}.$$

Thus there are at least d edges of G joining Q with A.

Using the hypothesis that G is (d, d+1)-graph without an odd component, we deduce that

$$\alpha + d\beta \le |A|(d+1). \tag{4}$$

Next we distinguish three cases.

Case 1: Assume that $\alpha \geq 2$. The hypothesis $n \leq 4d$ and (3) lead to the contradiction

$$4d \ge n \ge |A| + \alpha(2d+1) + \beta$$

 $\ge 2(2d+1) = 4d+2.$

Case 2: Assume that $\alpha = 1$. Inequality (2) yields $\beta \ge |A| + 1$, and thus we obtain by (4)

$$|A| \ge d + 1$$
.

Applying (3) and the hypothesis $n \leq 4d$, we arrive at

$$4d \ge n \ge |A| + \alpha(2d+1) + \beta$$
$$\ge d+1+2d+1+\beta$$
$$= 3d+2+\beta$$

and so $\beta \leq d-2$. Combining this with $\beta \geq |A|+1$ and $|A| \geq d+1$, we obtain the contradiction

$$d+2 < |A|+1 < \beta < d-2$$
.

Case 3: Assume that $\alpha = 0$. Inequality (2) yields $\beta \ge |A| + 2$, and thus (4) leads to

$$|A| \ge 2d. \tag{5}$$

Applying the bound $\beta \ge |A| + 2$, we obtain

$$\beta \ge |A| + 2 \ge 2d + 2. \tag{6}$$

According to (3), (5) and (6), we finally arrive at the contradiction

$$4d \ge n \ge |A| + \alpha(2d+1) + \beta \ge |A| + \beta \ge 4d + 2.$$

In view of Theorem 5, the following examples are smallest connected, triangle-free almost regular even order graphs without perfect matchings.

Example 6 Let $d \geq 2$ be an integer and, let $K_{d,d+1}$ be the complete bipartite graph with the partite sets $\{x_1, x_2, \ldots, x_{d+1}\}$ and $\{y_1, y_2, \ldots, y_d\}$. If we delete in the graph $K_{d,d+1}$ the edge x_1y_1 , then we denote the resulting graph by H_1 . In addition, let $K_{d,d+1}$ be the complete bipartite graph with the partite sets $\{u_1, u_2, \ldots, u_{d+1}\}$ and $\{v_1, v_2, \ldots, v_d\}$. If we delete the edge u_1v_1 , then we denote the resulting graph by H_2 . Now let H be the disjoint union of H_1 and H_2 together with the two edges u_1y_1 and v_1x_1 . It is straightforward to verify that H is a connected bipartite (and thus

triangle-free) (d, d+1)-graph of order |V(H)| = 4d+2 without a perfect matching. This example shows that the bound on n in Theorem 5 is sharp.

As Theorem 4 is not strong enough for the proof of our next main theorem (cf., Theorem 8 below), we need the following Turán type result for triangle-free graphs.

Theorem 7 Let $d \ge 5$ be an integer, and let G be a triangle-free graph of order n = 2d + 1 such that $\Delta(G) = d$ and $\delta(G) = d - 1$. Then G contains at least d vertices of degree d - 1.

Proof. Suppose on the contrary that G contains at most d-1 and thus at most d-2 vertices of degree d-1. Let w be a vertex of degree d, and let x_1, x_2, \ldots, x_d be the neighbors of w. Assume, without loss of generality, that $d(x_1) = d$. Since G is triangle-free, the vertex x_1 has d-1 further neighbors $y_1, y_2, \ldots, y_{d-1}$. Let u be the remaining vertex of G. Assume, without loss of generality, that $d(x_2) = d$ and $\{y_1, y_2, \ldots, y_{d-2}\} \subset N(x_2)$.

If $u \in N(x_2)$, then $N(u) \subseteq \{x_2, x_3, \ldots, x_d\} \cup \{y_{d-1}\}$. In the case that $y_{d-1} \in N(u)$, we obtain the contradiction $d(y_{d-1}) \le 3 < d-1 = \delta(G)$. In the remaining case we have $N(u) = \{x_2, x_3, \ldots, x_d\}$ and so d(u) = d-1. This implies that there are at most (d-2)(d-2) edges joining the set $\{x_3, x_4, \ldots, x_d\}$ with the set $\{y_1, y_2, \ldots, y_{d-1}\}$. Applying the assumption that there are at most d-2 vertices of degree d-1, we arrive at the contradiction

$$d^{2}-2d+3 = 2d+(d-3)(d-1) \leq \sum_{i=1}^{d-1} d(y_{i})$$

$$\leq (d-2)(d-2)+2(d-1)-1$$

$$= d^{2}-2d+1.$$

Thus $u \notin N(x_2)$ and $N(x_2) = \{y_1, y_2, \dots, y_{d-1}\} \cup \{w\}.$

Next assume, without loss of generality, that $\{y_1, y_2, \ldots, y_{d-3}\} \subset N(x_i)$ for an index $3 \le i \le d$, say $\{y_1, y_2, \ldots, y_{d-3}\} \subset N(x_3)$.

If $u \in N(x_3)$, then $y_{d-1} \in N(u)$ or $y_{d-2} \in N(u)$. If $d(x_3) = d$, then we obtain a contradiction as above. So assume that $d(x_3) = d - 1$.

Assume first that $y_{d-2}, y_{d-1} \in N(u)$. Then u has d-4 further neighbors in N(w), say $x_4, x_5, \ldots, x_{d-1}$. If d(u) = d, then $x_d \in N(u)$, and we obtain the contradiction $d(y_{d-2}) = d(y_{d-1}) = 3 < d-1 = \delta(G)$. Thus assume that d(u) = d-1. This implies $d(y_{d-2}), d(y_{d-1}) \le 4$, a contradiction when $d \ge 6$. In the case d = 5, we observe that $d(x_3) = d(u) = d-1 = 4$ and $d(y_3), d(y_4) \le 4$, a contradiction to the assumption that there are most d-2=3 vertices of degree d-1=4.

Assume second that, without loss of generality, $y_{d-1} \in N(u)$ and $y_{d-2} \notin N(u)$. This yields to $N(u) = \{x_3, x_4, \ldots, x_d\} \cup \{y_{d-1}\}$, and we arrive at the contradiction $d(y_{d-1}) = 3$.

This shows that we obtain a contradition when $u \in N(x_i)$ for an index $2 \le i \le d$. Consequently, $N(u) = \{y_1, y_2, \dots, y_{d-1}\}$ and thus d(u) = d - 1. Since there are at most (d-1)(d-3) edges joining $\{y_1, y_2, \dots, y_{d-1}\}$ with $\{x_3, x_4, \dots, x_d\}$, we finally arrive at the contradiction

$$d^{2} - 3d + 3 = d + (d - 3)(d - 1) \le \sum_{i=3}^{d} d(x_{i})$$

$$\le (d - 1)(d - 3) + d - 2 = d^{2} - 3d + 1. \parallel$$

Theorem 8 Let $d \geq 3$ be an integer, and let G be a triangle-free d-regular graph of order n without an odd component. If

- (i) $n \le 6d + 2 = 20$ when d = 3 or
- (ii) $n \leq 9d = 36$ when d = 4 or
- (iii) $n \le 6d + 8$ when $d \ge 5$,

then G has a perfect matching.

Proof. Suppose on the contrary that G does not contain a perfect matching. Then Theorem 3 implies that there exists a non-empty set $A \subset V(G)$ such that

$$q(G-A) \ge |A| + 2. \tag{7}$$

We call an odd component of G-A large if it has at least 2d+1 vertices and small otherwise. If we denote by α and β the number of large and small components, respectively, then we deduce from (7) that

$$\alpha + \beta = q(G - A) \ge |A| + 2. \tag{8}$$

As we have seen in the proof of Theorem 5, there are at least d edges of G joining each small component of G - A with A. Using the hypothesis that G is a d-regular graph without an odd component, we deduce that

$$\alpha + d\beta \le |A|d. \tag{9}$$

This implies that $\beta \leq |A|$, and thus (8) yields to $\alpha \geq 2$. Applying (9) once more, we obtain $\beta \leq |A|-1$, and therefore (8) leads to $\alpha \geq 3$. Since $A \neq \emptyset$, we arrive at

$$n \ge |A| + \alpha(2d+1) + \beta \ge 1 + 3(2d+1) = 6d + 4. \tag{10}$$

In the case that d = 3, this is contradiction to our hypothesis, and (i) is proved.

Assume that d = 4. Suppose that |A| = 1. As we have seen above, G - A has at least three odd components of order greater or equal 2d + 1 = 9. Since G is 4-regular without an odd component, there are at least 2 edges of G joining each such large component of G - A with A, a contradiction to d = 4.

It remains tha case that $|A| \ge 2$. If $\alpha = 3$, then it follows from (8) that $\beta \ge |A| - 1$. Using the fact that $\beta \le |A| - 1$, we obtain $\beta = |A| - 1$. Since there are at least d edges of G joining each small component of G - A with A, and at least 6 edges of G joining the three large component of G - A with A, we arrive at the contradiction

$$2\alpha + 4\beta = 6 + 4(|A| - 1) \le 4|A|.$$

Thus $\alpha \geq 4$, and we conclude that

$$n \ge |A| + \alpha(2d+1) + \beta \ge 2 + 4(2d+1) = 8d + 6 = 38.$$

However, this is a contradiction to our hypothesis, and (ii) is proved.

Assume now that $d \ge 5$. Assume first that |A| = 1. Combining the fact that $\alpha \ge 3$ with Theorem 7, we find that each large component of G - A is of order at least 2d + 3, and therefore it follows that

$$n \ge |A| + \alpha(2d+3) + \beta \ge 1 + 3(2d+3) = 6d + 10. \tag{11}$$

Assume next that $|A| \ge 2$. If $\alpha = 3$, then it follows from (8) that $\beta \ge |A| - 1$. Using the fact that $\beta \le |A| - 1$, we obtain $\beta = |A| - 1$. If $|A| \ge 4$, then

$$n \ge |A| + \alpha(2d+1) + \beta \ge 4 + 3(2d+1) + 3 = 6d + 10. \tag{12}$$

If |A| = 3, then then each small component of G - A has order at least d - 2. If U is a small component of minimum order, then we observe that

$$n \ge |A| + \alpha(2d+1) + \beta|V(U)| \ge 3 + 3(2d+1) + 2(d-2) = 8d+2.$$
 (13)

If |A| = 2, then the hypothesis that G is triangle-free implies that the small component of G - A has order at least d, and it follows that

$$n \ge |A| + \alpha(2d+1) + d \ge 2 + 3(2d+1) + d = 7d + 5. \tag{14}$$

If $\alpha \geq 4$, then we conclude that

$$n \ge |A| + \alpha(2d+1) + \beta \ge 2 + 4(2d+1) = 8d + 6. \tag{15}$$

Combining (11), (12), (13), (14) and (15), we deduce that

$$n \ge \min\{6d + 10, 8d + 2, 7d + 5, 8d + 6\} = 6d + 10.$$

This is a contradiction to our hypothesis, and (iii) is also proved.

In view of Theorem 8, the following examples are smallest connected, triangle-free regular even order graphs without perfect matchings.

Example 9 a) Let H consists of a cycle $x_1x_2...x_7x_1$ of length 7 together with the cords x_2x_5 , x_3x_6 and x_4x_7 . Furthermore, let H_1 , H_2 and H_3 be three copies of H such that $d_{H_1}(u) = d_{H_2}(v) = d_{H_3}(w) = 2$. Now let G be the disjoint union of H_1 , H_2 , H_3 and a further vertex z together with the 3 edges uz, vz and wz. Then G is a connected, 3-regular and triangle-free graph of order 22 without a perfect matching, and therefore Theorem 8 (i) is best possible.

b) Let H consists of a cycle $x_1x_2...x_9x_1$ of length 9 together with the cords x_1x_5 , x_1x_7 , x_2x_6 , x_2x_8 , x_3x_7 , x_4x_9 , x_5x_8 and x_6x_9 . Furthermore, let H_1, H_2, H_3 and H_4 be four copies of H such that

$$d_{H_1}(u) = d_{H_1}(u') = d_{H_2}(v) = d_{H_2}(v')$$

= $d_{H_3}(w) = d_{H_2}(w') = d_{H_4}(x) = d_{H_4}(x') = 3.$

Now let G be the disjoint union of H_1, H_2, H_3, H_4 and two further vertices z and z' together with the 8 edges uz, u'z', vz, v'z', wz, w'z', xz and x'z'. The resulting graph G is connected, 4-regular and triangle-free graph of order 38 without a perfect matching, and therefore Theorem 8 (ii) is best possible.

c) Let $d \geq 5$ an integer, and let $K_{d+1,d+1}$ be the complete bipartite graph with the partite sets $\{x_1, x_2, \ldots, x_{d+1}\}$ and $\{y_1, y_2, \ldots, y_{d+1}\}$. If M is the perfect matching $M = \{y_1x_2, y_2x_3, \ldots, y_dx_{d+1}, y_{d+1}x_1\}$, then $H' = K_{d+1,d+1} - M$ is a d-regular graph.

Case 1: Assume that d is odd. Then

$$M' = \{x_1y_1, x_2y_2, \dots, x_{\frac{d-1}{2}}y_{\frac{d-1}{2}}\}$$

is a matching of H'. Let H be the disjoint union of H'-M' and a further vertex w together with the edges $wx_1, wy_1, wx_2, wy_2, \ldots, wx_{\frac{d-1}{2}}, wy_{\frac{d-1}{2}}$. Then H is a triangle-free graph such that $d_H(w) = d - 1$ and $d_H(x) = d$ for all vertices different from w. In addition,

$$M'' = \left\{ x_{\frac{d+1}{2}} y_{\frac{d+1}{2}}, x_{\frac{d+3}{2}} y_{\frac{d+3}{2}}, \dots, x_{\frac{2d-4}{2}} y_{\frac{2d-4}{2}} \right\}$$

is a matching of H. Let $H_1=H-M''$, and let H_2,H_3 be two copies of H with $d_{H_2}(u)=d-1$ and $d_{H_3}(v)=d-1$. Now let G be the disjoint union of H_1,H_2,H_3 and a further vertex z together with the d edges $zx_{\frac{d+1}{2}},zy_{\frac{d+1}{2}},zx_{\frac{d+3}{2}},zy_{\frac{d+3}{2}},\ldots,zx_{\frac{2d-4}{2}},zy_{\frac{2d-4}{2}},zu,zv$ and zw. The resulting graph G is connected, d-regular, triangle-free and of order 6d+10 without a perfect matching, and therefore Theorem 8 (iii) is best possible when $d \geq 5$ is odd.

Case 2: Assume that $d \ge 6$ is even. Then

$$M' = \{x_1y_1, x_2y_2, \dots, x_{\frac{d+2}{2}}y_{\frac{d+2}{2}}\}$$

is a matching of H'. Now let H be the disjoint union of H'-M' and a further vertex w together with the edges $wx_1, wy_1, wx_2, wy_2, \ldots, wx_{\frac{d}{2}}, wy_{\frac{d}{2}}$. Then H is a triangle-free graph such that $d_H(x_{\frac{d+2}{2}}) = d_H(y_{\frac{d+2}{2}}) = d-1$ and $d_H(x) = d$ for all other vertices of H. In addition,

$$M'' = \left\{ x_{\frac{d+4}{2}} y_{\frac{d+4}{2}}, x_{\frac{d+6}{2}} y_{\frac{d+6}{2}}, \dots, x_{\frac{2d-4}{2}} y_{\frac{2d-4}{2}} \right\}$$

is a matching of H for $d \geq 8$. Define $M'' = \emptyset$ when d = 6. Let $H_1 = H - M''$, and let H_2, H_3 be two copies of H such that $d_{H_2}(u_1) = d_{H_2}(u_2) = d-1$ and $d_{H_3}(v_1) = d_{H_3}(v_2) = d-1$. Now let G be the disjoint union of H_1, H_2, H_3 and a further vertex z together with the d edges $zx_{\frac{d+2}{2}}, zy_{\frac{d+2}{2}}, zx_{\frac{d+4}{2}}, zy_{\frac{d+4}{2}}, \ldots, zx_{\frac{2d-4}{2}}, zy_{\frac{2d-4}{2}}, zu_1, zu_2, zv_1$ and zv_2 . The resulting graph G is connected, d-regular, triangle-free and of order 6d+10 without a perfect matching. Therefore G shows that Theorem 8 (iii) is best possible when $d \geq 6$ is even.

References

- [1] L. Caccetta and S. Mardiyono, On the existence of almost-regular-graphs without one-factors, Australas. J. Combin. 9 (1994), 243-260.
- [2] S. Klinkenberg and L. Volkmann, On the order of almost regular graphs without a matching of given size, Australas. J. Combin. 34 (2006), 187-194.
- [3] S. Klinkenberg and L. Volkmann, On the order of certain close to regular graphs without a matching of given size, *Czecheslovak Math. J.* 57 (2007), 907-918.
- [4] S. Klinkenberg and L. Volkmann, On the order of close to regular graphs without a matching of given size, Ars Combin, 85 (2007), 99-106.

- [5] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, *Math. Ann.* 77 (1916), 453-465.
- [6] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
- [7] W.T. Tutte, The factorizations of linear graphs, J. London Math. Soc. 22 (1947), 459-474.
- [8] L. Volkmann, Foundations of Graph Theory, Springer-Verlag, Wien New York (1996) (in German).
- [9] L. Volkmann, On the size of odd order graphs with no almost perfect matching, Australas. J. Combin. 29 (2004), 119-126.
- [10] W.D. Wallis, The smallest regular graphs without one-factors, Ars Combin. 11 (1981), 295-300.
- [11] C. Zhao, The disjoint 1-factors of (d, d+1)-graphs, J. Combin. Math. Combin. Comput. 9 (1991), 195-198.