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Abstract. In this paper, we first survey the connections between Bell poly-
nomials (numbers) and the derangement polynomials (numbers). Their
close relations are mainly based on Hsu’ summation formula. According to
this formula, we present some new identities involving harmonic numbers,
Bell polynomials (numbers) and the derangement polynomials (numbers).
Moreover, we find that the series zmzo(‘%‘f‘ — 1) is (absolutely) conver-
gent and their sums are also determined, where D, is the mth derangement
number.
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1. INTRODUCTION

It is well known [11] that the unsigned Stirling number of the first kind
(—=1)™9s(m, j) counts the number of permutations on [m] = {1,2,...,m}
with exactly j cycles, and the Stirling number of the second kind S(m, j)
enumerates the number of set partitions on [m] with exactly j blocks. They
also obey the following relations

(11) @)m =Y _ s(m, 5)7,
3=0

(1.2) z™ =Y §(m,5)(=);,
j=0

where (2)m = z(z —1)-+-(x —m + 1) for m > 1 with (z)o = 1 is the
Pochhammer symbol.
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The Bell polynomials {B,(x)}m>0 are defined by
(1.3) Bm(z) =) _ S(m,j)z’.
=0

It is clear that B,,(1) is the m-th Bell number, denoted by B,,, counting
the total number of partitions of [m] (with By = 1). The Bell polynomials
B,.(z) satisfy the recurrence

(14 Bran(a) = xz (7)o
The derangement polynomials {D,,(z)}m>o0 are defined by

(15) Dm(z) =Y (’;‘) iz — 1)™3,

3=0

Clearly, D, (1) = m! and D,,(0) is the m-th derangement number, denoted
by Dy, counting the number of fixed-point-free permutations on [m] (with
= 1). The derangement polynomials D,,(z), also called z-factorials
of m, have been considerably investigated by Eriksen, Freij and Wastlund
(5], Sun and Zhuang {13]. The derangement polynomials also satisfy the
recursive relation
n

(16) Data+3) = Y () Delalv™ .

k=0

It seems that the Bell numbers (polynomials) and the derangement num-
bers (polynomials) have no direct connections. In fact, there exists many
implications between them. As early as 1933, Broggi [1] presented a nice
identity

d n
(17) ( ) §*Da_; = n!B,.

Using the explicit formula for Stirling number of the second kind

S(n,j) = ,Z 1)""( )

Riordan (8, P193] generalized the Broggi identity to the polynomial case

n

(1.8) n!Bp(z) = Z ( )] 29Dp_;(1 — z).

j=0
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In 1993, by the Inclusion-Exclusion principle, Clarke and Sved [2] proved
that for any integers n > m > 0, there holds

(1.9) i(J) i™D; —n'Z( 1)( ) n™=iB;,

j=0 i=0

which is a generalized version of Tao’s identity [15]. In 1990, Rousseau [10]
also obtained an equivalent form of (1.9) by a somewhat different algebraic
route.

In 2005, Vinh [16] provided another general identity for any integers n >
m >0,

(1.10) 3 C‘) §™Dp_; =By,

j=0
and deduced a common generalization of (1.9) and (1.10),

(1.11) E (:) gm(5)Dn—j = n! Z a;B;,

J=0 1=0

where gm(z) = Yiv, @iz’ is a polynomial of degree m.

It should be noticed that (1.10) has abundant and nontrivial applications.
The Broggi identity, as observed by Riordan (8], is a truncated version of
the famous Dobinski formula for Bell numbers [4, 9]. Actually, multiplying
both sides by 2; in (1.10) and then taking n — oo, we have

IS

mlr-d

where we use the well-known result

(1.12) lim 27 = %

n—oo n'

The second example indicates that the Broggi-Vinh identity implies the
dual form of Sun-Zagier’s congruence [14]. Precisely, according to (” =

(—1)? (mod p), and Wilson’s congruence (p — 1)! = —1 (mod p), after
shifting j = n — j, the case n = p — 1 in (1.10) for a prime p (> m)
generates

p—1 ]
(113)  (-1)™*'Bp =) (-1Y(F+1)™D; (mod p).

=0
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Note that another new equivalent form of Sun-Zagier’s congruence can also
be obtained by setting n = p — 1 in (1.9),

.
(114) (=1)™*Bmy1 =3 (-1)’/™D;  (mod p).

In 1993, Hsu [6] proposed the following summation rule. Let F(n,k) be
a bivariate function defined for integers n,k > 0. If there can be found a
summation formula forn > 7 >0

2 [k .
(1.15) > ( .)F(n, k) = ¢(n, 5),
k=j J
then for m > 0 one has the summation formula
(1.16) D F(n,k)k™ =" S(m, 5)5!é(n, 5).
k=0 j=0

Hsu [6] also gave an extension of the above summation rule, and presented
many special summation identities. Hsu and Shiue (7] gave applications of
the extended rule to generalized Eulerian polynomials and remarked that
this simple summation rule stated can still be used to find various special
sums. Note that (1.7)-(1.10) are brought into this general framework.

In this paper, we will give further applications of Hsu’s summation rule.

2. IDENTITIES INVOLVING BELL AND DERANGEMENT NUMBERS OR
POLYNOMIALS

Lemma 2.1. For any integers n > m > 0, there holds
n

@ St enSsmat,

k=0
or equivalently
z n z) = nl m, n—J+l(x)
(23) 3 (:) K™ D_i(z) = n! Z S(m, j)D_n(;_f(__‘%_)i!H.

k=0 §=0

Proof. Let F(n,k) = (7)z"~* in (1.15). By the identity
n\(k\ _ (n\(n—-J
k/\i) \4/\n-k)’
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we have ¢(n, j) = (;‘)(1 + z)"~J. Then (1.16) in this case produces (2.1).
Define a linear (invertible) transformation
Ly(z*) = Bi(z), (k=0,1,2,...).
Then by (1.4) we have
zLa((z +1)") = xkg_jo (5)me=23 (7)86@ = Buato)
Hence (2.2) follows by acting xL; on the two sides of (2.1).
Similarly, define another linear transformation
Ly(z*) = De(z), (k=0,1,2,...).
Then by (1.6) in the case y = 1 we have

n

Ly((z+1)™) = i: (:) Lay(zF) = Z (:)Dk(:c) = Dn(z +1).

k=0 k=0
Hence (2.3) follows by acting Ly on the two sides of (2.2). (=]

Clearly, the case z = 0 in (2.3) reduces to the Vihn identity (1.10).

Lemma 2.2. For any integers m > j > 0, let gn(z) = Yinpaic be a
polynomial of degree m. Then there holds

(2.4) S aisi) = D 1/7*(1) om(b)
i=j " k=0

Proof. Shifting m by ¢, multiplying by a; on the two sides of (2.1), and
then summing for i from 0 to m, after exchanging the summation, one can

derive
= _ z+1)"7 .
Z( )gm(k):c" n'z ( o= )), zaiS(‘l,]),
k=0 §=0 I\ =
which, by comparing the coefficient of %, yields (2.4). O

Next we consider the two special cases when gm(z) = (£ — 1}m or gn(z) =
Eé(a’)m-kl-
Corollary 2.3. For any integers m > j > 0, there hold

(2.5) i s(m + 1, + 1)8(,5) = (-1)™7 ’;"
i=0 ’
(2.6) i s(m+1,i+1)By(z) = (~1)™Dpn(1 — 2).
i=0
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Proof. For gm(z) = (x — 1)m, by (1.1), one has a; = s(m + 1,i + 1). Note
that g, (k) = 0 when 1 < k < m and g (0) = (—=1)™m!. Then (2.5) follows
from (2.4) by setting a; = s(m + 1,7 + 1).

Multiplying by z7 the two sides of (2.5), and then summing for j from 0
to m, after exchanging the order of summation, by (1.3) and (1.5), (2.6) is
followed. o

Note that (2.5) and (2.6) have been established recently by Sun, Wu and
Zhuang [12]. They also utilized (2.6) to generalize Sun-Zagier’s congruence
to polynomial cases.

Corollary 2.4. For any integers m > j > 0, there hold

(2.7) Z(i +1)s(m +1,i +1)S(, ) = (_l)m_j%nn%z_lﬂ,

l=0

(2.8) Z(z+1)s(m+1 i+1)z' = (m+1)! Z( lm—am %H-l(:c)

i=0

(2.9) Z(z+1)s(m+l i+ 1)By(z) = Z( 1)"“-’(m;-1)(m - ),

i=0

Z(i +1)s(m +1,i 4+ 1)B;_, (2)

i=1

(2.10) =(-nmyC (m: 1) (m - )'D;_1(1 - ).

=1

Proof. For gm(z) = £ (z)m+1, by (1.1), one has a; = (i +1)s(m +1,i +1).
Note that gm(k) = (—1)™*k!(m — k)! for 0 < k < m. Then

i(i +1)s(m +1,i+1)S(, 5)

i=0
13 ~17* () (-)m ki - B

k=0
—i o (m — F)!
=(=U"")_ v
,; (G = k)

= (=1)™"(m - j)! i (2 : ;‘)

k=0

= omtm-in ("),
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which proves (2.7), where we use the binomial summation
Zj: a+k\ f(a+j+1
e\ n "\ n+l1 )
Multiplying by (z); (resp. z7) the two side of (2.7), and then summing for

j from 0 to m, after exchanging the order of summation, by (1.2) (resp.
(1.3)), (2.8) (resp. (2.9)) follows.

Removing first the constant term in (2.8), and multiplying by %, then acting
by L; on the two sides, by (2.7), and using

j=-1

Li((z—-1);-1) =L (Zs(j, i+ l)xi)

i=0

J
=3 i+ DBi(e) = (-1 'D;a(1 - 2),
i=0
we can get (2.10), another simple connection between B, (z) and Dy (z).O
Theorem 2.5. For any integers n > m > 0, there holds
L\ (k—-1\ .k s n .
. —k = §(=1)m n-j,
(2.11) kzgo(")( - )a: ,;( ) (j)(x+1)

or equivalently

(212) k§=% (5) (521 Paste) = 17 () Docsta+ ),

=0
(213) :c;) () (571)ustor = g;o(—nm-f (7)ncsnata)

Proof. Setting gm(z) = (*7!) = £=3)= in Lemma 2.2, by (2.5), we have
(2.11). Then (2.12) and (2.13) can been obtained by acting L and zL; on
the two sides of (2.11) respectively. m)

Corollary 2.6. For any integers n > m > 0, there hold

1) 3 (:) ("m )D,._k_( 1)™n -(’;’z : 13;)

k=m+1

X (Dm 1y 1

(215) > (w-2)=2
[o ]
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Proof. Setting x = 0in (2.12), by Dpn_x(0) = Dy and Dp_i(1) = (n—k)!,
using (1.5) in the case x = 0, after routine simplification, we get (2.14).

Divided by n! on the two sides of (2.14), and let n — oo, by (1.12), we have
y D, 1 D, D
m_-m m{=m _=n
(-1) ( - ;) = lim (-1) ( )

n—oo m‘ n'
1 (k- —
k=m+1 :

1
_em!é(k+m+1)k!

1 1 %0 mtk
=em'/Z k! dz

k=0

(2.17) / —e’”’ldz

Summing (2.17) for m from 0 to oo yields
m z—1

m=0
=/ 214y = e _e_1
0 2 lo 2 2¢

which proves (2.16).

Similarly, divided by (—1)™ on the two sides of (2.17) and then summing
for m from 0 to oo, after routine computation, (2.15) follows. ]

Remark 2.7. It should be noticed that (2.15) states the sum of the errors
Dy _ 1 for m > 0 converges to -i- and that (2.16) states the sum of the

m!
absolute errors (—-1)"‘( %"!‘ - %) for m > 0 still converges.

3. IDENTITIES INVOLVING HARMONIC NUMBERS AND DERANGEMENT
POLYNOMIALS

Theorem 3.1. For any integers n > m > 0, there holds

61 3 (Z)(m’i 1)(Hk—Hk_m_1):c""‘

k—m+1

= Z( 1)'"-’( )-m{ (z+1)"7 - (z,,::—.:)},
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or equivalently

(3.2) i (Z) (m+ 1) (Hi — Hi—m—1)Da—x(z)

k-'m+l

=0 (§) e ot e 0 - T),

where H, =1 + -;- 4o 71; is the k-th harmonic number with Hy = 0.

Proof. Setting gm(z) = 4 (.3, = zm—.}.m%(x)mﬂ = (1) Zico z—i—,
in Lemma 2.2, using gm(k) = (=1)™ *k{(m —k)! for 0 < k¥ < m and
gm(k) = (m+l (Hx = Hg—gn—1) for m+1 < k < n, by (2.7), after routine
simplification, we have (3.1). Then (3.2) follows by acting L, on the two
sides of (3.1). o

Corollary 3.2. For any integers n,m > 0, there hold

(z+1P* I8 fm+1) 27!
(3.3) m+1 . 3 1
Jz_:o i+l ;:: j+1/)5+1
m+1 _1
(34) m+1 Z( D ( ) (G+1)%
m 1)3(m+1
3.5 Hppmyr — Hy = J+l
( ) +m+1 — z (n+3+1) n+])

) ;3 Huemn -t H"—Z( -{(55) -2

Hiymir — He _ gl Pivr 1
(3‘7) e lg k! = Hm+1 + Jgo( 1) J: {(J + 1)' e }'

Proof. Setting n = m + 1 in (3.1), its left side collapses to Hp,41 and its
right side reduces, after replacing 7 by m — j, to that of (3.3). So (3.3)
follows.

Setting = —1 in (3.3), after simplification, (3.4) follows. Setting z = 0
in (3.1), then replacing n by n + m + 1 and j by m — j, after routine
computation, we get (3.5). Note that the case n = 0 in (3.5) can also lead
to (3.4).
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Divided by n! on both sides of (3.2), and replacing £ by m + k + 1 and j
by m — j, we have

n-m-—1

Higmsr — He Dpcoie LI
> ’I::T(rr.:-ll- 1! ; = m—kkl—(-zl))! - .Z("l)

1 Dp_m4j(x)
(m =G +1) (n- m+: {D"'”‘*’(x“) B ';‘;::‘ )

Noting D,,—;(0) = Dy—; and Dy_;(1) = (n — 7)!, the case £ = 0 in (3.8)
produces

k=0

(3.8)

n—-m-—1

Z Hk+m+] - Hk Dn—m—k—l
= k! (n—m—k—1)
m+41 Du—m+' 1
=Y (-1)%5 ( ) L
JZ_; { (n—m+j)! jfll }

which, when n — oo, by (1.12), generates (3.6).
Replacing by —z in (3.3), and acting L2 on the two sides, then taking
value at z = 1, we can obtain '

Z( 1)75 |(m+1) m+1+Z 1).7.7_:1:;

7=0 j=0
which, together with (3.6), produces (3.7). o
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