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Abstract

A signed total k-dominating function of a graph G = (V, E) is
a function f: V — {+1, —1} such that for every vertex v, the sum
of the values of f over the open neighborhood of v is at least k. A
signed total k-dominating function f is minimal if there does not exist
a signed total k-dominating function g, f # g, for which g(v) < f(v)
for every v € V. The weight of a signed total k-dominating function
is w(f) = Zvev(c) f(v). The signed total k-domination number
of G, denoted by 7¢;(G), is the minimum weight of a signed total
k-dominating function on G. The upper signed total k-domination
number I'{ .(G) of G is the maximum weight of a minimal signed
total k-dominating function on G. In this paper we present sharp
lower bounds on ¢ (G) for general graphs and K,+:-free graphs
and characterize the extremal graphs attaining some lower bounds.
Also, we give a sharp upper bound on I'; ;. (G) for an arbitrary graph.
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1 Introduction

Let G = (V, E) be a finite simple graph with vertex set V and edge set E.
Terminology not defined here will generally conform to that in [1]. For a
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vertex v € V, the open neighborhood of v is Ng(v) = {u € V| uv € E} and
the closed nezghborhood of v is Ng[v] = {v} U Ng(v). The degree of v in
G, denoted by dg(v), is the cardinality of Ng(v), and the minimum degree
and mazimum degree of G is denoted by 6(G) and A(G), respectively. If
each vertex in G has an odd degree, then we call G an odd-degree graph.
If no ambiguity, we will omit the subscript G. For § C V, we let ds(v)
denote the number of vertices in S that are adjacent to v. If d(v) = k for
all v € V, then we call G a k-regular graph. If d(v) = k— 1 or & for all
v € V, then we call G a nearly k-regular graph. The subgraph of G induced
by S is denoted by G[S]. If X,Y C V(G),X NY = 0, we write e(X,Y)
for the number of edges between X and Y. A graph G = (V, E) is called
r-partite if V admits a partition into r classes such that every edge has
its ends in different classes: vertices in the same partition class must not
be adjacent. An r-partite graph in which every two vertices from different
partition classes are adjacent is called complete. A cliqgue in G is a complete
subgraph of G. More precisely, an r-clique is a clique of order r, denoted -
by K,. A graph is K,-free if it contains no r-clique as its subgraph.

Let f : V — {+1,—-1} be a function which assigns to each vertex of
G an element of the set {+1,—1}. The weight of f is w(f) = X v f(v),
and for S C V we define f(S) = > cg5 f(v), so w(f) = f(V). For a
vertex v € V, we denote f(N(v)) by f[v] for notational convenience. The
function f is said to be a signed total dominating function (STDF) of G
if fl[v] > 1 for every v € V. The signed total domination number of G,
denoted by ¥{(G), is the minimum weight of a STDF on G. We say f
is a minimal STDF if there does not exist a STDF g : V' — {+1,-1},
f # g, for which g(v) < f(v) for every vertex v € V. The upper signed
total domination number of G, denoted by I'f(G), is the maximum weight
of a minimal STDF of G. The study of signed total domination was begun
by Zelinka [9], and continued by Henning [2], Kang et al. [3], Shan et al.
[5], Shi et al. [6], Xing et al. [8]. A set D of vertices of G is defined in
[4] to be a total k-dominating set of G if [N(v) N D| > k for all v € V.
The total k-domination number vf(G) of G is the minimum cardinality of
a total k-dominating set of G.

In this paper, we generalize the concepts of signed total domination
and total k-domination to signed total k-domination. If G is a graph with
8(G) > k, where k € N, the function f is called signed total k-dominating
function (STkDF) of G if f[v] > k for every v € V. The signed total
k-domination number 7{,(G) of G is the minimum weight of a STkDF
on G. Wesay fisa minimal STkDF if there does not exist a STkDF
g:V — {+1,-1}, f # g, for which g(v) < f(v) for every vertex v € V.
The upper signed total k-domination number of G, denoted by I';,(G),
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is the maximum weight of a minimal STkDF of G. It is obvious that
721(G) = % (G) and I'} 1 (G) = I'§(G). Throughout this paper, we always
assume that a graph G has minimum degree §(G) > kand k € N. A
(minimal) STkDF of welght ¢ k(G) (respectively, I' . (G)) we call a v; . (G)-
function (respectively, (G) function).

This paper is organized as follows. In Section 2, we establish several
sharp lower bounds on { ,(G) of a general graph G and a K, 1-free graph
G. In particular, we characterize the extremal graphs attaining some lower
bounds. In Section 3, we present a sharp upper bound on I'{ ,(G) of an
arbitrary graph G. These results improve or imply most of previous results
on the signed total domination.

2 Signed k-Total Domination Number

For an arbitrary graph G, |V (G)] clearly is a trivial upper bound on signed
total k-domination number. In this section we firstly characterize the
graphs attaining this bound.

Theorem 1 If G is a graph of order n, then «; ,(G) = n if and only if
there erists a vertez u € N(v) such that d(u) € {k,k + 1} for every vertez
v € V(G).

Proof. Suppose that v,(G) = n and there exists a vertex v € V(G)
such that d(u) > k + 2 for every vertex u € N(v). Consider the function
f :V = {41,-1} for which f(v) = —1 and for any other vertex w,
f(w) = +1. It is easy to verify that f is a signed total k-dominating
function of G with the weight f(V(G)) = n—2. Therefore, v ,(G) < n-2,
a contradiction.

On the other hand, suppose that there exists a vertex © € N(v) such that
d(u) € {k,k + 1} for every vertex v € V(G). A signed total k-dominating
function must assign +1 to every vertex of G, and so 7{ .(G) = n. |

By Theorem 1, we have the following result when k = 1.

Corollary 2 IfG is a graph of order n, then "y, (G) = n if and only if there
erists a vertez u € N(v) such that d(u) € {1,2} for every vertez v € V(G).

The next result due to Henning [2] is a special case of Corollary 2.
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Corollary 3 ([2]) If T is a tree of order n > 2, then v/ (G) = n if and only
if every vertez of T is a support vertez or is adjacent to a vertex of degree
2.

Next we establish a lower bound on 7 (G) for a general graph G in
terms of its order, and we characterize the extremal graphs achieving this
bound. For this purpose, we define a family C of graphs as follows.

Let n1,7n5 and k be integers satisfying the following conditions:
(i)k=>21andn; 2 k+1;
(ii) n1(ny — k — 1) = kna.

Let G; = K,,, be a complete graph on n; vertices and G; an empty graph
(that is, E(G2) = @) of order ny. Let G(ni,n2) be the graph obtained
from disjoint union of G; and G; by adding n;(n; — k — 1)(= kn2) edges
between V(G1) and V(G2) so that each vertex of G; has exactly ny —k—1
neighbors in G2 while each vertex of G, has precisely k neighbors in G;.
Let C = {G(ny,n2) | n1 2 k+1,n1(n1 — k — 1) = kna}.

Theorem 4 If G is a graph of order n with 8 > k, then
1ex(G) 21+ V1+4kn—n
with equality if and only if G € C.
Proof. Let f be a v;;(G)-function and let P = {v € V| f(v) = +1} and

M = {v € V| f(v) = =1}. Further, we let |P| = p and |M| = m. For every
vertex v € M, we have |[N(v) N P| > k as f[v] > k. Hence

e(P,M)= ) IN()NP|2 km = k(n - p) (1
veM

For each vertex v € P, f[v] 2 k implies that |[N(v) N M| < |[N(v)Nn P| -
and so

M)=3 |N@w)NM| <Y (IN@®)NP|-k)=2|E(G[P))| - kp. (2)

vepP vEP
Note that |E(G[P])| < (8), it follows from the inequalities (1) and (2) that
k(n —p) < e(P, M) < 2|E(G[P])| - kp < p(p — 1) — kp, 3)

or equivalently, p> —p— kn > 0. Thus p > (1 +v1+4kn) /2 as p > 0.
Therefore, v; 1 (G) =2p—n > 1+ V1+4kn —n.



If 4/ 4(G) = 1+ V1 + dkn — n, then all equalities hold in (1), (2) and
(3). We denote G; = G(P] and G2 = G[M]. The equality in (1) implies
that each vertex of G, has precisely k neighbors in G, and so G is an
empty graph of order m. The equalities in (2) and (3) imply that Gy is a
complete graph of order p > k + 1, each vertex of G; has exactly p—k—1
neighbors in G, and p(p — k — 1) = km. Hence G € C.

Conversely, suppose that G € C. Then there exist integers n;,n2 and k
satisfying conditions (i) and (ii) such that G = G{n;,ng). Since ny(n; —k—
1) = kng, G hasorder n = ny+ny = ny(n1—1)/k. Let f : V(G) — {+1,-1}
be a function on G assigning +1 to all vertices of G; and —1 to all vertices
of G;. It is easily seen that f is a signed total k-domination function of G
with weight w(f) = n; — ng = 2n; — n = 14+ V1 4 4kn — n. Consequently,
Yex(G) =1+ V1 + 4kn — n. It completes the proof. |

Let £ =1 in Theorem 4, we obtain a special case of Theorem 4.

Corollary 5 ([2]) If G is a graph of order n, then
1%(G)z21+Vi+dn—-n

with equality if and only if G € F.

Our next aim is to present a sharp lower bound on 7;,(G) of a Kr41-
free graph G in terms of its order and its minimum degree. The unique
complete r-partite graphs on n > r vertices whose partition sets differ in
size by at most 1 are called Turdn graphs; we denote them by T7(n) and
their number of edges by t.(n). Clearly, T"(n) = K, for all n < r. The
following Turan theorem from extremal graph theory is well-known and
useful for our purpose.

Lemma 6 ([7]) (Turdn theorem) For any integer r > 1, if G = (V,E) is
a K,41-free graph of order n with mazimum number of edges, then G is a
T"(n) and

IB] = to(n) < T 2n?

with equality if and only if r divides n.

By applying Turan theorem, we shall present a sharp lower bound on
the signed total k-domination number for K, ;-free graphs where r > 2.
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Theorem 7 If G is a K4 1-free graph of order n with § > k and ¢ =
[(6 + k)/2], then

r—1

1ek(G) 2 — (-(c— k) + \ﬂc—k? +4": lc'n.) -n
and this bound is sharp.

Proof. Let f, P, M,p and m be defined as in the proof of Theorem 4. For
each vertex v € M, v is adjacent to at least [(d(v) + k)/2] vertices of P
since f[v] > k, hence |[N(v)NP| = [(d(v) + k)/2] = [(6 +k)/2] = c. So we
have

e(P,M)=Y_ |N(v)NP| > c|M|=c(n - p). (4)
veM

According to the inequalities (2) and (4), we obtain
c(n —p) < e(P, M) < 2|E(G[P])| - kp. ()

Since G is K 41-free, it follows from Lemma 6 that |E(G[P])| < (r -
1)p%/2r. By the inequality (5), we have

cln~p) < e(P,M) < Top — ko, ©)
or equivalently,
r—1 2
—P +(c—k)p—cn20.
Thus )
e 12 r—1 r—1
pZ( (c k)+\/(c B2 +4— cn)/Z( : )
Consequently,

¥ e(G)=2p-n> }{'T (—(c—k)+ \/(c—k)2 +4’”: lcn) —n.
That the bound is sharp may be seen as follows. For integersr > 2, let G; be
a complete bipartite graph with vertex classes X; and Y;, where | X;| = &
and |Y;| = (r — 2)k, for ¢ = 1,2,...,r. (If r = 2, then the graph Kjo
is considered as K, i.e., the complement of complete graph Kx.) Now let
G(r) be the graph obtained from disjoint union of Gy, Gs, ..., Gy by joining
each vertex of X; with all vertices of U;=1’j¢i Xjforalli=1,2,...,7. Let
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Vi = X;UY;41 where i+ 1(mod 7). Then G(r) is an r-partite graph of order
n = rk(r — 1) with vertex classes V;, V3, ..., V;. So G(r) is K,4+1-free. Note
that G(r) has minimum degree k and so ¢ = [(§ + k)/2] = k. Assigning
to each vertex of |J]_; Xi the value +1 and to each vertex of | JI., ¥; the
value —1, we produce a signed total k-dominating function g of G(r) with
weight

w(g) = rk—r(r—2)k
= 3rk-r%k

= = (—(c—k)+\/(c—k)2+4r:lcn) —n.

Consequently,

Y (G(r)) = — (—(c—k)+\/(c—k)2+4r:lcn)—n.

r—1

This completes the proof. ]

Now we give a sharp lower bound on 7;,(G) of a graph G in terms of
its order, minimum degree and size.

Theorem 8 If G is a graph of order n and size q with § > k, then

, +k 2
Yx(€) 2 —=n -

and this bound is sharp.
Proof. Let f,P, M,p, and m defined as in the proof of Theorem 4. By the
inequality(5) in the proof of Theorem 7, we obtain

BG(P)| > 2B 4 R ™

Furthermore, we have

2AB(GIM]) =D IN@W)NM| =} (d(v) - IN(v) N P|) > §|M| — e(P, M),

veM veM
that is,
BGIM))| 2 21m| - LB 2y B ®



Since ¢ > (& + k)/2, combining with the inequalities (4), (7) and (8), we
obtain

g = |E(G[P))|+ |E(G[M])| + e(P, M)
PM
2 9(7‘—2p—)+2+ =(n-p)— at )+(PM)
cfn—p) kp 6 C(n -p)
> — + — 2 +2(n p) + 2
s Wrk o
2
Thus,
26+kn_g
P25 5
Consequently,
i S+k 2
Yp(@) =2 -n2 =n-.

To prove the lower bound is sharp, we consider a family J of graphs
defined as follows. Let G(1) = K41 and for integers I > 2, let G; be
a complete bipartite graph with vertex classes X; and Y; where |X;| = k&
and |Y;] = (I - 1)k -1, for ¢ = 1,2,...,1 ( the graph K, ¢ is regarded
as Ky when k = 1 and | = 2). Further, let X = (J}_, Xi. Now let
G(l) be the graph obtained from disjoint union of G1, Gz, ..., G; by adding
lk(lk —1)/2 edges joining vertices of X such that G[X] is a complete graph.
Let 7 ={G(l) | { = 1}. Suppose G € J. If G = G(1), by Theorem 1, then
Y2 x(G) =k+1=(§+k)n/d—2g/5. So we assume that G = G(!) for some
[ > 2. Then G has order n = [(lk—1) and size ¢ = lk(lk—k—1)+lk(lk—1)/2.
Note that G has the minimum degree k. Let g be a function on G by
assigning to each vertex of X = [J._, Xi the value +1 and to all other
vertices the value —1. It is easy to see that g is a signed total k-dominating

function of G with weight
o+k 2q

n——.

w(g) =kl —I(kl =k =1) =~k + 2kl + 1= ——n— =

Therefore,

For a graph G of order n and size ¢, Henning (2] presented a lower bound
¥8(G) 2 2(n — g). As a special case k = 1 of Theorem 8, we improve this

previous bound.



Corollary 9 If G is a graph of order n and size g with & > 1, then v}(G) >
-‘%‘ln - %‘1 and this bound is sharp.

3 Upper Signed k-Total Domination Number

In this section we restrict our attention to the upper signed total k-domination
of graphs. Next we shall present a sharp upper bound on I'{ ;. of an arbi-
trary graph in terms of its minimum degree, maximum degree and order.
We begin by stating a lemma due to Henning [2].

Lemma 10 ([2]) If k¥ and n are integers with k < n and n is even, then
we can construct a k-regular graph on n vertices.

Lemma 11 A signed total k-dominating function of a graph G = (V, E)
8 minimal if and only if for every vertex v € V with f(v) = 1, there exists
a vertez u € N(v) with flu] < k + 1, where if d(u) and k are odd, then

flu] =k.

The proof of Lemma 11 is straightforward and therefore omitted.

~ Theorem 12 If G is a graph of order n with minimum degree § and maz-
imum degree A, then

AG+k+2)—(6—k)

A(5+k+2)+(5_k)n for § — k even,
tx(G) £ MGk 1) (G hm 1)

A(5+k+1)+(5_k_1)n for 8 — k odd.

In particular, if G is an odd-degree graph and k is odd, then

. A +k) = (—k)
Nk S 2R+ 6-R)

n.
Furthermore, these bounds are sharp.

Proof. Let f be a I'; , (G)-function of G, and let P, M,p, m be defined as
in the Section 2. If § = k or k + 1, then the results are trivial. Hence in
what follows we assume § > k + 2. For natational convenience, we write
(6 —k)/2] = 51, [(6 + k)/2] = 52, |(A —k)/2] = t1 and [(A +k)/2] = t2.
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Obviously, f[v] = d(v)—2dum(v) for any vertex v € V. Then, by Lemma
11, M # 0. Let |P| = p and |M| = m. Thus, w(f) = |P| - |[M|=n-2m.

For any vertex v € V, dy(v) < [(d(v) — k)/2] since f[v] > k. Hence we
can partition P into t; + 1 sets by defining P; = {v € P | dm(v) = i} and
letting |P;| = p; for i =0,1,...,t;. Then we have

1
n=m+p=m+2p.~. 9)
i=0

For any vertex v € V, dp(v) > [(d(v) + k)/2] for otherwise f[v] < k. We
define
M; ={ve M|dp(v)=j} for j =s2,82+1,.

and M' = M — U_,zM Let [M;| = m;, and so |[M'| = m — EJ_”
Clearly, (M,,,...,M,, M') is a partition of M. Since each vertex in M i is
adjacent to at most A vertices of P, we have

ty
S ipi = e(B,M) £ (s3my + -+ + tamag) + A(m = (mgy + -+ + 1))
i=1

- Hence,

t1
> ipi S Am— (A = s2)ma + -+ (B to)m,). (10)

i=1

If Py =0, then, by (9) and (10), we have

n—m+§:p1$m+22p;_ (A+1)m

i=1 i=1

This implies that m > n/(A+1), andso I'; ,(G) = n—2m < (A-1)n/(A+
1). Let

L ([AG+k+D) (k) (AG+k+1)—(@F—k—1)
b_mm{<A(6+k+2)+(5—k))n’(A(5+k+1)+(6—k—1))n}'

Observing that
(A-1n/(A+1) <min {b, (A + k) — (6 — k))n/(A(0 + k) + (0 — k))},
then the desired result follows. We therefore may assume that Py # 0.

According to our partition for P and M, we have flv] > k + 2 for

any v € (U3 B)U M, soif fly) = kork+1forv €V, thenv €



(U,_‘sl P)u( UJ___,,2 M;). For any vertex v € Py, since f is minimal, by
Lemma 11, there exists a vertex u € N(v) such that f[u] € {k,k+ 1}. Let
I= {ueN(Po)|f[u] kork+1}. ThenICUl__slP, So

po= IRl < e(Po ) =e(Po, J (BN D) S e(Po, J P). (1)

Furthermore, for every vertex u € P; NI (s; < ¢ < t;), there must exist
a nelghbor v’ of u such that f [ul = k or k + 1. Note that u’ belongs to
(U:=s, P) U(Ut2 M;). If ' € J;L,, P, then u is adjacent to at most i+k
vertices of Pp, whlle ifu' € U 2 &3 Mj, then u is adjacent to at most i+k+1
vertices of Py. Hence we can write P;nI (s; £ i< ty) as the disjoint union
of two sets IP] and IP/’, where I[P/ = {u € PN |dp(u) =i+ k+ 1}
and IP! = P, nI- IP}. Then IP” ={ue PNI|dp(u) <1 +Ic} Let
|IP!| = p}, and so |IP”| = |P N I| — p}. Since each vertex u € U,_sl IP!is

adjacent to a vertex in M;, it follows that

J“‘sz
t1
Z P: < soms, + (s2 + l)m(sz+l) + -+ tomy,. (12)
i=s

Thus, by Egs. (11) and (12), we have

t1 t
po < Y G+k+1)pi+ ) (i+k)(IBNI|-p)

i=sy i=gy
ty

S Gtk D+ G+ ) — )

=83 i=8y

t1 t2
< Y G+kpi+ Y im;. (13)

i=s; j=s2

IA

N

We now distinguish two possibilities depending on the parity of § — k.

Case 1. § — k is even.

Then s; = (6—k)/2. Noting that when ¢ > (6—k)/2, (6+k+2)i/(6—-k) >
i+ k + 1 holds, then by Egs. (9), (10) and (13), we obtain

(Z(2 +k)pi + E im;) +Zp.

1=8 3—52

3
IA

s1—1

= m+Zz+k+1p,+ Zp,+ ng,

i=8; j=s2
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81—1

< 5+k+22zp;+2p;+21m:

i=8) j=s2
S+k+2 &
< +— S —k Zt+z.7m]
Jj=s2
S+k+2 S+k+2 . 3,
< Tk mA — Tk - (A—])mj+23mj
J=s2 J=82
_ 6+k+2 z(6+k+2)A 2j(6+1)
j=sa

Further, observing that

(6+k+2)A-25(6+ 1) (6+k+2)A-2t(6+1)
d—-k s—k
we have n < m + ((6 + k + 2)A/(é — k))m, which implies that m > (6 —
kn/(A(6 + k + 2) + (6 — k)). Hence,

(A(6+k+2) (6 — k))
AG+k+2)+ (@ —k)

20,

Tik(G) =w(f) =n—2m

That the bound is sharp may be seen as follows. For any integers | > k
and 7 > [+ k, let F}, be the graph with vertex set X UY UZ with | X| =,
|Y| = 2r and |Z| = 2r(l + k), where X is an independent set of vertices.
The edge set of F}, is constructed as follows: Add 2r! edges between X
and Y so that G[X U Y] forms a complete bipartite graph with partition
sets X and Y. Add 2r(l + k) edges between Y and Z so that each vertex
of Y is precisely adjacent to ! + k vertices of Z and each vertex of Z is
precisely adjacent to one vertex of Y. Add edges joining vertices of ¥ so
that Y induces a 1-regular graph. Add edges joining vertices of Z so that
Z induces a (2! + k — 1)-regular graph (since 2l +k — 1 < 2r({ + k) = |Z|
and |Z] is even, it follows from Lemma 10 that such an addition of edges
is possible).

By construction, F} . is a graph of order n = I + 2r 4 2r(l + k) with
minimum degree § = 2/ + k and maximum degree A = 2r. The function ¢
that assigns to each vertex of X the value —1 and to each vertex of Y U Z
the value +1 is a minimal signed total k-dominating function of F;, as
glu)=k+1 for any u € Y. It is easy to see that

A(6+k+2)—(5—k))
AG+k+2)+(6—k)

w(g)=2r+2r(l+k)—l=(



Consequently, I'f . (Fi,r) = (A(0+k+2) - (6 - k))n/(A(6+k+2) + (6 —k)).
Case 2. § — k is odd.

Then s; = (6 — k — 1)/2. Noting that wheni> (6 —k—-1)/2, (6 +k +
1)i/(6 —k—1) > i+ k+ 1 holds, then by Eqgs. (9), (10) and (13) again, we
have

n < m+ (Z(z+k)p‘+ Zym1)+}:p,

i=8; j=s3
81—1
= m+Z(z+k+1p;+sz+Zﬂn,
i=s j=s2
6+k+1 iy
< Zzpﬁz:pﬁZng
1—01 J=s2
6+k+1
S 6 k_lzzpt'*'zjmj
i=1 j=s2
S+k+1 6+k+1
< m+6—k—1 Z(A 3)m,+ZJm,
1—82 j=s2
6+k+1 (+k+1)A—256
= Mt TE—1mAT Z; S—k—1 9

Further, observing that

(O+k+1A—-26  (6+k+1A-2t0
s-k—1 =  o6-k-1 ="

we have n < m + ((§ + k + 1)A/(6 — k — 1))m, which implies that m >
(6-k—-1n/(A(G+k+1)+ (6 — k—1)). Hence,

(Aw+k+n-m k-n)
AG+k+1)+(0-k-1))™

tx(G) =w(f) =n—2m

That the bound is sharp may be seen as follows. For any integers [ > k,
r 2 1+ k and q, where 2l + k£ £ ¢ £ 2r — 1, let G}, be the graph with
vertex set X UY U Z with |X| = {, |[Y| = 2r and |Z| = 2r(l + k), where
X is an independent set of vertices. The edge set of G;,, is constructed as
follows: Add 27! edges between X and Y so that G{XUY'] forms a complete
bipartite graph with partition sets X and Y. Add 2r(l + k) edges between
Y and Z so that each vertex of Y is precisely adjacent to [ + k vertices of
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Z and each vertex of Z is precisely adjacent to one vertex of Y. Add edges
joining vertices of Y so that Y induces a 1-regular graph. Add edges joining
vertices of Z so that Z induces a g-regular graph (since ¢ < 2r(l + k) = |Z|
and |Z| is even, it follows from Lemma 10 that such an addition of edges
is possible).

By construction, Gy is a graph of order n = | + 2r + 2r(l 4 k) with
minimum degree § = 2l +k + 1 and maximum degree A = 2r. The function
g that assigns to each vertex of X the value —1 and to each vertex of
Y U Z the value +1 is a minimal signed total dominating function of Fj,
as g[u] =k +1 for any u € Y. It is easy to see that

AG+k+1)—(6—k—1)
A(6+k+1)+(6—k—1))

Consequently, I'; . (Fl,r) = (A(0 +k+1) = (6 —k = 1))n/(A(6+ k+ 1) +
(6—k-1)).

In particular, if G is an odd-degree graph, then for any vertex v € V,
flv] = d(v) — 2dp(v) is odd. Further, if k is odd, then for every vertex
u € P,NI (s; <1< ty), there exist v’ € N(u) such that fu'] = k by
Lemma 11. If v’ € UI__ﬂ P;, then u is adjacent to at most i +k — 1 vertices
of Py, while if v’ € U s M;, then u is adjacent to at most ¢ + k vertices
of Py. Hence we can write P, NI (sy < i < t;) as the disjoint union of
two sets TP/ and IP/', where IP; = {u € P,N1I | dp(u) = i + k} and
IP! = PR ﬂI 1P!. Let |IP!| = pl, and so |IP{'| = |P;nI| - p}. Therefore,
by (11) and (12), we can obtain

w(g)=2r+2r(l+k)—l=(

ty t
po < D (i+kpi+ D (i+k-1)(PNI-p)

i=s i=s)

t ta
< S GHk-Dpi+ Y jm;. (14)
i=3; j=s2

Since (6 + k)i/(6 — k)i > i+ k when 7 > (6 — k)/2, it follows from (9), (10)
and (14) that

n<m+(Z(z+k—l)p.+Z]m,)-i-Zp,_( g+:A)

i=8y j=s2 =1

Consequently,

A6+ k) — (6 — k)
14(G) =n - 2m <(A(6+k)+(6 k))
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That the bound is sharp may be seen as follows. For any integers | > k,
r 21+ (k—1)/2 and an even integer ¢, where 2l + k— 1 < ¢ < 2, let H
be the graph with vertex set XUY UZ with | X| = 2i2, |Y| = 2/(2r+1) and
|Z] = 2l(2r +1)(! + k — 1), where X is an independent set of vertices. The
edge set of H;, is constructed as follows: Add 2/2(2r + 1) edges between
X and Y so that each vertex in X has degree 2r + 1 while each vertex in
Y has degree I. Add 2{(2r + 1)(I + k — 1) edges between Y and Z so that
each vertex of Y is precisely adjacent to ! + k — 1 vertices of Z and each
vertex of Z is precisely adjacent to one vertex of Y. Add {(2r + 1) edges
joining vertices of Y so that Y induces a 1-regular graph. Add edges joining
vertices of Z so that Z induces a g-regular graph (since ¢ < 2r < |Z| and
|Z| is even, it follows from Lemma 10 that such an addition of edges is
possible).

By construction, H; . is an odd-graph of order n = 2{2 + 2{(2r + 1) +
2l(2r +1)(1 + k — 1) with minimum degree § = 2/ + k and maximum degree
A = 2r + 1. The function g that assigns to each vertex of X the value
~1 and to each vertex of Y U Z the value +1 is a minimal signed total
dominating function of H;, as glu] = k for any u € Y. It is easy to see
that

A(6+k)—(6—k))n-

w(g) =2A2r+ 1)+ 2AQ@r+1)(1+k-1)-2%= (A(H PEED)

Consequently, I'; . (Hi,») = (A(6 + k) — (6 — k))n/(A(6 + k) + (6 — k)). W

As immediate consequences of Theorem 12 when & = 1, we have the
following results due to Henning [2] and Kang and Shan [3], respectively.

Corollary 13 ([2]) If G = (V, E) is an r-regular graph with r > 1 of order
n, then

2
(JT;%——_I) n  for r odd,

3G <
<r2+r+2

m) n  forr even.

Furthermore, these bounds are sharp.

Corollary 14 ([3]) If G = (V,E) is a nearly (r + 1)-regular graph with
r > 1 of order n, then

51



(1‘2+3r+4

m) n fO’I"T Odd,

I{G) <
((r +1)2+3

i +4) )n for r even.

Furthermore, these bounds are sharp.
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