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Abstract

We present two recursive enumeration formulas for the number of la-
belled essential graphs. The enumeration parameters of the first formula are
the number of vertices, chain components, and cliques, while the enumera-
tion parameters of the second formula are the number of vertices and cliques.
Both formulas may be used to count the number of labelled essential graphs
with given number of vertices.

1 Introduction

Directed acyclic graphs (DAGs or ADGs) are used to represent conditional inde-
pendencies among random variables, e.g. in the field of Bayesian networks. There
occurs the problem that different DAGs can represent the same conditional inde-
pendence relations [5], i.e., they are Markov equivalent. This article deals with
counting essential graphs, which can be identified with the equivalence classes of
this equivalence relation.

For the definitions in this section we mainly follow Andersson[1], Harary{3],
and Robinson[6). A digraph G is a pair (V, E'), where V' = V(G) is a finite set,
and E = E(G) isasubsetof (V x V) \ {(a,a) |a € V}. Let G = (V,E) bea
digraph. We write an arrow a — b € G if (a,b) € E and (b,a) ¢ E and a line
a—be Gif (a,b) € E and (b,a) € E. If G contains no line then it is called
directed. An immorality of G is a triple (a,b,c) where the induced subgraph
Glabc) IS @ — b «— c. We define the skeleton G* of a digraph G = (V, E)
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to be G* := (V, E¥), where E* = {(a,b) | (a,b) € E or (b,a) € E}. We
note that E* contains only lines. A pathof lengthn > 1 fromatobin G isa

sequence (ag,ay,...,a,) suchthatap,ay,...,a, € V,a0 = a,a, = b, a; # a;
for0 < i < j £ n,and (ai—1,a;) € Efori =1,...,n. Acyclein G isa
sequence (ag, a1, - - ., an) such that ag,ay,...,an € V, ap = an, a; # a; for

1<i<j<n and (a;-1,a;) € Efori = 1,...,n. A directed graph that
contains no cycle is called a directed acyclic graph (DAG). Two DAGs D; and
D, are graphically equivalent, and we write Dy ~ D, if they have the same
skeleton and the same immoralities. We notice that ~ is an equivalence relation
and that it is known by Verma and Pearl[9] that two DAGs are Markov equivalent
if and only if they are graphically equivalent. The essential graph D * associated
with a DAG D is the digraph

D*=u(D'| D’ ~ D),

i.e., the union over all DAGs that are graphically equivalent to D. A digraph is
called an essential graph if it is the essential graph of some DAG.

G is called an undirected graph if (u,v) € E implies (v,u) € E for all
u,v € V. An undirected graph G is connected if for every pair of vertices a, b in
G there is a path from a to b in G. A connectivity component of G is a maximal
connected subgraph of G. We say a digraph G is weakly connected if its skeleton
is connected and strongly connected if there is a path from every vertex to every
other vertex. The weak or strong components of G are the maximal weakly or
strongly connected subgraphs of G. G is a chain graph if its strong components
are undirected connected graphs. The strong components of a chain graph G are
called chain components. We say an undirected graph is chordal if every cycle of
length n > 4 possesses a chord, i.e., two vertices connected by an edge, that is not
part of the cycle. An arrow a — b € G is strongly protected in G if a — b occurs
in at least one of the four configurations in Figure 1 as an induced subgraph, where
¢ # ca. We cite the following characterisation of essential graphs, which was

Cl\
(a): a—»b (b): a—>»b (c): a—>Db (d): a/—Pb
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Figure 1: Strongly protected arrows.

given by Andersson et al.[1, Theorem 4.1], slightly reformulated.

Theorem 1 (Andersson et al.[l, Theorem 4.1]) A digraph G = (V, E) is equal
to D* for some DAG D, i.e., G is an essential graph, if and only if G satisfies the
Jollowing four conditions:
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(i) G is achain graph;

(ii) for every chain component T of G, G r is chordal;

(iii) the configuration a — b — c does not occur as an induced subgraph of G;
(iv) every arrow a — b € G is strongly protected in G.

We have already counted all labelled digraphs with the first three properties[8].
The following Lemma is the key to counting labelled digraphs with all four prop-
erties, i.e., essential graphs. Although it can be obtained from results of
Gillispie[2], we prove it here, since it is the main tool for this article. A cligue
of a digraph G is an undirected subgraph S of G that is complete, i.c., there is an
edge between all vertices a,b € S.

Lemma 1 Let G be an essential graph with n vertices and c cliques. Then the
number of possibilities to add a set of arrows from vertices of G to a new vertex vg
such that the resulting graph is essential is 2™ — ¢, i.e., the cardinality of {Eo C
{u— v |u€V(G)}|Go=(V(G)U{wo}, E(G)U Ey) is an essential graph}
is2" —c

Proof. The total number of possible connections from G to vg is 2". But we need
to exclude connections where some of the arrows are not strongly protected. The
parents of a vertex v € V are defined as the set pa(v) = {u € V|u — v}, where
V is the vertex set of G. The parents of a vertex set S C V is then pa(S) =
Uses pa(v).

Let us assume that G is connected by arrows to the vertex vo in a way that
some of the arrows are not strongly protected, i.e., the set C = {u € Viju —
vp is not strongly protected} C pa(vo) is not empty. It suffices to show that the
induced subgraph of G on the vertex set C is a clique and that pa(vo) = C'U
pa(C), since then the connection is completely determined by the set C.

1. Let u,v € C. If there is no edge between u and v, then the arrows from
u and v to vg are strongly protected by configuration (b). If there is an arrow
between u and v, then one of the arrows from u and v to vy is strongly protected
by configuration (c). So there must be a line between u and v and therefore G
induced on C is a clique.

2. First we show that pa(C) C pa(ve). Let u € pa(C) be a vertex that
is not in pa(vo). There is a vertex v € C such that u — v. By definition of
v, there is no edge between u and vp, which means that the arrow v — vp is
strongly protected by configuration (a), which is a contradiction. Therefore, we
have C U pa(C) C pa(vp). To show that pa(vo) C C U pa(C) we prove that
the set N = pa(v) \ (C U pa(C)) is empty. Let u € N and v € C. If there
is no edge between u and v, then v — vo is strongly protected by configuration
(b). If v — u then v — vy is strongly protected by configuration (c). Since
u — v is impossible by definition of N there must be a line « — v. This means
that all vertices in C are connected to all vertices in IV by a line. Condition (iii)
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of Theorem 1 gives pa(N) = pa(C). If N has only one element u, then u — v
is not strongly protected by any configuration and this is a contradiction to the
definition of C. If N has more than one element, then let u,v € N. Any of the
arrows u — v or v — u would produce a cycle in G, via a vertex in C. If there
is no edge between u and v, then the arrow w — vq for any vertex w € C would
be strongly protected by configuration (d). Therefore the subgraph of G induced
on the set C U N is a clique and the arrow u — vy is not strongly protected by
any configuration, which is a contradiction as before. We finally have that N is
empty. O

2 Enumeration of Labelled Chordal Graphs with
Given Number of Vertices, Connectivity Compo-
nents, and Cliques

In this section, our aim is to calculate ¢(N, K, C), the number of labelled chordal
graphs with N vertices, K connectivity components, and C cliques. For this
purpose, we use methods and terminology of Wormald[10).

Let G = (V, E) bean undirected graph. A j—cliqueis a clique with j vertices.
Let G be an undirected connected graph. A set of k vertices is called a k-cutset if
G without this set is not connected. If there is no j-cutset for j < k then we say
G is k-connected. An exception is the complete graph with n vertices, which is
defined to be k-connected if and only if £ < n. The connectivity of G, denoted
by x(G), is the maximal k for which G is k-connected.

Wormald[10, Lemma 1.1] showed that a graph G with connectivity & is chordal
if and only if for every k-cutset W of G, W induces a clique of G and there are
k-connected chordal graphs H; and H, with Hy N Ho = W and H; U H; = G.
We can also assume that H; # G and Hs # G.

Furthermore, Wormald associates with each connected chordal graph a vector
called maximal clique vector of G. It is recursively defined as follows. If G is
the complete graph with n vertices, then mcv(G) = e,, where ey, is the infinite
dimensional vector whose entries are all equal to 0 but the n-th is equal to 1.
Otherwise, due to the previous characterisation of chordal graphs, G = H, U Ho,
such that Hy N Hs is a x(G)-cutset of G, where H; # G # H,. Then

mev(G) = mev(Hy) + mev(Hz) — ex(c). 1)
Fori= (i1,i,...)and j > 1let

vi(i) = i (f) ik

k=1
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A result of Wormald[10, Lemma 2.2] says that if i = mcv(G) then forj > 1,
v;(i) is the number of j-cliques of G. Now we define
v (i)
a(i) = D v;(i),
=1
which we call the cligue number of G. We will sometimes write cI(G). Let a; be

the number of labelled connected chordal graphs G for which i = mev(G) and
MCYV(N) be the set of all vectors that are mcv of some connected chordal graph

with NV vertices. Then
tN,1,C)= Y. a,

1IEMCV(N)
cl(i)=C

i.e., the number of labelled connected chordal graphs with N vertices and C
cliques. Using standard arguments, as they can be found for example at Harary[4,
p. 7], we obtain

N-1 c
1 N
t(N,K,C) = i ; T(r) let(N -rK-1,C-9q)t(r,1,q), for K > 2.
To improve efficiency one should adjust the range of summation as follows.

1 N-1 N min(C—N+r,2"~1)
t(N,KaC)= N ZT(T) Z t(N—r,K—l,C’—q)t(r,l,q),

r=1 g=max(r,C=2N-7+1)

where K > 2.

3 Enumeration of Labelled Essential Graphs

3.1 Labelled Essential Graphs with Given Number of Vertices,
Chain Components, and Cliques

Let e(N, K, C) be the number of labelled essential graphs with N vertices, K

chain components, and C cliques and t(V, K, C) be the number of labelled

chordal graphs with N vertices, K connectivity components, and C cliques where

N,K,C > 0. We notice that ¢(N, K,C) can be computed by the methods of

Wormald[10].

Theorem 2 e(N, K, C) is equal to

N N K C «
> (n) S ()Y U,k c)e(N = n, K —k,C—c) 27" = C+c)", )
n=1 k=1 c=1

where €(0,0,0) = 1.
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Proof. We use some of Robinson’s ideas([7] and {6, Proof of Theorem 1]) to
derive the formula for e(N, K, C). Let1 <i < nand E; = E;(N, K, C) be the
set of all essential graphs with the vertex set {1,..., N}, K chain components
which are labelled from 1 to K, and C unlabelled cliques where the chain com-
ponent labelled with i is a terminal component. Since every essential graph is a
chain graph by condition (i) in Theorem 1, and every chain graph has at least one
terminal chain component, we observe that e(N, K, C)K! = |E,U...UEg| and
by the inclusion-exclusion principle we have

K
|EyU...UEk|=) (-1)*' 5 |E,n...nE,]|

k=1 1<i1<...<ix <K

For fixed k we have |[E; N...N Ex| = |E;, N...N E;| for any choice of
1<% <... <1 < K. Sowe write

K
|EyU...UEk| =) (-1)k*! (ka) |[ExN...0 Ey.
k=1

Now, let G be a graphin E; U ... U Ej;. We imagine putting those chain compo-
nents of G that are labelled with ¢, where 1 < 7 < k, on the right side and the other
K — k components on the left side. Let n be the number of vertices and ¢ be the
number of cliques of G on the right side, suchthatl1 <n < Nandl1 <c<C.
The number of ways to choose the vertices on the right side is (f" )- On the left
side there is an essential graph with N — n vertices, C — c cliques, and K — k
chain components and on the right side there is a chordal graph with n vertices, ¢
cliques, and k connectivity components. There are e(N —n, K —k, C—c)(K —k)!
possibilities for the essential graphs on the left side and t(n, k, c)k! possibilities
for the chordal graphs on the right side. (We notice that we consider the chain
components on the left and the connectivity components on the right to be la-
belled.) Now, we observe that if there is an arrow a — b from a vertex a on
the left side to a vertex b in a component «y on the right side then a has to point
to all vertices of «y because of condition (iii) in Theorem 1. Now, let -y be any
component on the right side. By Lemma 1 the number of possible connections
from the left vertices to vy is 2= — (C — c). This means that the number of

possible sets of arrows from left torightis (2¥—" — (C - ¢)) *. So we conclude
that |Ey, N... N Ex| is equal to

C N /N Nen .
k!(K—k)!ZZ(n)t(n,k,c)e(N—n,K—k,C—c)(2 -C+q),

c=1n=1

finishing the proof. O

We notice that many of the summands in (2) are zero, but we provide an
improved version (7) in Section 4.

490



3.2 Labelled Essential Graphs with Given Number of Vertices
and Cliques

It is possible to get rid of the parameter K in the following way. Let e(N, C) be
the number of labelled essential graphs with N vertices and C cliques. That is,

2

e(N,C) = Y e(N,K,C) =

=
)

C
(-D)¥13 " t(n, k,c)e(N —n, K — k,C — ) 2V - C + o)*
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where we assume e(0,0) = 1. The equality between (3) and (4) holds because if
N-n<N-kandN-n< K< N-kthene(N —n,K,C —c) =0andif
N — k < N — nthen k > n and therefore t(n, k,¢) = 0.

3.3 Labelled Essential Graphs with Given Number of Vertices

Now, it is simple to calculate e(N), the number of labelled essential graphs with

N vertices, i.e.,
2N

e(N)= )_ ¢(N,C).
=N
See, for example, Harary[4, p. 8] to calculate the number of labelled connected
essential graphs with N vertices from e(N). Furthermore, as in Subsection 2,
we can determine the number of labelled essential graphs with given number of
vertices and connectivity components.
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Table 1: The Number of Labelled Essential Graphs

N e(N)
1 1
2 2
3 11
4 185
5 8782
6 1067825
7 312510571
8 212133402500
9 326266056291213

10 1118902054495975181

11 8455790399687227104576

12 139537050182278289405732939

13 | 4991058955493997577840793161279

4 Computation
In the calculation of e(N, K, C) the summation indices should be chosen accord-
ing to the following inequalities
k<n<e<2"-1 5)
K-k<N-n<C-c<2V "1 (6)

since otherwise ¢(n, k, c)e(N — n, K — k,C — c) is zero. Therefore, e(N, K, C)
equals

N N ka2 ca x
Y ( ) 3 (-1 Y tn k(N —n, K —k,C—c) 2V " -C+¢)", (D

ns=l n k=k) c=cy

where k; = max(1, K — N+n), k2 = min(K —1,n), ¢; = max(n,C—2N-"4
1),and ¢ = min(C — N + n,2” — 1). In the same way we formulate

X N . k+1 e N-n k
e(N,C)=§(n) k;(-l) Zc:t(n,k,c) (@N"-C+c) e(N-n,C-0).

We note that in spite of these improvements the computation of e(/V) requires
exponential time. Most of the time to calculate the numbers in Table 1 was taken
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by the computation of t(n, k, ¢). As Wormald[10] noted, the number of arithmetic
operations required for the calculation of the number of chordal graphs with n
vertices, in an elementary implementation of his methods, is roughly 4™ times a

constant.
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