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Abstract '

A graph G is called an M, (k)-graph if G has no k-list assignment
to its vertices with exactly r vertex colorings. We characterize all
M;(2)-graphs. More precisely, it is shown that a connected graph G
is an M3(2)-graph if and only if each block of G is a complete graph
with at least three vertices.

1 Introduction

Throughout this paper G denotes a simple graph. For any graph G, V(G)
and E(G) denote the vertex set and the edge set of G, respectively. Let G
be a graph. For every v € V(G), we mean Ng(v), the set of neighbors of v
in G. A list assignment L is a function that assigns to each vertex v of G
a set L, of colors. An L-coloring of G is a function ¢ that assigns a color
to each vertex of G such that c(v) € L, for all v € V(G) and c(u) # c(v),
whenever v and v are adjacent in G. A graph G is called an M, (k)-graph
(M for Marshal Hall) if G has no k-list assignment with exactly r colorings.
Uniquely 2-list colorable graphs are completely characterized. It was shown
that a graph G is not uniquely 2-list colorable(i.e., it is an M;(2)-graph)
if and only if each block of G is a complete graph, a complete bipartite
graph or a cycle, see Theorem A of [3]. M;(3)-graphs are studied in (2]
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and (3]. In [1] it was proved that every graph with complete blocks such
that each block has at least three vertices is an M3(2)-graph. In this paper
we characterize all M3(2)-graphs. We show that a connected graph G is
an Mj3(2)-graph if and only if each block of G is a complete graph with at
least three vertices.

2 Results

First we state the following simple remark without proof.

Remark. Every connected bipartite graph G with the 2-list assignment
L, = {1,2}, for each v € V(G), has exactly two L-colorings.

Now, we have an immediate consequence.
Theorem 1. Every connected bipartite graph is not an M3(2)-graph.

Proof. Let G be a connected bipartite graph, T be a spanning tree of
G and v € V(T) be a pendant vertex. The graph G\ {v} is connected.
Let V) and V; be two parts of G and v € V;. Set L, = {1,2} for each
u € V(G)\ {v} and L, = {1,3}. By the previous remark, G \ {v} has two
L-colorings c; and ¢; in which the colors of parts V; and V; in the coloring
c; are 1,2, respectively. Also, the colors of parts V; and V2 in the coloring
co are 2 and 1, respectively. Thus, with these lists G has three L-colorings.
O ,

If p,qg and r (p < ¢ < r) are positive integers and at most one of them
equals 1, then by 6, 4 » we mean a graph which consists of three internally
disjoint paths of lengths p, g and r, which have the same endpoints.

Theorem 2. Every 6,4, is not an M3(2)-graph.
Proof. If 6,4, has no odd cycle, then by Theorem 1 we obtain the result.

So without loss of generality we assume that p + g is odd and r > 2. Let
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v, w be the endpoints of three paths P,Q and R in 6,4, such that their
lengths are p, ¢ and r, respectively. Set L, = {1,3}, L, = {1,2} for any
z e V(P)UV(Q) \ {w} and L, = {1,4} for any y € V(R) \ {v,w}. It is
easy to see that with this list assignment 6, ,  has three L-colorings. [

Lemma 1. Let G be a graph and u,v € V(G) be two adjacent vertices. If
G\ {u, v} is a uniquely 2-list colorable graph, then G is not an Ms(2)-graph.

Proof. Let L be a 2-list assignment for G \ {u,v} such that it has a
unique L-coloring. Set L. = {a,b} and L, = {a,c}, where a,b and c are
new colors. With this list assignment G has three L-colorings. a

The following lemma is useful in the proof of the next theorem.

Lemma 2. Suppose that G is a 2-connected non-bipartite graph. If G is
not a complete graph or a cycle, then it has an induced subgraph 6y 4.-, for

some natural numbers p,q and r, where p + g is odd.

Proof. Let C be an odd cycle of minimum length in G. Then C is an
induced (chordless) cycle. Since G is 2-connected and not a cycle, it con-
tains a path R of length at least 2 whose endpoints are in C' and whose
other vertices are not in C. Choose such a path R of minimum length. If
CUR is an induced subgraph of G, then it is the required subgraph p 4 .
So assume that C U R is not an induced subgraph of G. Since C is the
smallest odd cycle and R has minimum length, there exists an edge with
one end point in V(R) \ V(C) and other one in V(C)\ V(R). If the length
of R is at least three, then we obtain a path whose length is less than the
length of R and its end points are on C, a contradiction. On the other
hand since C is the smallest odd cycle, we conclude that R has length 2
and its middle vertex z is adjacent to at least three vertices of C. Assume
that zy,...,z are all vertices in Ng(z) N V(C) (in clockwise order). Since
the length of C is odd, there exists an index j such that the arc z;z 41
has odd length. Now, if for every 7, the length of arc z;z;1 is at least two,
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then z and arc z;z;41 form an odd cycle of length smaller than length of
C, a contradiction. Thus there exists some t, 1 < ¢t < k, such that the arc
z:Z¢+1 has length 1. Thus G contains a triangle, and so C is a triangle and
C U {z} induces a Kj.

Let K be a largest complete subgraph of G. Since G is 2-connected and
not complete, it contains a path R of length at least 2 whose endpoints u, v
are in K and whose other vertices are not in K. Choose such a path R of
minimum length, choose w € V(K)\{u,v}, and let C be the triangle uvw.
By the same argument as in the previous paragraph, if the result does not
hold then R has length 2 and C'U {z} induces a K,, where z is the middle
vertex of R. By the maximality of K, there is a vertex y of K such that
z is not adjacent to y, and then {u,v,z,y} induces the required subgraph
01'2,2 in G. 0

Theorem 3. Every non-complete 2-connected graph is not an M3(2)-
graph.

Proof. If G is bipartite, then by Theorem 1, G is not an M3(2)-graph.
Thus assume that G has an odd cycle. First assume that G is an odd cycle
with vertices vy,...,vn. Let L,, = {1,2},fori =1,...,n -3, L,,_, =
L,,., = {1,8} and L,, = {1,4}. Clearly, G has exactly three coloring
with these lists and we are done. Thus assume that G is not an odd cycle.
By Lemma 3, G has an induced subgraph 6, with three paths P,Q and
R of sizes p,q and 7, where p + g is odd. If G is 0, 4,r, then by Theorem
2, G is not an M3(2)-graph. We can assume that V(G) \ V(6,4) # 0.
Suppose that there exists a vertex v € V(G)\ V(6p,q,r) which is adjacent to
none of the vertices of 8 4,-. Since G is 2-connected, by Exercise 4.2.8 of
4], there exists a vertex u adjacent to v such that G\ {u,v} is connected.
The graph G\ {u, v} has 0,4, as an induced subgraph. The graph 6 ,
is uniquely 2-list colorable(see Theorem A of [3]). Now, we show that
G\ {u,v} is uniquely 2-list colorable. Let w be a vertex of G \ {u,v}
such that w' € Ng\{u,v}(w) N V(fpqr) # @. The induced subgraph on
V(0pqr) U {w} is a uniquely 2-list colorable graph, because if one can
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assign the list {t, s} to w, where ¢ is the color of w’ in the unique coloring
of fp,q,» and s is a new color not appeared in the list of vertices of 65,q,r, then
Bp,q,~U{w} is uniquely 2-list colorable with these lists. Now, inductively we
conclude that G\ {u, v} is uniquely 2-list colorable. Therefore, by Lemma 2,
G is not M3(2). Hence we may assume that each vertex v € V(G)\V(fp,q,r)
is adjacent to some vertices of 0p 4. If there exist two adjacent vertices
u,v € V(G)\V(6p,q.,r), then the graph G\ {u,v} is connected and uniquely
2-list colorable, since it contains 8~ as an induced subgraph. By Lemma
2, G is not an M3(2)-graph. Assume that no two vertices of V(G)\V (6p,q,r)
are adjacent. Since any vertex v € V(G) \ V(6,,4,-) is adjacent to some
vertex in Op,g,r, the graph G \ {v} is 2-connected. Therefore, G \ {u,v} is
connected for any v € V(G)\ V(0p,q,~) and u € V(G). Let v',v' € V(p,q,r)
be two adjacent vertices. If G\ {u/,v'} is not connected, then there exists
a vertex w € V(G) \ V(6p,q,r) adjacent to u',v’ such that G \ {',w}
is connected. Thus, for any two adjacent vertices u,v € V(6pq,r) either
G\ {u,v} is connected or for some vertex w € V(G) \ V(bp,q,r) adjacent
to u, G\ {u,w} is connected. Let z,y be the endpoints of the paths
P:z,u,...,up-1,9,Q : z,v1,...,%-1,yand R: z,w,...,wr-1,y, where
g = min{p,q,7}. Let C; and C> be the cycles formed by (P, Q) and (Q, R),
respectively. The following cases may be considered:

Case (i). Assume that the cycles C; and C; have lengths at least 5 or
p >4, ¢=1,r = 3. If there exists a vertex z € V(G) \ V(pq,~) such
that z is adjacent to at least two vertices in V(C)) or V(C3) \ V(C}), then
there exists an edge uv € E(G) such that either G \ {,v} is connected
or for some vertex w € V(G) \ V{bp,qr), G \ {u,w} is connected and
uniquely 2-list colorable. So G\ {,v} or G\ {u,w} is uniquely 2-list
colorable and by Lemma 2 the assertion is true. Assume that any vertex
v € V(G) \ V(bp,q,) is adjacent to exactly one vertex in C; and exactly
one vertex in V(C3)\V(C1). Let v € V(G)\V(0pq,»). So v is not adjacent
to both £ and y. Assume that v is not adjacent to z. Consider the list
assignment Ly, = Ly, = -+ = Ly, , = Ly=Ly, =Ly,==1Ly_, =
{1,2}, L, = {1,3}, L, = {3,4}, Lw, = {4,5},..., Ly,_, = {r+ 1,7+ 2}
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and L, = {1,a}, where a is a new color. The graph 6, . |J{v} has three
L-colorings and the colors of z,w,,...,w,—y in three L-colorings are the
same. Let ¢(z),c(w1),...,c(wr—1) denote the colors of these vertices. For
any z € V(G) \ V(0p,q,r) U{v} which is adjacent to w; € V(C>) for some
1< j<r—1,set L, = {¢(w;),b}, where b is a new color. With this list
assignment G has exactly three L-colorings.

Case (ii). Let p > 3, ¢ = r = 2. Consider the list assignment
L, ={1,4}, Ly, = {2,3} , Ly = L,, ={1,3}and Ly = Ly, = --- =
Ly, , = {1,2}. It is easy to see that p q» has three L-colorings ¢, c; and
c3, where the colors of the vertices uj;,z and v, in three colorings are the
same. For any vertex v € V(G)\V(0p,,-) and any 1 < < 3let ¢;(Ng(v)) =
{ci(u);u € Ng(v)}. If there exists a € ¢1(Ne(v)) N c2(Na(v)) N es(Ne(v)),
then set L, = {a,b}, where b is a new color. If v is adjacent to u,
or ¢ or v, then one can assign an appropriate list to v. So we can
assume that u;,z and v, are not adjacent to v. If w; ¢ Ng(v) and
c1(Ng(v)) Ne2(Ne(v)) Nea(Ne(v)) = 0, then set L, = {1,2}. Assume
that w; € Ng(v). If y € Ng(v), then the graph G\ {ui, uiy1} or G\ {u, 2}
is connected and uniquely 2-list colorable for some 1 < i € p—1 and
z € V(G) \ V(bp,q,r), since it has a uniquely 2-list colorable subgraph
induced by the vertices z,y, v, w1, v. So by Lemma 2, G is not an M3(2)- -
graph. Let y € Ng(v), therefore u; € Ng(v) for some 2 < i < p— 1.
Assume that there exist at least two vertices between = and u; or between
u; and y on P, say uj, uj41. If § < i —1, then the subgraph induced by the
vertices v, z, vy, w1, Ui, . . . , Up—1, ¥ iS uniquely 2-list colorable. If j > i, then
the subgraph induced by the vertices v, z, v, w;, 4y, . . ., u;, y is uniquely 2-
list colorable. Thus G\ {j, 241} or G\ {u;, 2} is connected and uniquely
2-list colorable, for some z € V(G)\V(p,q,r). Therefore, by Lemma 2, G is
not an M3(2)-graph. Assume that there exists at most one vertex between
z and u; and at most one vertex between u; and y, so p = 3. Thus, the
path P is z,u), u2,y and so Ng(v) = {w1,uz}. Set L, = {1,3}. The graph
G has three L-colorings.

Case (iii). Assume that p = 2, ¢ = 1 and 7 > 2. If there exists no
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vertex v in V(G) \ V(p,q,r) such that Ng(v) = {z,w:}, then set L, =

Lu, = {1,2}, Ly = Ly, = -+ = Lw,_, = {1,3} and Ly, = {2,4}. The
graph 8, 4 - has three L-colorings and the colors of y,ws, ..., w,-; are the
same in three L-colorings. Let ¢(y), c(w2), ..., c(wyr—1) denote the colors of

these vertices.

For any vertex z € V(G)\V (0p,q,r), if thereis u € Ng(2) N{y, w2, ..., wr-1},
then set L, = {c(u),a}, where a is a new color. So z gets the color a in three
colorings. If Ng(z) = {z,u1} or Ng(2) = {z,u1, w1}, then set L, = {1,a},
where a is a new color. If Ng(z) = {u1,w1}, then set L, = {1,2}. With
this list assignment G has three L-colorings ¢;,c2 and c3. Assume that
there exists a vertex v € V(G) \ V(0p,q,r) such that Ng(v) = {z,w:}. Set
L, ={1,3}, Ly, = Ly = Ly, = -++ = Ly,_; = {1,2} and L, = {1,4}.
S0 6p,q,- U{v} has three L-colorings. For any u € V(G) \ V(6p,q,-) U{v}, if
there exists a € ¢;(Ng(u)) N c2(Ne(w)) N ea(Ne(u)), then set Ly, = {a, b},
where b is a new color, otherwise, set L, = {1,2}. With this list assignment

G has three L-colorings. a

The following results were proved in [1].

Theorem A Let G be a graph with complete blocks. If each block of G has
at least three vertices, then G is an M3(2)-graph.

Theorem B Let G be a connected graph formed by the union of two graphs
G1,G3 which are joined in exactly one vertez v. If Gy is not an M3(2)-
graph, then G is not an M3(2)-graph.

Now, we are in a position to state our main theorem.

Theorem 4. A connected graph G is an M3(2)-graph if and only if each
block of G is a complete graph with at least three vertices.

Proof. Let G be a connected M3(2)-graph. By Theorem B each block
of G is an Mj3(2)-graph. Therefore, by Theorem 3, each block of G is a
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complete graph. Since a complete graph with two vertices is not an M3(2)-
graph, each block of G has at least three vertices. The other side is clear

by Theorem A. O

Conjecture. Suppose that G is not a connected M3(2)-graph. There
exists a 2-list assignment L to G such that 1 € (,ey(g) Lv and G has
three L-colorings.
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