Characterization of $M_3(2)$ -graphs *†

S. AKBARI, D. KIANI, F. MOHAMMADI, S. MORADI

Abstract

A graph G is called an $M_r(k)$ -graph if G has no k-list assignment to its vertices with exactly r vertex colorings. We characterize all $M_3(2)$ -graphs. More precisely, it is shown that a connected graph G is an $M_3(2)$ -graph if and only if each block of G is a complete graph with at least three vertices.

1 Introduction

Throughout this paper G denotes a simple graph. For any graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. Let G be a graph. For every $v \in V(G)$, we mean $N_G(v)$, the set of neighbors of v in G. A list assignment L is a function that assigns to each vertex v of G a set L_v of colors. An L-coloring of G is a function c that assigns a color to each vertex of G such that $c(v) \in L_v$ for all $v \in V(G)$ and $c(u) \neq c(v)$, whenever u and v are adjacent in G. A graph G is called an $M_r(k)$ -graph (M for Marshal Hall) if G has no k-list assignment with exactly r colorings. Uniquely 2-list colorable graphs are completely characterized. It was shown that a graph G is not uniquely 2-list colorable (i.e., it is an $M_1(2)$ -graph) if and only if each block of G is a complete graph, a complete bipartite graph or a cycle, see Theorem A of [3]. $M_1(3)$ -graphs are studied in [2]

^{*}Key Words: List coloring, $M_r(k)$ -graphs.

^{†2000} Mathematics Subject Classification: 05C15, 05C38.

and [3]. In [1] it was proved that every graph with complete blocks such that each block has at least three vertices is an $M_3(2)$ -graph. In this paper we characterize all $M_3(2)$ -graphs. We show that a connected graph G is an $M_3(2)$ -graph if and only if each block of G is a complete graph with at least three vertices.

2 Results

First we state the following simple remark without proof.

Remark. Every connected bipartite graph G with the 2-list assignment $L_v = \{1, 2\}$, for each $v \in V(G)$, has exactly two L-colorings.

Now, we have an immediate consequence.

Theorem 1. Every connected bipartite graph is not an $M_3(2)$ -graph.

Proof. Let G be a connected bipartite graph, T be a spanning tree of G and $v \in V(T)$ be a pendant vertex. The graph $G \setminus \{v\}$ is connected. Let V_1 and V_2 be two parts of G and $v \in V_1$. Set $L_u = \{1,2\}$ for each $u \in V(G) \setminus \{v\}$ and $L_v = \{1,3\}$. By the previous remark, $G \setminus \{v\}$ has two L-colorings c_1 and c_2 in which the colors of parts V_1 and V_2 in the coloring c_1 are 1,2, respectively. Also, the colors of parts V_1 and V_2 in the coloring c_2 are 2 and 1, respectively. Thus, with these lists G has three L-colorings. \square

If p, q and r ($p \le q \le r$) are positive integers and at most one of them equals 1, then by $\theta_{p,q,r}$ we mean a graph which consists of three internally disjoint paths of lengths p, q and r, which have the same endpoints.

Theorem 2. Every $\theta_{p,q,r}$ is not an $M_3(2)$ -graph.

Proof. If $\theta_{p,q,r}$ has no odd cycle, then by Theorem 1 we obtain the result. So without loss of generality we assume that p+q is odd and $r \ge 2$. Let

v,w be the endpoints of three paths P,Q and R in $\theta_{p,q,r}$ such that their lengths are p,q and r, respectively. Set $L_w = \{1,3\}$, $L_x = \{1,2\}$ for any $x \in V(P) \bigcup V(Q) \setminus \{w\}$ and $L_y = \{1,4\}$ for any $y \in V(R) \setminus \{v,w\}$. It is easy to see that with this list assignment $\theta_{p,q,r}$ has three L-colorings. \square

Lemma 1. Let G be a graph and $u, v \in V(G)$ be two adjacent vertices. If $G \setminus \{u, v\}$ is a uniquely 2-list colorable graph, then G is not an $M_3(2)$ -graph.

Proof. Let L be a 2-list assignment for $G \setminus \{u, v\}$ such that it has a unique L-coloring. Set $L_u = \{a, b\}$ and $L_v = \{a, c\}$, where a, b and c are new colors. With this list assignment G has three L-colorings.

The following lemma is useful in the proof of the next theorem.

Lemma 2. Suppose that G is a 2-connected non-bipartite graph. If G is not a complete graph or a cycle, then it has an induced subgraph $\theta_{p,q,r}$, for some natural numbers p,q and r, where p+q is odd.

Proof. Let C be an odd cycle of minimum length in G. Then C is an induced (chordless) cycle. Since G is 2-connected and not a cycle, it contains a path R of length at least 2 whose endpoints are in C and whose other vertices are not in C. Choose such a path R of minimum length. If $C \cup R$ is an induced subgraph of G, then it is the required subgraph $\theta_{p,q,r}$. So assume that $C \cup R$ is not an induced subgraph of G. Since C is the smallest odd cycle and R has minimum length, there exists an edge with one end point in $V(R) \setminus V(C)$ and other one in $V(C) \setminus V(R)$. If the length of R is at least three, then we obtain a path whose length is less than the length of R and its end points are on C, a contradiction. On the other hand since C is the smallest odd cycle, we conclude that R has length 2 and its middle vertex x is adjacent to at least three vertices of C. Assume that x_1, \ldots, x_k are all vertices in $N_G(x) \cap V(C)$ (in clockwise order). Since the length of C is odd, there exists an index C such that the arc C is at least two,

then x and arc x_jx_{j+1} form an odd cycle of length smaller than length of C, a contradiction. Thus there exists some t, $1 \le t \le k$, such that the arc x_tx_{t+1} has length 1. Thus G contains a triangle, and so C is a triangle and $C \cup \{x\}$ induces a K_4 .

Let K be a largest complete subgraph of G. Since G is 2-connected and not complete, it contains a path R of length at least 2 whose endpoints u,v are in K and whose other vertices are not in K. Choose such a path R of minimum length, choose $w \in V(K) \setminus \{u,v\}$, and let C be the triangle uvw. By the same argument as in the previous paragraph, if the result does not hold then R has length 2 and $C \cup \{x\}$ induces a K_4 , where x is the middle vertex of R. By the maximality of K, there is a vertex y of K such that x is not adjacent to y, and then $\{u,v,x,y\}$ induces the required subgraph $\theta_{1,2,2}$ in G.

Theorem 3. Every non-complete 2-connected graph is not an $M_3(2)$ -graph.

Proof. If G is bipartite, then by Theorem 1, G is not an $M_3(2)$ -graph. Thus assume that G has an odd cycle. First assume that G is an odd cycle with vertices $v_1, ..., v_n$. Let $L_{v_i} = \{1, 2\}$, for i = 1, ..., n - 3, $L_{v_{n-2}} =$ $L_{v_{n-1}} = \{1,3\}$ and $L_{v_n} = \{1,4\}$. Clearly, G has exactly three coloring with these lists and we are done. Thus assume that G is not an odd cycle. By Lemma 3, G has an induced subgraph $\theta_{p,q,r}$ with three paths P,Q and R of sizes p, q and r, where p + q is odd. If G is $\theta_{p,q,r}$, then by Theorem 2, G is not an $M_3(2)$ -graph. We can assume that $V(G) \setminus V(\theta_{p,q,r}) \neq \emptyset$. Suppose that there exists a vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ which is adjacent to none of the vertices of $\theta_{p,q,r}$. Since G is 2-connected, by Exercise 4.2.8 of [4], there exists a vertex u adjacent to v such that $G \setminus \{u, v\}$ is connected. The graph $G \setminus \{u, v\}$ has $\theta_{p,q,r}$ as an induced subgraph. The graph $\theta_{p,q,r}$ is uniquely 2-list colorable(see Theorem A of [3]). Now, we show that $G \setminus \{u,v\}$ is uniquely 2-list colorable. Let w be a vertex of $G \setminus \{u,v\}$ such that $w' \in N_{G\setminus\{u,v\}}(w) \cap V(\theta_{p,q,r}) \neq \emptyset$. The induced subgraph on $V(heta_{p,q,r}) \cup \{w\}$ is a uniquely 2-list colorable graph, because if one can

assign the list $\{t, s\}$ to w, where t is the color of w' in the unique coloring of $\theta_{p,q,r}$ and s is a new color not appeared in the list of vertices of $\theta_{p,q,r}$, then $\theta_{p,q,r} \cup \{w\}$ is uniquely 2-list colorable with these lists. Now, inductively we conclude that $G \setminus \{u, v\}$ is uniquely 2-list colorable. Therefore, by Lemma 2, G is not $M_3(2)$. Hence we may assume that each vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ is adjacent to some vertices of $\theta_{p,q,r}$. If there exist two adjacent vertices $u,v\in V(G)\setminus V(heta_{p,q,r})$, then the graph $G\setminus\{u,v\}$ is connected and uniquely 2-list colorable, since it contains $\theta_{p,q,r}$ as an induced subgraph. By Lemma 2, G is not an $M_3(2)$ -graph. Assume that no two vertices of $V(G) \setminus V(\theta_{p,q,r})$ are adjacent. Since any vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ is adjacent to some vertex in $\theta_{p,q,r}$, the graph $G \setminus \{v\}$ is 2-connected. Therefore, $G \setminus \{u,v\}$ is connected for any $v \in V(G) \setminus V(\theta_{p,q,r})$ and $u \in V(G)$. Let $u', v' \in V(\theta_{p,q,r})$ be two adjacent vertices. If $G \setminus \{u', v'\}$ is not connected, then there exists a vertex $w \in V(G) \setminus V(\theta_{p,q,r})$ adjacent to u', v' such that $G \setminus \{u', w\}$ is connected. Thus, for any two adjacent vertices $u,v\in V(heta_{p,q,r})$ either $G\setminus\{u,v\}$ is connected or for some vertex $w\in V(G)\setminus V(heta_{p,q,r})$ adjacent to $u, G \setminus \{u, w\}$ is connected. Let x, y be the endpoints of the paths $P: x, u_1, \ldots, u_{p-1}, y, Q: x, v_1, \ldots, v_{q-1}, y \text{ and } R: x, w_1, \ldots, w_{r-1}, y, \text{ where}$ $q = min\{p, q, r\}$. Let C_1 and C_2 be the cycles formed by (P, Q) and (Q, R), respectively. The following cases may be considered:

Case (i). Assume that the cycles C_1 and C_2 have lengths at least 5 or $p \ge 4$, q = 1, r = 3. If there exists a vertex $z \in V(G) \setminus V(\theta_{p,q,r})$ such that z is adjacent to at least two vertices in $V(C_1)$ or $V(C_2) \setminus V(C_1)$, then there exists an edge $uv \in E(G)$ such that either $G \setminus \{u,v\}$ is connected or for some vertex $w \in V(G) \setminus V(\theta_{p,q,r})$, $G \setminus \{u,w\}$ is connected and uniquely 2-list colorable. So $G \setminus \{u,v\}$ or $G \setminus \{u,w\}$ is uniquely 2-list colorable and by Lemma 2 the assertion is true. Assume that any vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ is adjacent to exactly one vertex in C_1 and exactly one vertex in $V(C_2) \setminus V(C_1)$. Let $v \in V(G) \setminus V(\theta_{p,q,r})$. So v is not adjacent to both x and y. Assume that v is not adjacent to x. Consider the list assignment $L_{u_1} = L_{u_2} = \cdots = L_{u_{p-1}} = L_y = L_{v_1} = L_{v_2} = \cdots = L_{v_{q-1}} = \{1,2\}, L_x = \{1,3\}, L_{w_1} = \{3,4\}, L_{w_2} = \{4,5\}, \ldots, L_{w_{r-1}} = \{r+1,r+2\}$

and $L_v = \{1, a\}$, where a is a new color. The graph $\theta_{p,q,r} \bigcup \{v\}$ has three L-colorings and the colors of x, w_1, \ldots, w_{r-1} in three L-colorings are the same. Let $c(x), c(w_1), \ldots, c(w_{r-1})$ denote the colors of these vertices. For any $z \in V(G) \setminus V(\theta_{p,q,r}) \bigcup \{v\}$ which is adjacent to $w_j \in V(C_2)$ for some $1 \leq j \leq r-1$, set $L_z = \{c(w_j), b\}$, where b is a new color. With this list assignment G has exactly three L-colorings.

Case (ii). Let $p \ge 3$, q = r = 2. Consider the list assignment $L_{u_1} = \{1,4\}, L_{w_1} = \{2,3\}, L_x = L_{v_1} = \{1,3\} \text{ and } L_y = L_{u_2} = \cdots = \{1,4\}$ $L_{u_{p-1}} = \{1, 2\}$. It is easy to see that $\theta_{p,q,r}$ has three L-colorings c_1, c_2 and c_3 , where the colors of the vertices u_1, x and v_1 in three colorings are the same. For any vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ and any $1 \leq i \leq 3$ let $c_i(N_G(v)) =$ $\{c_i(u); u \in N_G(v)\}$. If there exists $a \in c_1(N_G(v)) \cap c_2(N_G(v)) \cap c_3(N_G(v))$, then set $L_v = \{a, b\}$, where b is a new color. If v is adjacent to u_1 or x or v_1 , then one can assign an appropriate list to v. So we can assume that u_1, x and v_1 are not adjacent to v. If $w_1 \notin N_G(v)$ and $c_1(N_G(v)) \cap c_2(N_G(v)) \cap c_3(N_G(v)) = \emptyset$, then set $L_v = \{1, 2\}$. Assume that $w_1 \in N_G(v)$. If $y \in N_G(v)$, then the graph $G \setminus \{u_i, u_{i+1}\}$ or $G \setminus \{u_i, z\}$ is connected and uniquely 2-list colorable for some $1 \le i \le p-1$ and $z \in V(G) \setminus V(\theta_{p,q,r})$, since it has a uniquely 2-list colorable subgraph induced by the vertices x, y, v_1, w_1, v . So by Lemma 2, G is not an $M_3(2)$ graph. Let $y \notin N_G(v)$, therefore $u_i \in N_G(v)$ for some $2 \leqslant i \leqslant p-1$. Assume that there exist at least two vertices between x and u_i or between u_i and y on P, say u_j, u_{j+1} . If j < i-1, then the subgraph induced by the vertices $v, x, v_1, w_1, u_i, \ldots, u_{p-1}, y$ is uniquely 2-list colorable. If j > i, then the subgraph induced by the vertices $v, x, v_1, w_1, u_1, \ldots, u_i, y$ is uniquely 2list colorable. Thus $G \setminus \{u_j, u_{j+1}\}\$ or $G \setminus \{u_j, z\}$ is connected and uniquely 2-list colorable, for some $z \in V(G) \setminus V(\theta_{p,q,r})$. Therefore, by Lemma 2, G is not an $M_3(2)$ -graph. Assume that there exists at most one vertex between x and u_i and at most one vertex between u_i and y, so p=3. Thus, the path P is x, u_1, u_2, y and so $N_G(v) = \{w_1, u_2\}$. Set $L_v = \{1, 3\}$. The graph G has three L-colorings.

Case (iii). Assume that p = 2, q = 1 and $r \ge 2$. If there exists no

vertex v in $V(G) \setminus V(\theta_{p,q,r})$ such that $N_G(v) = \{x, w_1\}$, then set $L_x = L_{u_1} = \{1, 2\}$, $L_y = L_{w_2} = \cdots = L_{w_{r-1}} = \{1, 3\}$ and $L_{w_1} = \{2, 4\}$. The graph $\theta_{p,q,r}$ has three L-colorings and the colors of y, w_2, \ldots, w_{r-1} are the same in three L-colorings. Let $c(y), c(w_2), \ldots, c(w_{r-1})$ denote the colors of these vertices.

For any vertex $z \in V(G) \setminus V(\theta_{p,q,r})$, if there is $u \in N_G(z) \cap \{y, w_2, \dots, w_{r-1}\}$, then set $L_z = \{c(u), a\}$, where a is a new color. So z gets the color a in three colorings. If $N_G(z) = \{x, u_1\}$ or $N_G(z) = \{x, u_1, w_1\}$, then set $L_z = \{1, a\}$, where a is a new color. If $N_G(z) = \{u_1, w_1\}$, then set $L_z = \{1, 2\}$. With this list assignment G has three L-colorings c_1, c_2 and c_3 . Assume that there exists a vertex $v \in V(G) \setminus V(\theta_{p,q,r})$ such that $N_G(v) = \{x, w_1\}$. Set $L_x = \{1, 3\}$, $L_{u_1} = L_y = L_{w_1} = \cdots = L_{w_{r-1}} = \{1, 2\}$ and $L_v = \{1, 4\}$. So $\theta_{p,q,r} \bigcup \{v\}$ has three L-colorings. For any $u \in V(G) \setminus V(\theta_{p,q,r}) \bigcup \{v\}$, if there exists $a \in c_1(N_G(u)) \cap c_2(N_G(u)) \cap c_3(N_G(u))$, then set $L_u = \{a, b\}$, where b is a new color, otherwise, set $L_u = \{1, 2\}$. With this list assignment G has three L-colorings.

The following results were proved in [1].

Theorem A Let G be a graph with complete blocks. If each block of G has at least three vertices, then G is an $M_3(2)$ -graph.

Theorem B Let G be a connected graph formed by the union of two graphs G_1, G_2 which are joined in exactly one vertex v. If G_1 is not an $M_3(2)$ -graph, then G is not an $M_3(2)$ -graph.

Now, we are in a position to state our main theorem.

Theorem 4. A connected graph G is an $M_3(2)$ -graph if and only if each block of G is a complete graph with at least three vertices.

Proof. Let G be a connected $M_3(2)$ -graph. By Theorem B each block of G is an $M_3(2)$ -graph. Therefore, by Theorem 3, each block of G is a

complete graph. Since a complete graph with two vertices is not an $M_3(2)$ -graph, each block of G has at least three vertices. The other side is clear by Theorem A.

Conjecture. Suppose that G is not a connected $M_3(2)$ -graph. There exists a 2-list assignment L to G such that $1 \in \bigcap_{v \in V(G)} L_v$ and G has three L-colorings.

Acknowledgement

The first author is indebted to the Research Council of Sharif University of Technology for support. The research of the second author was in part supported by a grant from IPM with number (No. 86150116). Also, the authors wish to thank the referee for her/his fruitful comments.

References

- [1] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, Coloring of graphs with 2-lists, submitted.
- [2] D.A. Mojdeh, A. Ahmadi Haji, H. Abdollahzadeh Ahangar and A. Khodkar, Graphs $K_{1*4,5}$, $K_{1*5,4}$, $K_{1*4,4}$, $K_{2,3,4}$ have the property M(3), Ars Combinatoria 84 (2007), 171-190.
- [3] D.A. Mojdeh, A. Ahmadi Haji, H. Abdollahzadeh Ahangar and A. Khodkar, The graph $K_{2,2,r}$ has the property M(3) for $4 \le r \le 8$, Bulletin of the Institute of Combinatorics and its Applications 47 (2006) 63-70.
- [4] D.B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

SAIEED AKBARI a s_akbari@sharif.edu

DARIUSH KIANI b,c dkiani@aut.ac.ir

FATEMEH MOHAMMADI b f_mohammadi@cic.aut.ac.ir

SOMAYEH MORADI b s_moradi@cic.aut.ac.ir

^aDepartment of Mathematical Sciences Sharif University of Technology P. O. Box 11365-9415, Tehran, Iran.

^bDepartment of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran.

^cInstitute for Studies in Theoretical Physics and Mathematics (IPM).