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Abstract

Let G; be the subgraph of G whose edges are in the i-th color
in an r-coloring of the edges of G. If there exists an r-coloring of
the edges of G such that H; ¢ Gi forall1 < ¢ < r, then G is
said to be r — colorable to (Hy, Ha,. .., H;). The multicolor Ramsey
number R(Hy, Ha,...,H;) is the smallest integer n such that K,
is not r-colorable to (Hi, Hz,...,Hr). Let Cm be a cycle of length
m, the four color Ramsey numbers related to Cg are studied in this
paper. It is well known that 18 < R4(Ce) < 21. We prove that
R(Cs,C4,C4,C4) = 19 and 18 < R(Cs, Cs, H1, H2) < 20, where H;
are isomorphic to Cj; or Cs.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
Let G be a graph, the vertex set of G is denoted by V(G), the edge set
of G by E(G). Let U denote the set of some graphs, then ex(n; V) is
the maximum size of a graph with n vertices, which contains no subgraph
isomorphic to any graph in ¥, and EX(n;¥) denotes the set of all graphs
with ez(n; ¥) edges.
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Let G; be the subgraph of G whose edges are in the i-th color in an
r-coloring of the edges of G. If there exists an r-coloring of the edges of G
such that H; € G; for all 1 < i < r, then G is said to be r — colorable to
(H1,Ha, ..., H;). The multicolor Ramsey number R(H}, Hs, ..., H,) is the
smallest integer n such that K, is not r-colorable to (Hy, Hy,..., H,). In
the case of Hy & Hy = ... = H, = H, we simply write R(H,, Hs, ..., H,)
as R.(H). Let o(G) denote the independence number of G, N[v] the set of
vertices adjacent to a vertex v together with v itself, and G[W)] the induced
subgraph of G by W C V(G).

Clapham, Flockhart and Sheehan gave the values of ex(n;{C4}) and
EX(n;{C4}) for n < 21 in [1]. Yang and Rowlinson(10: 11l studied the
values of ex(n; ¥) for ¥ = {C,} and ¥ = {Cs} by a computer. They de-
termined the exact values of ez(n; {C4}) for 22 < n < 31, ex(n; {Cs}) for
6 < n <21 and gave the corresponding extremal graphs. Sun et al. further
gave the values of ex(n; {Ce}) for 22 < n < 26151 and obtained the values
of ex(n; {C4,Cs}) for n < 2114), By the result of ex(26; {Cs}) = 64, they
showed that R5(Cs) = 26. In [6], Sun et al. showed that R4(Cy) = 18 with
the help of a substantial amount of computation. Xu and Radziszowskil®' 9)
studied the four color Ramsey numbers related to cycles, they proved that
21 < R(C4,C4,C4,Cs) < 27 and 28 < R(Cq,C4,C3, Cs) < 36. Dybiz-
bariski and Dzido!?! improved the lower bounds of R(Cy,Cy,C4,C3) and
R(C4,C4,C3,C3) to 24 and 30 respectively. For further general reading
about the multicolor Ramsey numbers of cycles, see the latest survey pro-
vided by Radziszowskil3.

The four color Ramsey numbers related to Cg are studied in this paper.
It is well known that 18 < R4(Cs) < 21(7, 10 By the lemmas in sections
2 and 3, we prove the following theorem,

Theorem 1.1.
R(Cs,C4,Cyq,Cyq) =19,

18 < R(Cs, Cs,C4, Cy) < 20,
18 S R(Cs1 CG,CG, 04) S 209
18 < R4(Cs) < 20.

2 The proof of the upper bounds

Let V(Gy) = {v1,v2,...,v}, V(G;) = {uy,u2,...,us}, and 8 is a bijection
such that 8(v;) = u; for 1 < i, j < n. For a bijection 6, if v;v; € E(Gy) and
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0(v;)0(v;) € E(G,) for some 4,7 (1 < i < j < n), we say it is bad, otherwise
called it a good bijection. Let V(GfG;) = V(Gy) and E(G;HGs) =
{vivj|viv; € E(Gy) U 0(v:)0(v;) € E(Gs),1 < i< j <n}. If §is a good
bijection, then |E(G¢ lH G,)| = |E(Gf)| + |E(G,)).

The values of ex(n;{Cy4}) and ex(n;{Cs}) are obtained in [10, 11],
which are shown in Table 1.

Table 1. The values of ez(n; {Cs}) and ex(n; {C¢}) for 6 <n < 20
n 6 (7|89 |10[11(12[13|14(15]( 16

ez(m{CaD) | 7 | 9 |11 [ 13| 16|18 |21 | 24| 27 [ 30| 33

ez(n; {Ce}) | 11 ] 13 | 16 | 20 | 21 | 23 | 26 | 30 | 31 | 33 | 37

n 17181920 ]

ex(n;{C4}) [ 36 | 39 | 42 | 46

ex(n;{Ce}) | 40 | 41 | 44 | 48

By the results ex(19; {Cs}) = 44, ez(19;{C4}) = 42, ex(20; {Cs}) = 48,
ex(20; {C4}) = 46 and the results in [10], we have Lemma 2.1 and Lemma
2.2 as following.
Lemma 2.1.

R(Cﬁac4:C4,C4) <19,

R(CG$ CG: C4$ C4) < 20.

Lemma 2.2. |EX(20;{Cs})| = 2.

Let EX(20; {Cs}) = {H20—1,H20—2}, then Hog—1 and Hyg—o are shown
in Fig. 1, where V(Hgo—1) = V(Hz0-2) = {v1,v2,...,v20}-

Hao_1
Fig. 1. The graphs H20—1 and Hzo_z.
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Lemma 2.3. Let Gf = Hop—1, Gy = Hyp_y and V(Gs) = {u;|u.~ =v;,1<
i < 20}. For any bijection 6 where 8(v;) = u; for 1 < ,5 < 20, we have 9
is bad.
Proof. Suppose there exists a good bijection 8, then there are two subcases
depending on 8(v;) for v; € {v16, v17, v18, Y19}
Case 1. Suppose there is one vertex of {vie,v17, V18, v19} such that 8(v;) =
ujfor 1 <j<9or 16 <j< 20 If there exists 0(v;) =ujfor 1 <5 <9,
say O(vig) = u1, then since G,[N[u;]] & K5 and 6 is a good bijection,
v16 together with the four appropriate vertices of V(Gy) have to yield a
5K. Note that a(Gf[V(Gy) \ N[vi6]]) = 3, a contradiction. If there exists
6(vi) = u; for 16 < j < 20, say O(vig) = uye, then since K5 C G¢[N[vyg)]
and 6 is a good bijection, u;¢ together with the four appropriate vertices
of V(Gs) have to yield a 5K;. Note that a(G,[V(G,) \ Nfug]]) = 3, a
contradiction too.
Case 2. Suppose each vertex of {v1,v17, %18, v19} maps to one vertex of u;
for 10 < 5 < 15 in . Without loss of generality, let 8(vig) = uj0. Since
6 is a good bijection and viev17 € E(Gy), we have 8(v;7) is one vertex of
{u13, 14, w15}, say 0(v17) = uia. Then 6(v1g) is one vertex of {u11,u12},
say 8(vi1g) = u11. Therefore since G,[{u10, u11, %12, u20}] = Ky, v1¢ and vy
together with the two appropriate vertices of V(Gy) have to yield a 4K].
Note that a(G¢[V(Gy) \ (N[vie] U N[v1g])]) = 1, a contradiction.

By Case 1 and 2, we have the lemma holds. O

Lemma 2.4. Let Gy = Hyo—1, G5 & Hy-3 and V(G,) = {wiu; = v;,1 <
i < 20}. For any bijection 8 where 8(v;) = u; for 1 < 4,5 < 20, we have §
is bad.
Proof. Suppose there exists a good bijection 8, then there are two subcases
depending on 8(v;) for v; € {vi6,v17,...,v20}.
Case 1. Suppose there is one vertex of {vig,v17,...,v20} such that 8(v;) =
ujfor 1 < j<9or16 < j <20, say 8(vis) = ur{or 8(vis) = uig). Then
since G4[N{u;]] 2 Ks(or K5 C G4[N[ug]]) and 8 is a good bijection, v;g
together with the four appropriate vertices of V(Gy) have to yield a 5K;.
Note that a(Gf[V(Gy) \ N[vie]]) = 3, a contradiction.
Case 2. Suppose each vertex of {vi6,v17,...,v20} maps to one vertex of u;
for 10 < 7 < 15 in 8. Without loss of generality, let 8(v15) = ujo. Since
0 is a good bijection and viev17 € E(Gy), we have 6(v;17) is one vertex of
{u13, w14, u15}, say 0(vi7) = u13. Then O(v;8) is one vertex of {u11,u12},
say #(v1s) = u11. Therefore since G,[{u10, 111,212, u16}] = Ky, vi6 and v1g
together with the two appropriate vertices of V(Gy) have to yield a 4K,.
Note that a(G¢[V(Gy) \ (N[vie] U N{v1g])]) = 1, a contradiction.

By Case 1 and 2, we have the lemma holds. O

Lemma 2.5. Let Gy = Hyo_9, G, = Hayg—2 and V(G,) = {uiju; = v;,1 <
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i < 20}. For any bijection 8 where 8(v;) = u; for 1 < 4,5 < 20, we have 8
is bad.
Proof. Suppose there exists a good bijection 8, then there are two subcases
depending on 9('();) for v; € {’016,’017, ey 'Uzo}.
Case 1. Suppose there is one vertex of {vig,v17,...,v20} such that 8(v;) =
uj for 1 < j <9 or16 < j <20, say 8(vig) = uy(or 8(vis) = uig). Then
since G5[N[u1]] = Ks(or Ks C Gs[N[uig)]) and @ is a good bijection, vyg
together with the four appropriate vertices of V(Gy) have to yield a 5Kj.
Note that a(G¢[V(Gy) \ N(vse]]) = 3, a contradiction.
Case 2. Suppose each vertex of {vi6,v17,...,v20} maps to one vertex of u;
for 10 < j < 15 in §. Without loss of generality, let 8(v1g) = ujo. Since
@ is a good bijection and vigv19 € E(Gy), we have 6(vyg) is one vertex of
{u13,u14, U158}, say @(vig) = u13. Then O(vyo) is one vertex of {u11,u12},
say 9(1}20) = U11. Therefore since Gs [{um,uu, Ui2, 7-’-16}] & K4, V18 and Va0
together with the two appropriate vertices of V(Gy) have to yield a 4K].
Note that a(G¢[V(Gy) \ (N[vis] U N[v20])]) = 1, a contradiction.

By Case 1 and 2, we have the lemma holds. O

Lemma 2.6. R4(Cs) < 20.

Proof. Suppose Ky is 4-colorable to Cs. Without loss generality, let
|E(Gy)| > |E(G2)| = |E(G3)| = |E(G4)|. Since |E(K2)| = 190, we have
|E(G1)| = 48 and |E(G2)| = 48. By Lemma 2.2, both Gy and G; are
isomorphic to Hao—; or Hyo_z as shown in Fig. 1. Let V(G)) = {1 <
i < 20} and V(Gz) = {u;|1 < j < 20}, then there exists a good bijection §
such that §(v;) = u;, a contradiction to Lemma 2.3, 2.4 or 2.5. Hence K3o
is not 4-colorable to Cg, that is, R4(Cs) < 20. O

Lemma 2.7. R(Cs,Cs,Cs,C4) < 20.

Proof. Suppose Ko is 4-colorable to (Cs,Cs,Cs,Cs). Since |E(K2o)| =
190 and ex(20; {C4}) = 46 in Table 1, it is forced that |E(G)1)] = |E(G2)| =
|E(G3)| = 48. By Lemma 2.2, we have Gi(1 < i < 3) are isomorphic to
Hog_1 or Hag—2 as shown in Fig. 1. It is sufficient to consider G; and Ga.
Let V(Gy) = {v%|1 < i < 20} and V(G2) = {u;|1 < j < 20}, then there
exists a good bijection 8 such that 8(v;) = uj, a contradiction to Lemma
2.3, 2.4 or 2.5. Hence Ky is not 4-colorable to (Cg, Cg, Cs, Cy), that is,
R(CG, CG7CGa 04) < 20. O

3 The proof of the lower bounds

Lemma 3.1. R(CG,C4,C4, C4) > 19.
Proof. We show a 4-coloring of the edges of K3 where G; = H;3_; for
1 <4 < 4 as shown in Fig. 2. We can easily find that Cg € Hig—1. His—2is
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Fig. 2. The graphs Hyjg_; for 1 <i< 4.

a graph without Cy, both Hs_3 and Hjg_4 are the unique extremal graph
without C4. Hence, we have K3 is 4-colorable to (Cs, Cy, Cy,Cy), that is,
R(CG,C4,C4,C4) >19. 0

Lemma 3.2. R(C;,Cs,C4,Cy) 2> 18.

Proof. We show a 4-coloring of the edges of K7 where G; = Hy4_; for
1 < i < 4 as shown in Fig. 3. We can easily find that C¢ € Hy7_;
and Cg € Hy7—3. Hy7-3 is a graph without containing Cy, and Hj7_4 is
isomorphic to H17_3. Hence, we have K7 is 4-colorable to (Cs, Cs, Cy, C4),
that is, R(Cs,Cs,C4,C4) >18. D

Lemma 3.3. R(Cs,Cs,Cs,Cy) > 18.
Proof. We show a 4-coloring of the edges of K7 where G; & H,,_; for
1 <1< 2 asshown in Fig. 3, and G; = Hy7_(;49) for 3 < i < 4 as shown
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Fig. 3. The graphs Hy7_; for 1 <i < 4.

in Fig. 4. Similarly, we have Cs g Hy7-1 and Cg g Hi7_>. In addition,
Cs € Hi7—s and Hj7_¢ is a graph without containing C4. Hence, we have
K7 is 4-colorable to (Cs,Cs, 06,04), that is, R(Cs, Cs,Cs,C.;) >18. 0O
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Hir-6
Fig. 4. The graphs Hi7_s and Hi7_¢.

(3] S. P. Radziszowski, Small Ramsey numbers, Electronic Journal of
Combinatorics, (2011) R13, 84 pages.

(4] Y. Q. Sun, X. H. Lin, Y. S. Yang, L. Shi, Extremal graphs without
four-cycles or five-cycles, Utilitas Mathematics, 80 (2009) 115-130.

[5] Y. Q. Sun, Y. S. Yang, Z. H. Wang, The value of the Ramsey number
R5(Cs), Utilitas Mathematica, 76 (2008) 25-31.

[6] Y. Q. Sun, Y. S. Yang, X. H. Lin, W. P. Zheng, The value of the
Ramsey number R4(Cj,), Utilitas Mathematica, 73 (2007) 33-44.

[7] Y. Q. Sun, Y. S. Yang, B. Q. Jiang, X. H. Lin, L. Shi, On multicolor
Ramsey numbers for even cycles in graphs, Ars Combinatorie, 84
(2007) 333-343.

[8] X. D. Xu, S. P. Radziszowski, 28 < R(Cy,Cy,C3,C3) < 36, Utilitas
Mathematica, 79 (2009) 253-257.

[9] X. D. Xu, Z. H. Shao, S. P. Radziszowski, Bounds on some Ramsey
numbers involving quadrilateral, Ars Combinatoria, 90 (2009) 337-
344.

[10] Y. S. Yang, P. Rowlinson, On graphs without 6-cycles and related
Ramsey numbers, Utilitas Mathematica, 44 (1993) 192-196.

(11} Y. S. Yang, P. Rowlinson, On extremal graphs without four-cycles,
Utilitas Mathematica, 41 (1992) 204-210.

522



