On the Four Color Ramsey Numbers for Hexagons *

Zhang Rui, Sun Yongqi¹, Wu Yali

School of Computer and Information Technology, Beijing Jiaotong University Beijing, 100044, P. R. China

¹yqsun@bjtu.edu.cn

Abstract

Let G_i be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_i \not\subseteq G_i$ for all $1 \le i \le r$, then G is said to be r-colorable to (H_1, H_2, \ldots, H_r) . The multicolor Ramsey number $R(H_1, H_2, \ldots, H_r)$ is the smallest integer n such that K_n is not r-colorable to (H_1, H_2, \ldots, H_r) . Let C_m be a cycle of length m, the four color Ramsey numbers related to C_6 are studied in this paper. It is well known that $18 \le R_4(C_6) \le 21$. We prove that $R(C_6, C_4, C_4, C_4) = 19$ and $18 \le R(C_6, C_6, H_1, H_2) \le 20$, where H_i are isomorphic to C_4 or C_6 .

Keywords: Extremal graph; Cycle; Multicolor Ramsey number

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. Let G be a graph, the vertex set of G is denoted by V(G), the edge set of G by E(G). Let Ψ denote the set of some graphs, then $ex(n; \Psi)$ is the maximum size of a graph with n vertices, which contains no subgraph isomorphic to any graph in Ψ , and $EX(n; \Psi)$ denotes the set of all graphs with $ex(n; \Psi)$ edges.

 $^{^{\}circ}$ This research was supported by NSFC(60973011), SRFDF(20090009120007) and the Fundamental Research Funds for the Central Universities.

Let G_i be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_i \not\subseteq G_i$ for all $1 \leq i \leq r$, then G is said to be r-colorable to (H_1, H_2, \ldots, H_r) . The multicolor Ramsey number $R(H_1, H_2, \ldots, H_r)$ is the smallest integer n such that K_n is not r-colorable to (H_1, H_2, \ldots, H_r) . In the case of $H_1 \cong H_2 \cong \ldots \cong H_r \cong H$, we simply write $R(H_1, H_2, \ldots, H_r)$ as $R_r(H)$. Let $\alpha(G)$ denote the independence number of G, N[v] the set of vertices adjacent to a vertex v together with v itself, and G[W] the induced subgraph of G by $W \subseteq V(G)$.

Clapham, Flockhart and Sheehan gave the values of $ex(n; \{C_4\})$ and $EX(n; \{C_4\})$ for $n \leq 21$ in [1]. Yang and Rowlinson^[10, 11] studied the values of $ex(n; \Psi)$ for $\Psi = \{C_4\}$ and $\Psi = \{C_6\}$ by a computer. They determined the exact values of $ex(n; \{C_4\})$ for $2 \leq n \leq 31$, $ex(n; \{C_6\})$ for $6 \leq n \leq 21$ and gave the corresponding extremal graphs. Sun et al. further gave the values of $ex(n; \{C_6\})$ for $2 \leq n \leq 26^{[5]}$ and obtained the values of $ex(n; \{C_4, C_5\})$ for $n \leq 21^{[4]}$. By the result of $ex(26; \{C_6\}) = 64$, they showed that $R_5(C_6) = 26$. In [6], Sun et al. showed that $R_4(C_4) = 18$ with the help of a substantial amount of computation. Xu and Radziszowski^[8, 9] studied the four color Ramsey numbers related to cycles, they proved that $21 \leq R(C_4, C_4, C_4, C_3) \leq 27$ and $28 \leq R(C_4, C_4, C_3, C_3) \leq 36$. Dybizbański and Dzido^[2] improved the lower bounds of $R(C_4, C_4, C_4, C_3)$ and $R(C_4, C_4, C_3, C_3)$ to 24 and 30 respectively. For further general reading about the multicolor Ramsey numbers of cycles, see the latest survey provided by Radziszowski^[3].

The four color Ramsey numbers related to C_6 are studied in this paper. It is well known that $18 \le R_4(C_6) \le 21^{[7, 10]}$. By the lemmas in sections 2 and 3, we prove the following theorem,

Theorem 1.1.

$$R(C_6, C_4, C_4, C_4) = 19,$$

 $18 \le R(C_6, C_6, C_4, C_4) \le 20,$
 $18 \le R(C_6, C_6, C_6, C_4) \le 20,$
 $18 \le R_4(C_6) \le 20.$

2 The proof of the upper bounds

Let $V(G_f) = \{v_1, v_2, \dots, v_n\}$, $V(G_s) = \{u_1, u_2, \dots, u_n\}$, and θ is a bijection such that $\theta(v_i) = u_j$ for $1 \le i, j \le n$. For a bijection θ , if $v_i v_j \in E(G_f)$ and

 $\theta(v_i)\theta(v_j) \in E(G_s)$ for some i,j $(1 \le i < j \le n)$, we say it is bad, otherwise called it a good bijection. Let $V(G_f \biguplus G_s) = V(G_f)$ and $E(G_f \biguplus G_s) = \{v_iv_j|v_iv_j \in E(G_f) \cup \theta(v_i)\theta(v_j) \in E(G_s), 1 \le i < j \le n\}$. If θ is a good bijection, then $|E(G_f \biguplus G_s)| = |E(G_f)| + |E(G_s)|$.

The values of $ex(n; \{C_4\})$ and $ex(n; \{C_6\})$ are obtained in [10, 11], which are shown in Table 1.

Table 1. The values of $ex(n; \{C_4\})$ and $ex(n; \{C_6\})$ for $6 \le n \le 20$											
n	6	7	8	9	10	11	12	13	14	15	16
$ex(n; \{C_4\})$	7	9	11	13	16	18	21	24	27	30	33
$ex(n;\{C_6\})$	11	13	16	20	21	23	26	30	31	33	37
n	17	18	19	20							
$ex(n; \{C_4\})$	36	39	42	46							
$ex(n; \{C_6\})$	40	41	44	48							

By the results $ex(19; \{C_6\}) = 44$, $ex(19; \{C_4\}) = 42$, $ex(20; \{C_6\}) = 48$, $ex(20; \{C_4\}) = 46$ and the results in [10], we have Lemma 2.1 and Lemma 2.2 as following.

Lemma 2.1.

$$R(C_6, C_4, C_4, C_4) \le 19,$$

 $R(C_6, C_6, C_4, C_4) \le 20.$

Lemma 2.2. $|EX(20; \{C_6\})| = 2.$

Let $EX(20; \{C_6\}) = \{H_{20-1}, H_{20-2}\}$, then H_{20-1} and H_{20-2} are shown in Fig. 1, where $V(H_{20-1}) = V(H_{20-2}) = \{v_1, v_2, \dots, v_{20}\}$.

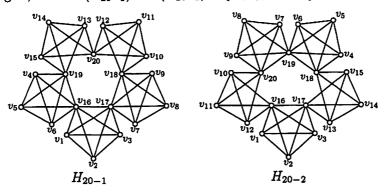


Fig. 1. The graphs H_{20-1} and H_{20-2} .

Lemma 2.3. Let $G_f = H_{20-1}$, $G_s \cong H_{20-1}$ and $V(G_s) = \{u_i | u_i = v_i, 1 \le i \le 20\}$. For any bijection θ where $\theta(v_i) = u_j$ for $1 \le i, j \le 20$, we have θ is bad.

Proof. Suppose there exists a good bijection θ , then there are two subcases depending on $\theta(v_i)$ for $v_i \in \{v_{16}, v_{17}, v_{18}, v_{19}\}$.

Case 1. Suppose there is one vertex of $\{v_{16}, v_{17}, v_{18}, v_{19}\}$ such that $\theta(v_i) = u_j$ for $1 \leq j \leq 9$ or $16 \leq j \leq 20$. If there exists $\theta(v_i) = u_j$ for $1 \leq j \leq 9$, say $\theta(v_{16}) = u_1$, then since $G_s[N[u_1]] \cong K_5$ and θ is a good bijection, v_{16} together with the four appropriate vertices of $V(G_f)$ have to yield a $5K_1$. Note that $\alpha(G_f[V(G_f) \setminus N[v_{16}]]) = 3$, a contradiction. If there exists $\theta(v_i) = u_j$ for $16 \leq j \leq 20$, say $\theta(v_{16}) = u_{16}$, then since $K_5 \subseteq G_f[N[v_{16}]]$ and θ is a good bijection, u_{16} together with the four appropriate vertices of $V(G_s)$ have to yield a $5K_1$. Note that $\alpha(G_s[V(G_s) \setminus N[u_{16}]]) = 3$, a contradiction too.

Case 2. Suppose each vertex of $\{v_{16}, v_{17}, v_{18}, v_{19}\}$ maps to one vertex of u_j for $10 \leq j \leq 15$ in θ . Without loss of generality, let $\theta(v_{16}) = u_{10}$. Since θ is a good bijection and $v_{16}v_{17} \in E(G_f)$, we have $\theta(v_{17})$ is one vertex of $\{u_{13}, u_{14}, u_{15}\}$, say $\theta(v_{17}) = u_{13}$. Then $\theta(v_{18})$ is one vertex of $\{u_{11}, u_{12}\}$, say $\theta(v_{18}) = u_{11}$. Therefore since $G_s[\{u_{10}, u_{11}, u_{12}, u_{20}\}] \cong K_4$, v_{16} and v_{18} together with the two appropriate vertices of $V(G_f)$ have to yield a $4K_1$. Note that $\alpha(G_f[V(G_f) \setminus (N[v_{16}] \cup N[v_{18}])]) = 1$, a contradiction.

By Case 1 and 2, we have the lemma holds. \square

Lemma 2.4. Let $G_f = H_{20-1}$, $G_s \cong H_{20-2}$ and $V(G_s) = \{u_i | u_i = v_i, 1 \le i \le 20\}$. For any bijection θ where $\theta(v_i) = u_j$ for $1 \le i, j \le 20$, we have θ is bad.

Proof. Suppose there exists a good bijection θ , then there are two subcases depending on $\theta(v_i)$ for $v_i \in \{v_{16}, v_{17}, \dots, v_{20}\}$.

Case 1. Suppose there is one vertex of $\{v_{16}, v_{17}, \ldots, v_{20}\}$ such that $\theta(v_i) = u_j$ for $1 \leq j \leq 9$ or $16 \leq j \leq 20$, say $\theta(v_{16}) = u_1$ (or $\theta(v_{16}) = u_{16}$). Then since $G_s[N[u_1]] \cong K_5$ (or $K_5 \subseteq G_s[N[u_{16}]]$) and θ is a good bijection, v_{16} together with the four appropriate vertices of $V(G_f)$ have to yield a $5K_1$. Note that $\alpha(G_f[V(G_f) \setminus N[v_{16}]]) = 3$, a contradiction.

Case 2. Suppose each vertex of $\{v_{16}, v_{17}, \ldots, v_{20}\}$ maps to one vertex of u_j for $10 \leq j \leq 15$ in θ . Without loss of generality, let $\theta(v_{16}) = u_{10}$. Since θ is a good bijection and $v_{16}v_{17} \in E(G_f)$, we have $\theta(v_{17})$ is one vertex of $\{u_{13}, u_{14}, u_{15}\}$, say $\theta(v_{17}) = u_{13}$. Then $\theta(v_{18})$ is one vertex of $\{u_{11}, u_{12}\}$, say $\theta(v_{18}) = u_{11}$. Therefore since $G_s[\{u_{10}, u_{11}, u_{12}, u_{16}\}] \cong K_4$, v_{16} and v_{18} together with the two appropriate vertices of $V(G_f)$ have to yield a $4K_1$. Note that $\alpha(G_f[V(G_f) \setminus (N[v_{16}] \cup N[v_{18}])]) = 1$, a contradiction.

By Case 1 and 2, we have the lemma holds. \square

Lemma 2.5. Let $G_f = H_{20-2}$, $G_s \cong H_{20-2}$ and $V(G_s) = \{u_i | u_i = v_i, 1 \leq v_i \}$

 $i \leq 20$ }. For any bijection θ where $\theta(v_i) = u_j$ for $1 \leq i, j \leq 20$, we have θ is bad.

Proof. Suppose there exists a good bijection θ , then there are two subcases depending on $\theta(v_i)$ for $v_i \in \{v_{16}, v_{17}, \dots, v_{20}\}$.

Case 1. Suppose there is one vertex of $\{v_{16}, v_{17}, \ldots, v_{20}\}$ such that $\theta(v_i) = u_j$ for $1 \leq j \leq 9$ or $16 \leq j \leq 20$, say $\theta(v_{16}) = u_1$ (or $\theta(v_{16}) = u_{16}$). Then since $G_s[N[u_1]] \cong K_5$ (or $K_5 \subseteq G_s[N[u_{16}]]$) and θ is a good bijection, v_{16} together with the four appropriate vertices of $V(G_f)$ have to yield a $5K_1$. Note that $\alpha(G_f[V(G_f) \setminus N[v_{16}]]) = 3$, a contradiction.

Case 2. Suppose each vertex of $\{v_{16}, v_{17}, \ldots, v_{20}\}$ maps to one vertex of u_j for $10 \leq j \leq 15$ in θ . Without loss of generality, let $\theta(v_{18}) = u_{10}$. Since θ is a good bijection and $v_{18}v_{19} \in E(G_f)$, we have $\theta(v_{19})$ is one vertex of $\{u_{13}, u_{14}, u_{15}\}$, say $\theta(v_{19}) = u_{13}$. Then $\theta(v_{20})$ is one vertex of $\{u_{11}, u_{12}\}$, say $\theta(v_{20}) = u_{11}$. Therefore since $G_s[\{u_{10}, u_{11}, u_{12}, u_{16}\}] \cong K_4$, v_{18} and v_{20} together with the two appropriate vertices of $V(G_f)$ have to yield a $4K_1$. Note that $\alpha(G_f[V(G_f) \setminus (N[v_{18}] \cup N[v_{20}])]) = 1$, a contradiction.

By Case 1 and 2, we have the lemma holds.

Lemma 2.6. $R_4(C_6) \leq 20$.

Proof. Suppose K_{20} is 4-colorable to C_6 . Without loss generality, let $|E(G_1)| \geq |E(G_2)| \geq |E(G_3)| \geq |E(G_4)|$. Since $|E(K_{20})| = 190$, we have $|E(G_1)| = 48$ and $|E(G_2)| = 48$. By Lemma 2.2, both G_1 and G_2 are isomorphic to H_{20-1} or H_{20-2} as shown in Fig. 1. Let $V(G_1) = \{v_i | 1 \leq i \leq 20\}$ and $V(G_2) = \{u_j | 1 \leq j \leq 20\}$, then there exists a good bijection θ such that $\theta(v_i) = u_j$, a contradiction to Lemma 2.3, 2.4 or 2.5. Hence K_{20} is not 4-colorable to C_6 , that is, $R_4(C_6) \leq 20$. \square

Lemma 2.7. $R(C_6, C_6, C_6, C_4) \leq 20$.

Proof. Suppose K_{20} is 4-colorable to (C_6, C_6, C_6, C_4) . Since $|E(K_{20})| = 190$ and $ex(20; \{C_4\}) = 46$ in Table 1, it is forced that $|E(G_1)| = |E(G_2)| = |E(G_3)| = 48$. By Lemma 2.2, we have $G_i(1 \le i \le 3)$ are isomorphic to H_{20-1} or H_{20-2} as shown in Fig. 1. It is sufficient to consider G_1 and G_2 . Let $V(G_1) = \{v_i | 1 \le i \le 20\}$ and $V(G_2) = \{u_j | 1 \le j \le 20\}$, then there exists a good bijection θ such that $\theta(v_i) = u_j$, a contradiction to Lemma 2.3, 2.4 or 2.5. Hence K_{20} is not 4-colorable to (C_6, C_6, C_6, C_4) , that is, $R(C_6, C_6, C_6, C_4) \le 20$. \square

3 The proof of the lower bounds

Lemma 3.1. $R(C_6, C_4, C_4, C_4) \ge 19$.

Proof. We show a 4-coloring of the edges of K_{18} where $G_i \cong H_{18-i}$ for $1 \le i \le 4$ as shown in Fig. 2. We can easily find that $C_6 \nsubseteq H_{18-1}$. H_{18-2} is

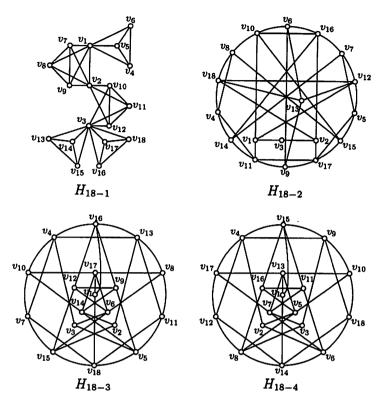


Fig. 2. The graphs H_{18-i} for $1 \le i \le 4$.

a graph without C_4 , both H_{18-3} and H_{18-4} are the unique extremal graph without C_4 . Hence, we have K_{18} is 4-colorable to (C_6, C_4, C_4, C_4) , that is, $R(C_6, C_4, C_4, C_4) \geq 19$. \square

Lemma 3.2. $R(C_6, C_6, C_4, C_4) \geq 18$.

Proof. We show a 4-coloring of the edges of K_{17} where $G_i \cong H_{17-i}$ for $1 \leq i \leq 4$ as shown in Fig. 3. We can easily find that $C_6 \not\subseteq H_{17-1}$ and $C_6 \not\subseteq H_{17-2}$. H_{17-3} is a graph without containing C_4 , and H_{17-4} is isomorphic to H_{17-3} . Hence, we have K_{17} is 4-colorable to (C_6, C_6, C_4, C_4) , that is, $R(C_6, C_6, C_4, C_4) \geq 18$. \square

Lemma 3.3. $R(C_6, C_6, C_6, C_4) \ge 18$.

Proof. We show a 4-coloring of the edges of K_{17} where $G_i \cong H_{17-i}$ for $1 \le i \le 2$ as shown in Fig. 3, and $G_i \cong H_{17-(i+2)}$ for $3 \le i \le 4$ as shown

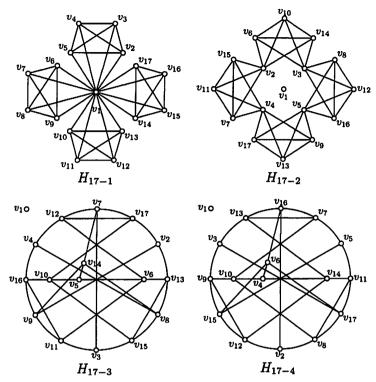


Fig. 3. The graphs H_{17-i} for $1 \le i \le 4$.

in Fig. 4. Similarly, we have $C_6 \nsubseteq H_{17-1}$ and $C_6 \nsubseteq H_{17-2}$. In addition, $C_6 \nsubseteq H_{17-5}$ and H_{17-6} is a graph without containing C_4 . Hence, we have K_{17} is 4-colorable to (C_6, C_6, C_6, C_4) , that is, $R(C_6, C_6, C_6, C_4) \ge 18$. \square

Acknowledgements

We would like to thank the referees for their helpful comments and suggestions which led to the improvement of the present version.

References

- [1] C. R. J. Clapham, A. Flockhart and J. Sheehan, Graphs without four cycles, *Journal of Graph Theory*, 13 (1989) 29-47.
- [2] J. Dybizbański, T. Dzido, On some Ramsey numbers for quadrilaterals, Electronic Journal of Combinatorics, 18 (2011) P154, 12 pages.

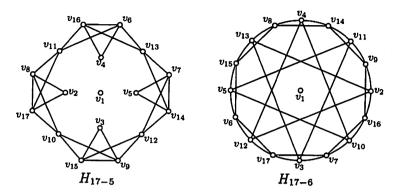


Fig. 4. The graphs H_{17-5} and H_{17-6} .

- [3] S. P. Radziszowski, Small Ramsey numbers, *Electronic Journal of Combinatorics*, (2011) R13, 84 pages.
- [4] Y. Q. Sun, X. H. Lin, Y. S. Yang, L. Shi, Extremal graphs without four-cycles or five-cycles, *Utilitas Mathematics*, 80 (2009) 115-130.
- [5] Y. Q. Sun, Y. S. Yang, Z. H. Wang, The value of the Ramsey number R₅(C₆), Utilitas Mathematica, 76 (2008) 25-31.
- [6] Y. Q. Sun, Y. S. Yang, X. H. Lin, W. P. Zheng, The value of the Ramsey number $R_4(C_4)$, *Utilitas Mathematica*, 73 (2007) 33-44.
- [7] Y. Q. Sun, Y. S. Yang, B. Q. Jiang, X. H. Lin, L. Shi, On multicolor Ramsey numbers for even cycles in graphs, Ars Combinatoria, 84 (2007) 333-343.
- [8] X. D. Xu, S. P. Radziszowski, $28 \le R(C_4, C_4, C_3, C_3) \le 36$, Utilitas Mathematica, **79** (2009) 253-257.
- [9] X. D. Xu, Z. H. Shao, S. P. Radziszowski, Bounds on some Ramsey numbers involving quadrilateral, Ars Combinatoria, 90 (2009) 337-344.
- [10] Y. S. Yang, P. Rowlinson, On graphs without 6-cycles and related Ramsey numbers, *Utilitas Mathematica*, 44 (1993) 192-196.
- [11] Y. S. Yang, P. Rowlinson, On extremal graphs without four-cycles, Utilitas Mathematica, 41 (1992) 204-210.