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ABSTRACT. In this study we define and study the Gaussian Jacob-
sthal and Gaussian Jacobsthal Lucas numbers. We give generating
functions, Binet formulas, explicit formulas and Q matrix of these
numbers. We also present explicit combinatorial and determinantal
expressions, study negatively subscripted numbers and give various
identities. Similar to the Jacobsthal and Jacobsthal Lucas numbers
we give some interesting results for the Gaussian Jacobsthal and
Gaussian Jacobsthal Lucas numbers.

1. INTRODUCTION

Horadam [1] defined the Jacobsthal and the Jacobsthal Lucas sequences
Jn and j, by the following recurrence relations

Jn=Jn1+2Jp_o forn>2
where Jo =0 and J; =1, and
Jn =Jn-1+2jn-2 forn >2

where Jp = 2 and J; = 1 respectively.
The Gaussian Fibonacci sequence in {11] is GFy = i, GF; = 1 and
GF, =GF,_1 + GF,_5 for n > 1. One can see that

GF, = Fra+iFp,

where F,, is the usual nth Fibonacci number.

The Gaussian Lucas sequence in [11] is defined similar to Gaussian Fi-
bonacci sequence as GLg = 2—1, GL, = 1+2i,and GL,, = GL,_1+GLp_2
for n > 1. Also it can be seen that

GLp = Ln+1iLn—

where L, is the usual nth Lucas number.
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The complex Fibonacci numbers and Gaussian Fibonacci numbers are
studied by some other authors [5, 6, 7, 8, 13]. The complex Fibonacci poly-
nomials were defined and studied in [10] by Horadam. Harman [6] give a
new approach toward the extension of Fibonacci numbers into the complex
plane. Before this study there were two different methods for defining such
numbers studied by Horadam [9] and Berzsenyi [3]. Harman [6] general-
ized both of the methods. Good [4] points out that the square root of the
Golden Ratio is the real part of a simple periodic continued fraction but
using (complex) Gaussian integers a + b instead of the natural integers.
The authors in [2] defined the Bivariate Gaussian Fibonacci and Bivariate
Gaussian Lucas Polynomials GF,(z,y) and GL, (z,y). They give gener-
ating function, Binet formula, explicit formula and partial derivation of
these polynomials. Special cases of these bivariate polynomials are Gauss-
ian Fibonacci polynomials F,(z, 1), Gaussian Lucas polynomials L,(z,1),
Gaussian Fibonacci numbers Fy,(1, 1) and Gaussian Lucas numbers L, (1, 1)
defined in [11].

In this study we define and study the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers. We give generating functions, Binet formulas,
explicit formulas and @ matrix of these numbers. We also present explicit
combinatorial and determinantal expressions, study negatively subscripted
numbers and give various identities. Similar to the Jacobsthal and Ja-
cobsthal Lucas numbers we give some interesting results for the Gaussian
Jacobsthal and Gaussian Jacobsthal Lucas numbers.

2. THE GAUSSIAN JACOBSTHAL AND GAUSSIAN JACOBSTHAL LUCAS
NUMBERS

Definition 1. The Gaussian Jacobsthal numbers {GJn} o, are defined by
the following recurrence relation

with initial conditions GJo = % and GJ; = 1.

It can be easily seen that
GJn = Jn + iJn—l
where J,, is the n’th Jacobsthal number.

Definition 2. The Gaussian Jacobsthal Lucas numbers {Gjn},—, are de-
fined by the following recurrence relation

Gins1 = Gijn +2Gjn-1 n 21 (2.2)

with initial conditions Gjo =2 — -;—and Gh=1+2.
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Also
Gjn = jn + ijn—l

where 7, is the nth Jacobsthal Lucas number.
For later use the first few terms of the sequences are as shown in the
following tables
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3. SOME PROPERTIES OF THE GAUSSIAN JACOBSTHAL AND GAUSSIAN
JACOBSTHAL Lucas NUMBERS

Theorem 1. The generating function for Gaussian Jacobsthal numbers is

— 2t+i(1—t)
— ﬂ=____
9(t) = nZ_OGJ“t 2 — 2t — 42

and for Gaussian Jacobsthal Lucas numbers is

4—2t+i(~1+5t)
2— 2t — 4t2

h(t) = i Gint"™ =

n=0
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Proof. Let g(t) be the generating function of the Gaussian Jacobsthal se-
quence GJ, then

g(t) —tg(t) — 2%¢(t) = GJo+t(GJ1 —GJo)
+ D _t"(GJn = GIny — 2GJUn_3)

n=2

(1t
= t+‘lo(§'—§>.

By taking g(t) parenthesis we get
_2+i(1-t)
(t) = 2—2t—4e2°
The proof is completed. O

Now we can get the Binet formula of the Gaussian Jacobsthal numbers
and the Gaussian Jacobsthal Lucas numbers.
Let o and § be the roots of the characteristic equation

?—t-2=0
of the recurrence relation (2.1). Then
a=2, f=-1.

Note that a + 8 =1 and a8 = —2. Now we can give the Binet formula
for the Gaussian Jacobsthal numbers and the Gaussian Jacobsthal Lucas
numbers.

Theorem 2. .
a™ — 571 .an-l - ﬁn_
GJ, = Py +1 poy
and
Gjn =a" +ﬁn +i (an—l +'Bn—1) .
Proof. Theorem can be proved by mathematical induction on n. O

Theorem 3. The explicit formula of Gaussian Jacobsthal numbers s

GJ. = HSJ (n—:—l)2k

k=0

+i lgfzj (n - : - 2)2'°.

k=0

Proof. By mathematical induction on n. O
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Theorem 4. The explicit formula of Gaussian Jacobsthal Lucas numbers
18

Proof. By mathematical induction on n. O

Theorem 5. Let D,, denote the n x n tridiagonal matriz as

1 i 0 -~ 0]
-1 1 2 " o
Do=] 0 -1 1 . 0|21
0
) 0 -1 1|

and let Dy = -;— Then
det D, = GJn,n 2 0.
Proof. By induction on n we can prove the theorem. Forn =1 and n = 2,

detD; = 1=GN
detDs = 1+i=GJa.

Assume that
det Dn_] = GJn—l

and
det D,y = GJp—2.

Then

det D, = detD,_;+2detD,_,
= GJp—1+2GJ,—o
= GJp.
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Theorem 6. Let H,, denote the n x n tridiagonal matriz defined as

'2-% —% 0 - 0]
1 i 2
H, = 0 101 -0 ,n>1
. S
0 0 -1 1]

Then
det Hn = Gjn—-l,n 2 0.

Now we introduce the matrix ¢ and P that plays the role of the Q-matrix
in Fibonacci numbers theory. Let @ and P denote the 2 x 2 matrices defined

|-

1 2 1414
Q=[1 0]andP=[ 1

Then we can give the following theorem:

N =t

Theorem 7. Letn > 1. Then

np_ | GInsz GJnp
L ‘[GJ,,“ G,

where GJ, is the nth Gaussian Jacobsthal number.
Proof. We can prove the theorem by induction on n. For n =1
1 2[144 1] _ [3+i 144
10 1 3 - 1+ 1
_ GJs GJy
- Gl GLh |’
Assume that the theorem holds for n = k, that is

1 2 k 144 1 _ GJk.,.z GJks1
10 1 2] | Gles1 GJe |’

Then for n = k + 1 we have

1214 1] [1 21 2] [1+4i 1
10 1 i T |1o]l1o0 1 i
1 2 Glit+2 GJi+1
= |1 0| Ghar G
_ [ GJrsa GJk+2]
| GJk+2 G4 |7
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We can extend the definition of Gaussian Jacobsthal numbers and Gauss-
ian Jacobsthal Lucas numbers to negative subscripts. We can prove the
following theorem by induction on n.

Theorem 8. Forn>1
Glon = Jon+iJona
(1) (Jn = Jns1)
and
Gj-n = Jontijona
= (—l)n_l(jn - ijn-{-l)
where J,, and j, are the Jacobsthal and Jacobsthal Lucas numbers defined
above.
Theorem 9. (Cassini Identity) Forn > 1
GJIn-1GJny1 — GJ2 = (-1)* (3 —5) 2" 2.
Proof. We can prove the theorem by induction on n.
Forn=1

i

-;-(1 +14) - (1)°

- 3.1
272

1 .
= -30-19
= (-1)'27'(3-14)

and thus the theorem holds. Suppose that the theorem is true for an
arbitrary positive integer k, that is

GJk—1GJrs1 — GJ2 = (-1)* (3 — 1) 2F-2.

GJoGJz — GJ}

Then for k 41
GJiGJi42 = GJE,,
(GJr+1 — 2GJk-1) (GJk41 + 2GJx) — GJE,,
GJR1 +2GJk41GJx — 2GJi—1GJkt1 — 4G Jk—1GJi — GJE,,
2GJk+1G T — 2GJ5-1GJx4+1 — 4G J1G Iy
2GJk+1GJx ~ 4G Jp—1GJx + (—1)¥+12(3 — i) 252 — 2GJ?
2GJi41G Iy — 4G Te_1GJx + (—1)F+1 (3 — 4) 281 — 26 J2
= 2GJk (GJrs1 — GJx — 2GJk—1) + (1)t (3 —4) 2%-?
(_1)k+1 (3-1) gk—1
This completes the proof. a
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Theorem 10. Forn >1
Gijn—2Gins2 — Gz = (-1)"9(3 - 7).

Proof. Theorem can be carried out by induction on n. 0

Theorem 11. Forn > 1
Gj2 -9GJ: = (3 -4)(-1)" 2" 1!

Proof. Theorem can be proved by mathematical induction on n. ]

Theorem 12. Forn>1
Gjn = GJn+] + 2GJn_.1.
Proof.

Gin = Gjn-1+ 2Gjn—2

= GJn+2GJn_2
+2(GJn_1 +2GJTn_3)

= GJn + QGJn_z
2GJn—1 +4GJn—3

= GJn+2GJn
+2(GJn-2 +2GJn-1)

= GJn.H +2GJn—-1

O

Theorem 13. The sum of the Gaussian Jacobsthal and the Gaussian Ja-
cobsthal Lucas numbers are given as:

(i) Z GJi = % [GIn+2 —1)]
k=0

() Y Gl = 5 Gtz = (1+20)
k=0

Proof. (i) For n > 2 we have

GJn_l = ‘;‘GJ;;-{-] - %GJn.



Then from this equation

Gly = %GJz—%GJl
Gl = %013-%@2
Gl = %G’L—%GJ:;

Gluy = %GJ,.“—%GJ,,
1 1

By adding both sides of the equations we get

= 1
> Gl =5 [Glnt2—1].
k=0
This completes the proof. O

Theorem 14. Form >0 andn >0

Proof. By the Binet formulas of the numbers we have

m__ am m—1 _ gm-—1
(a b +iZ Bt )(a"+ﬂ"+i(a"‘1+ﬂ”_1))

a-4 a-
n_ an n-1_ gn-1

02'32 (za — ﬂ) (azﬂm-{-n _ am+nﬂ2 _ 2ia25m+n+l
+2iam+n+1ﬂ2 _ a2ﬂm+n+2 + am+n+2ﬁ2)
+2iQm Rl _ gmin 4 gmen)

= =2 (—Jn+m—‘2 - Jn+m - iJn+m—l - 'iJn+m—l)

2 (Jngm—2 + GJnym +itJnym—1)

O

Similar to the Jacobsthal and Jacobsthal Lucas numbers we can give
the following interesting results for the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers. These theorems can be carried out by induction

on n.
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Theorem 15. Forn >0
GJnGjn = GJon + iJon—1 — J2n—2
where J, is the nth Jacobsthal number.
Theorem 16. Forn >0
Gin41 + 2Gjn—1 = 9GJ,
Theorem 17. Forn >1
Gjn+1+Gin = 3(GJn+1+GJn)
3(2+1)2"?
Theorem 18. Forn >0
3GJ, +Gin=(2+17)2"
Theorem 19. Forn >0
GJn + Gjn = 2GJn 41

Theorem 20. Form >0 andn >0
GjmGin +9GInGJm =4 (3.2™ ! + ijnim—1)
where jy is the nth Jacobsthal Lucas number.
Theorem 21. Forn > 1
G52 +9GJ2 =4 (32" +ijan—1)
where j, is the nth Jacobsthal Lucas number.
Theorem 22. Form >0 andn >0
GInGin — GInGim = (1)1 (3 —1) 2" Jmn
where J, is the nth Jacobsthal number.
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