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Abstract

Let G be a finite group of order n and S (possibly, contains the
identity element) be a subset of G. The Bi-Cayley graph BC(G, S)
of G is a bipartite graph with vertex set G x {0,1} and edge set
{{(g,0),(g93,1)}|g € G,s € S}. Let p (0 < p < 1) be a fixed number.
We define B = {X = BC(G,S),S C G} as a sample space and
assign a probability measure by requiring P-(X) = p*¢"~*, for X =
BC(G, S) with |S| = k. Here it is shown that the probability of the
set of Bi-Cayley graph of G with diameter 3 approaches 1 as the

order n of G approaches infinity.
Keywords: Bi-Cayley graph; Random; Diameter.

1 Introduction

Let G be a finite group and S be a subset of G \{1}, then we can define
a directed graph D(G, S) with vertex set G and arc set {(g,h) : g"*h € S}.
If $ = §71, then D(G, S) corresponds to an undirected graph which we
call a Cayley graph and is denoted by C(G, S). To study semi-symmetric
graphs, Xu defined the Bi-Cayley graph in [6]. For a finite group G and a
subset S (possibly, contains the identity element) of G, the Bi-Cayley graph
X = BC(G, S) of G with respect to S is defined as the bipartite graph with
vertex set G x {0, 1} and edge set {{(g,0),(gs,1)}|g € G,s € S}.
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It is known that almost all graphs have diameter 2 [1] and almost all
bipartite graphs have diameter 3 [7]. For special class of graphs, it was
proved that almost all Cayley digraphs have diameter 2 in [3], and this
was extended to Cayley graphs in [2]. Here, we will establish a model of
random Bi-Cayley graphs and prove that almost all Bi-Cayley graphs have
diameter 3.

Throughout this paper we assume that G is a finite group with order
n, p (0 < p < 1) is a fixed number and ¢ = 1 — p. We consider labelled
graphs.

To define the random Bi-Cayley graphs of G, we illustrate the so-called
random subset of a set T. When we say that S is a random subset of T', we
mean that P.(e € S) = p and the events a; € S(i =1,2,.--,|T|) are mu-
tually independent. In particular, a random Bi-Cayley graph of a group G
is a Bi-Cayley graph associated with a random subset S (possibly, contains
the identity element ) of G. Now we can introduce our model. Let P(G, p)
be the probability space (B, 28, P) where B = {X = BC(G, S)|S C G},25
is the power set of B, and P is probability measure (with respect to p) on
B, P.(X) = p*q"~*, for X = BC(G, S) with |S| = k.

Remark 1.1. If S = G, then X = BC(G,S) is a complete Bi-Cayley
graph, and it is the only Bi-Cayley graph with diameter 2 in all Bi-Cayley
graphs of G.

Remark 1.2. If p = q = 4, then each Bi-Cayley graph of G is assigned
the same probability -2-1;, and so the probability of an event in this case is
the ratio of the number of Bi-Cayley graphs contained in this event to the
number |B|.

Let @ be a graph property. We say that almost all Bi-Cayley graphs
have property Q if for any group of order n, the probability of the event that
a bi-Cayley graph of G has the property @ approaches 1 as n approaches
infinity.

2 Main Results

Let X = BC(G, S). We call S the symbol set of BC(G, S). When we
talk about events and probability, we mean events and probability in the
space P(G, p) defined in the previous section.



The following theorem is one of our main results.
Theorem 2.1. Almost all Bi-Cayley graphs have diameter 3.
To prove the above theorem, we establish a sequence of Lemmas.

Lemma 2.1. Let X = BC(G,S). Then Aut[X] acts transitively on the
sets of its bipartition of X, thus Aut[X] has at most two orbits on the vertex
set of X.

Proof. See [6] for details. 0

Recall that the diameter of a graph X, denoted by diam(X), is the
maximum distance d(z,y) between any two vertices of X. That is

diam(X) = maz{d(z,y)|z,y € V(X)}.

Clearly, a Bi-Cayley graph has diameter & if every pair of its vertices
are connected by a path of length not greater than k and at least one pair
is not connected by a shorter path. The necessary and sufficient condition
for any Bi-Cayley graph to have diameter 3 is that every pair of vertices in
the same part of its bipartition should be joined by a 2-path. Because, if
this is not true for some pair of vertices in the same part of its bipartition,
the diameter is at least 4. Next, suppose that every pair of vertices in the
same part of its bipartition is joined by a 2-path and consider the pair of
vertices (z,0), (y,1). If the edge {(z,0), (¥, 1)} is present, a 1-path suffices,
(only in the complete graph is this true for every pair (z,0), (y,1)). If the
edge {(z,0),(y,1)} is absent, some edge {(z,0),(z,1)} must be present,
since (z,0) cannot be isolated. But (z,1) and (y,1) are joined by a 2-
path and hence (z,0) and (y,1) are joined by a 3-path. For Bi-Cayley
graph X = BC(G, S), it is to see that the left multiplication L, : (g,i) —
(ag,i),g € G, (i = 0,1) for any element a € G, is clearly an automorphism
of BC(G,S). All these left multiplications constitute a group Lg which
acts transitively on G x {0} and G x {1}, respectively.

We then have the following:

Lemma 2.2. Let X = BC(G,S). Then diam(X) = 3 if and only if for
everyy € G, (1,%) and (y,i) (i = 0,1) are joined by a 2-path.
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Now we consider a set of events. For g € G, we use E(g) to denote
the event that g is contained in the symbol set S of a Bi-Cayley graph
BC(G, S) of G. Then by our assumption, P.(E(g)) = p for any g € G.
For distinct elements g;(0 < i < n), the events E(g1), E(g2),--- , E(gn) are
mutually independent.

The following events will play important roles in discussions below.

E,: diam(X) is at most 3.

E.(y): (1,0) and (y,0) are joined by a 2-path and (1,1) and (y,1) are
also joined by a 2-path in a Bi-Cayley graph of G.

E(s1,82,Y) : 81,52,¥” 151, and sy are contained in the symbol set of a
Bi-Cayley graph of G.

E(s2,51,9) : 81,82,y !s2, and s,y are contained in the symbol set of a
Bi-Cayley graph of G.

G x {0} G x {0}

G x {1} G x {1}
Fig.1 Fig.2

Lemma 2.3. The following statements hold:
(a) En = NycgEn(y) or equivalently, E, = Uyec En(y)-
(5) Ea(y) € Nisy,05)cc{1E (51, 52,) N E(s2, 81, 9)}-

Proof. (a) follows from Lemma 2.1. To prove (b), it suffices to note that
if the event E,(y) occurs, then some s1, sz, and y~1s1, s2y, or si, 52, and
y~1s,, 5,y are contained in the symbol set(as F'ig.1 and F'ig.2 show), and so



there is a 2-path between the pair of vertices in the same part of its biparti-
tion of BC(G, S), clearly, En(y) 2 Uy, 0,3cc{E(1,52,9) U E(s2, 51, %)}
This completes the proof. a

Now we estimate the probability of the event E(sy, s3,¥) () E(s2, $1,¥).

Lemma 2.4. The probability of the event E(sy, s9,y) () E(s2,51,y) has
three cases:
(a) If E(s1, 82,y) and E(s2,s1,y) occur:

P.(E(s1,52,9) N E(s2,51,9))

[ 1-(2p* - 7°) if 81,820,911, 829,y
mutually different.

1- (@ +p'—p°) ifsi=soy andsa#y"
and sy # say and sy, s2,¥ " 182, 51y are
mutually different,

1-@P*+p*—p°) ifsi =y lsa and sy # s1y or sp = s1y
and s, # y~1s; and sy, 82,y 181, 82y are
mutually different.

1-(20° -p*) if 81 # s2; 81 =82y, 82 #y 11 or

s2 =y 151,81 # say and 51 =y~ sy,
1

13, and s,y are

lg, orsg =y~ ls

S # 51y Or 82 = 81y, S1 F Y 'so.
1-p? if 51 # s2;81 = 8oy and s, =y~ sy

and s; =y~ 1's; and 53 = 51y.
1-(p®+p?-p?) if sy =53, y~ls1 =82y and y~lsp # 519

or sy = Sg, Y lsy =51y and y~ls; # sqy.
[ 1-(2p% - p%) if s1=s82, y1s1 =80y andy~lsy = s13.
(b)If E(sy,s2,y) occurs and E(sq,51,y) does not occur:

Pr(E(s1,52,y) N E(s2, 51, ¥))

[(1—p? if 51,50,y7 sy and say are mutually different .
1—p% ifs) # sy and sy = soy and sp #y~ s

or sy =y~ s, and s; # s2y or sy =y~ lsy.

1—-p% ifs) # s, and s, = spy and s; =y~ lsy.
1-p® ifs) =s2,y71s1 # 529

[ 1-p% ifs1 =82,y 51 = sy

(c)If E(s2, s1,y) occurs and E(s1,s2,y) does not occur:

=9
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Po(Eor 559 N Blor50,7))

((1-p* ifs1,82,y sz and s,y are mutually different.
1-p3 ifsy #s3 orsy =5y ands; #y sy

_ or sy =y ls; and sy # 51y or s1y =y~ lso.

1-p% ifs; # sy and s = s,y and 3; = y~ls,.

1-p3 ifs) =352,y 18y # a1

[ 1-p% if sy =s2,y7 s = soy.

Proof. We have the following cases to prove it.
Casel: Assume E(sy, s2,y) and E(s, s1,y) occur:

Casel.l. If s1,s5,y7 151,529,y s, and s,y are mutually different,
then P.({E(s1)NE(s2)NE(y~1s1)NE(s2y)} U{E(s1)NE(s2)NE(y~1s3)N
B(s19)}) = P({E(s1) N E(s2) NE(y="s1) N E(s2)}) + Pr({E(51) N E(s2)
E(y~'s2)NE(s19)}) — P-({E(s1) N E(s2) N E(y~'s1) NE(s2y) N E(y~1s2) N
E(s1y)} = 2p* — p°.

Casel.2. If s; = soy and s3 # y~!s; or s = y~!s; and sy # soy and
81,82,y 82, 51y are mutually different, then P.({E(s;)NE(s2)NE(y~1s1)N
E(s29)}U{E(s1) N E(s2) N E(y~'s2) N E(s19)}) = P-({E(s1) N E(s3) N
E(y~1s1)NE(s29)})+Pr({E(s1)NE(s2)NE(y~* s2)NE(s19) )~ Pr({E(s1)N
E(s2) N E(y~'s1) N E(s2y) N E(y~'s2) N E(s1y)} = p° +p* — p°.

Casel.3. If s; = y~1s; and s3 # sy or s3 = s,y and s; # y~lspand
s1, 52,y 181, s2y are mutually different, then P.({E(s1)NE(s2)NE(y~1s;)N
E(sa)}U{E(s1) 0 E(s3) N E(y~155) N E(s19)}) = P-({E(s1) 1 E(s2) N
By~ s1)NE(s29)})+P-({E(s1)NE(s2)NE(y= s2)NE(s19)}) - P-({E(s1)N
E(s2) N E(y~'s1) N E(s2y) N E(y~'s3) N E(s1y)} = p* +p* — p5.

Casel.4. If sy # s9;81 = Say, S2 # y"lsl or 89 = y'131,31 # Sy and
s1 = y 183,85 # s1y or 53 = 51,81 # y~'sg, then P.({E(s;) N E(s2) N
E(y~'s1)N E(s2y)} U{E(s1) N E(s2) NE(y~s2)N E(s19)}) = Pr({E(s1) N
B(s2) " B(y~Ys1) N B(saw)}) + Pr({E(s1) N E(s2) N Bly~52) N B(s19)}) -
P.({E(s1) N E(s2) N E(y~ts1) N E(s2y) N E(y~1s2) N E(s1y)} = 2p® — p.

Casel.5. If s; # so; 51 = soy and s; =y~ 1s; and s; =y~ sy and s =
81y or sp = 819, then P.({E(s1) N E(s2) N E(y~1s1) N E(s2y)} U{E(s1) N
E(s2)NE(y~s2) N E(s19)}) = P-({E(s1) N E(s2) N E(y~'s1) N E(s2y)}) +
P.({E(s1) N E(s3) N E(y~*s5) N E(s19)}) - P-({E(s1) N E(s2) N E(y~1s,) N
E(s2y) N E(y~'s2) N E(s1y)} = p*.

1
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Casel.B. If sy =55,y !s; = soyand y~ sy # syyors; = sz, y7lsy =
s1y and y~1s; # say, then P.({E(s1)NE(s2)NE(y~1s1)NE(s2y)} U{E(s1)N
E(s2)NE(y~'s3) N E(s1)}) = P-({E(s1) N E(s2) N E(y~"s1) N E(s29)}) +
P-({E(s1)NE(s2) N E(y~'s2) N E(s19)}) — Pr({E(s1) NE(s2) N E(y~'s1) N
E(s2y)} N E(y~'s2) 0 E(s1y)} = p° +p* — p*.

Casel.7. If s; = s3 , y~!51 = soy and y~1s; = sy, then P.({E(s1) N
E(s2) N E(y~'s1) N E(s2y)} U{E(s1) N E(s2) N E(y~'s2) N E(s1y)}) =
Pr({E(s1)NE(s2) N E(y~'s1) N E(s29)}) + P-({E(s1) N E(s2) N E(y~"s2) N
E(513)}) - P-({E(s1) N E(2) N E(y~"1) N E(s3) N E(y~*s2) N E(s13)} =
2p% — pd.

2p — p8,p° + p* — 1°,2p° — p*, p® + p? — p?, and 2p? — p® are strictly
monotone increasing function of p on (0,1), thus they not more than 1 and
not less than 0. Thus (a) is proved.

Case2: Assume E(sy, s9,y) occurs and E(sg, s1,y) does not occur:

Case2.1. If 51, 55,9~ !s; and spy are mutually different, then P.({E(s;)N
E(s3) N E(y~'s1) N E(s2y)} U{E(s1) N E(s2) N E(y~'s2) N E(s1y)}) =
P.({E(s1) N E(s2) N E(y~'s1) N E(s29)}) = p*.

Case2.2. If sy # s and s; = soy and sy # y~1s; or s3 = y~ls;
and s; # spy or spy = y~ls;, then P.({E(s1) N E(s2) N E(y~'s;) N
E(s2y)} U{E(s1) N E(s2) N E(y~'s2) N E(s19)}) = Pr({E(s1) N E(s2) N
E(y~'s1) N E(s29)}) = p.

Case2.3. If 57 # s; and s; = spy and s2 = y~!sy, then P.({E(s;) N
E(s2) N E(y~'s1) N E(s29)} U{E(s1) N E(s2) N E(y~s2) N E(s1y)}) =
P-({E(s1) N E(s2) N E(y~!s1) N E(s2y)}) = p°.

Case2.4. If s; = 55,y 151 # sy, then P.({E(s1)NE(s2)NE(y~s1)N
E(s2y)} U{E(s1) N E(s2) N E(y~!s2) N E(s19)}) = Pr({E(s1) N E(s2) N
E(y~'s1) N E(s2)}) = °

Case2.5. If s; = 53,y 1s1 = sgy, then P.({E(s1)NE(s2)NE(y~s1)N
E(s2y)} U{E(s1) N E(s2) N E(y~'s2) N E(s1y)}) = P-({E(s1) N E(s2) N
E(y~'s;) N E(s2y)}) = p?. Thus (b) is proved.

Case3: Assume E(s;,s;,y) occurs and E(s), s3,y) does not occur :

Case3.1. If 51, 52,y !s; and s,y are mutually different, then P.({E(s;)N
E(s2) N E(y~'s1) N E(s2y)} U{E(s1) N E(s2) N E(y~'s2) N E(s1y)}) =
P.({E(s1)N E(s2) N E(y~'s2) N E(s19)}) = p*.

Case3.2. If s; # s2 and s = s;y and 57 # y~!sy or 51 = y~lsy
and so # s1y or s1y = y lsp, then P.({E(s;) N E(s2) N E(y~!s1) N
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Blea) U(E() 0 Ee) 0 By~ 0 () = PU(E() 1 Bl
E(y~'s3) N E(s1y)}) =

Case3.3. If s; # s and sy = 1y and 57 = y~1s; and s,y = y~ls,,
then P.({E(s1)NE(s2)NE(y~ts;)NE(s29)} U{E(s1)NE(s2)NE(y~1s2)N
E(s19)}) = P-({E(s1) N E(s2) N E(y~'s3) N E(s19)}) = p?

Case3.4. If 5y = 33,y 183 # 81y, then P.({E(s1)NE(s2)NE(y~1s;)N
E(s29)} U{E(s1) N E(s2) N E(y~'s3) N E(s19)}) = P-({E(s1) N E(s2) N
E(y~'s:) N E(s19)}) =

Case3.5. If 51 = s,y 152 = 51y, then P.({E(s1)NE(s2)NE(y~1s1)N
E(s29)YU{E(s1) N E(s2) N E(y~1s2) N E(s1y)}) = P-({E(s1) N E(s2) N
E(y~!s;) N E(s1y)}) =

Thus (c) is proved. Since y # 1, above is sufficient. This completes the

proof.
(]

For sy, 82 € G, set T(s1, 52) = {51,y 1, 82, 82, Y81, Y52, Y829, ¥~ 1519~
81971, 50y~ y~ 182, 519, ys19, ¥ 1s2y~!}. By a trivial check, we can de—

duce the following:

Lemma 2.5. Let sy, 82,583,584 € G. Ifs3,sq4 & T(s1,82), then {s1, 82,y 151, 821
v~ 1s2, 819} N {s3, 54,y 183, 54y, ¥ 154, 83y} =2.

Lemma 2.6. [{]If {E1,E, - ,Eix,En,Eja, -+ ,Ejs, -+ ,Eu,Eia,- -+ , Ey}
is an independent collection of events, then {NE,_; Eim,N%z1 Ejm, ++ ,Nbuey Eim}
is also an independent collection of events.

Now we estimate the probability of the event E,(y).
Lemma 2.7. P.(E,(y)) < (1 - p*)&R2),

Proof. Let s;,52 be any elements in Cp = G \ {y}. Choose any elements
83,84 in Cy = Co \ T(s1,52). Generally, if {s1,s2},{s3,84},*+ , {84, 8641}
have been chosen, C; = C;_; \ T(s2i—1,52i), and |Ci| > 2, choose two
distinct elements in C; as sp;41 and s2;42. According to the above rule,
we can clearly choose at least L%QJ + 1 such {s;,sit1} tuples. Let
{s1,82}, {33,584}, -+ , {S2k+1, S2k4+2} be chosen in the above way and k>
|21 | and denote J = {i|l <i<2k+1andiis an odd number}.
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By Lemma 2.5, we know that {E(si, sit1,¥) U E(Si+1,8,%);t € [} is a
set of independent events. By Lemma 2.3,

E.() € [ {E(st, 8541, %) [ ) E(si41,54,9)}
iel

. Combining Lemma 2.3, Lemma 2.4, and Lemma 2.6, we have
P (E.()) < P(({EGt si41,9)) [V E(sir1, 0, 9)})
iel
= Wier P-({E(s6, 50+, ) [ ) E(si41, 56, 9)})
S (#)I.!“ip 11!J,
where p = max{1 — (2p* - p°),1 - (2p® - p°),
1- @ +p*—p*),1 - (@° +p* -9%),1 - p",
1-(2p*-p°)} =1-p"

This completes the proof.
O

Now we are in the position to prove Theorem 2.1.
Proof of theorem 2.1. By Lemma 2.3, Lemma 2.4, and Lemma 2.7, we

have

P(En) = P Ba)) £ 3 P(Ba@)) < (1 — p) LR,

e yeG

Thus lim,, .o P-(E,) = 0 and hence limy, o, P-(E,) = 1. The theorem
follows by noting that there is only one Bi-Cayley graph BC(G, S) of G
with diameter 2.

Remark 2.1. Theorem 2.1 holds not only for fized p but also for those
p's having relation with the order of G under the condition that n(1 —
pﬂlg}ﬁm] — 0 asn — oo.

Corollary 2.1. Almost all Bi-Cayley graphs are connected.
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