Edge-colorings of complete bipartite graphs without large rainbow trees*

Zemin Jin, Lifen Li

Department of Mathematics, Zhejiang Normal University

Jinhua 321004, P.R. China

Abstract

Let \mathcal{G} be a family of graphs. The anti-Ramsey number $AR(n,\mathcal{G})$ for \mathcal{G} is the maximum number of colors in an edge coloring of K_n that has no rainbow copy of any graph in \mathcal{G} . In this paper, we determine the bipartite anti-Ramsey number for the family of trees with k edges.

Key Words: anti-Ramsey number, tree, rainbow.

AMS subject classification (2010): 05C05, 05C15, 05C55.

1 Introduction

An edge-colored graph is called rainbow if any of its two edges have distinct colors. Let \mathcal{G} be a family of graphs. The anti-Ramsey number $AR(n,\mathcal{G})$ for \mathcal{G} is the maximum number of colors in an edge coloring of K_n that has no rainbow copy of any graph in \mathcal{G} . The Tur'an number $ex(n,\mathcal{G})$ is the maximum number of edges of a simple graph without a copy of any graph in \mathcal{G} . Clearly, by taking one edge of each color in an edge coloring of K_n , one can show that $AR(n,\mathcal{G}) \leq ex(n,\mathcal{G})$. When \mathcal{G} consists of a single graph H, we write AR(m,H) and ex(n,H) for $AR(m,\{H\})$ and $ex(n,\{H\})$, respectively.

Anti-Ramsey number was introduced by Erdős et al. in [5], which is showed to be connected not so much to Ramsey theory than to Turán numbers. The anti-Ramsey numbers for some special graph classes have been determined. As conjectured by Erdős et al. [5], the anti-Ramsey

^{*}This work was supported by NSFC (11101378), Zhejiang Innovation Project (Grant No. T200905) and ZJNSF (Z6090150).

Email: zeminjin@gmail.com (Jin), lilifen_0408@126.com (Li).

number $AR(n, C_k)$ for cycles was determined for $k \leq 6$ in [1, 5, 8], and later completely solved in [13]. The anti-Ramsey number $AR(n, P_{k+1})$ for paths was determined in [15]. Independently, the authors of [12] and [14] considered the anti-Ramsey number for complete graphs. The anti-Ramsey numbers for other graph classes have been studied, including small bipartite graphs [2], stars [6], subdivided graphs [7], trees with order k [9], graphs with independent cycles [10] and matchings [4,14]. The bipartite analogue of the anti-Ramsey number was studied for even cycles [3], stars [6] and matchings [11].

Naturally, the host graph K_n in the anti-Ramsey number can be generalized to any graph G. The anti-Ramsey number $AR(G, \mathcal{G})$ for the family \mathcal{G} in G is the maximum number of colors in an edge coloring of G that has no rainbow copy of any graph in \mathcal{G} .

In this paper, we consider the bipartite anti-Ramsey number $AR(K_{a,b}, \mathcal{I}_k)$, where \mathcal{I}_k denote the family of trees with k edges. Let $\mathcal{L}(K_{a,b}, k)$ denote the family of subgraphs of $K_{a,b}$ every two components of which together have at most k vertices. Let $l(K_{a,b}, k)$ be the maximum size of a graph in $\mathcal{L}(K_{a,b}, k)$.

Let G be a graph and c be a coloring of E(G). A representing subgraph of c is spanning subgraph L of G which has exactly one edge of each color of c. For an edge $e \in E(G)$, denote by c(e) the color assigned to the edge e.

Let $H \subseteq G$. A coloring c of G is induced by H if c assigns distinct colors to each edge of H and assigns one additional color to all of $E(G)\setminus E(H)$.

2 Main Theorem

Obviously, $AR(K_{a,b}, \mathcal{T}_k) = ab$ if $k \geq a + b$. The following lemma is obvious.

Lemma 2.1 [9] Let $G \subseteq K_{a,b}$ where every two components together have at most k vertices, then a coloring of $E(K_{a,b})$ induced by G has no any rainbow trees with k edges.

Lemma 2.2 [9] Let G be a connected graph. Then G contains a vertex w such that for all $e \subseteq E(G)$, the component of G - e containing w has at least $\frac{|V(G)|}{2}$ vertices.

As in [9] for the complete graphs, we have the following analogue result. In fact, the following result holds also for any host graphs with a component of order at least k + 1.

Theorem 2.3 For a + b > k, $AR(K_{a,b}, \mathcal{I}_k) = l(K_{a,b}, k) + 1$.

Proof. By Lemma 2.1, we have the lower bound. So here we only need to show that $AR(K_{a,b}, \mathcal{I}_k) \leq l(K_{a,b}, k) + 1$.

Let c be a coloring of $E(K_{a,b})$ which avoids rainbow trees with k edges. Let H be a representing subgraph of c that has a largest possible component, denoted by F_1 . It is obviously that every component of H has at most k vertices. It suffices to show that $|E(H)| \leq l(K_{a,b},k) + 1$.

By Lemma 2.2, F_1 contain a vertex w such that for all $e \in E(F_1)$, the component containing w in $F_1 - e$ has at least $\left\lceil \frac{|E(F_1)|}{2} \right\rceil$ vertices. Let F_2 be a component in $H - F_1$ and let $v \in V(F_2)$. Since H is a representing subgraph of c and $wv \notin E(H)$, there is an edge $e' \in E(H)$ with color c(wv), and H' = H - e' + wv is also a representing subgraph of c. The edge e' must be a cut edge of F_1 , since otherwise H' has a component with order larger than F_1 .

Let F_3 and F_4 be the two components of $F_1 - e'$ where $w \in F_3$. So $|V(F_3)| \ge |V(F_4)|$. From the choice of H, we have that $|V(F_3)| \ge |V(F_4)| \ge |V(F_2)|$. This implies that F_3 and F_4 are the two largest components of H - e. From $|V(F_3)| + |V(F_4)| = |V(F_1)| \le k$, any two components of H - e together has at most k vertices. Hence $H - e \in \mathcal{L}(K_{a,b},k)$ and $|E(H - e)| \le l(K_{a,b},k)$. Then $|E(H)| \le l(K_{a,b},k) + 1$.

3 Computing $l(K_{a,b}, k)$

Lemma 3.1 Let $a, b, c, d \ge 0$ and a + b = c + d. If $|a - b| \le |c - d|$, then $|E(K_{a,b})| \ge |E(K_{c,d})|$.

Let $|a-b| \leq 1$ and a+b > p. Let $\mathcal{J}_{a,b,p} = rK_{\left\lceil \frac{p}{2} \right\rceil, \left\lfloor \frac{p}{2} \right\rfloor} + K_{\left\lceil \frac{s}{2} \right\rceil, \left\lfloor \frac{s}{2} \right\rfloor} \subseteq K_{a,b}$, where $r = \lfloor \frac{a+b}{p} \rfloor$ and s = a+b-rp.

Lemma 3.2 Let $|a-b| \le 1$, a+b > p and $G \subseteq K_{a,b}$. If each component of G has at most p vertices, then $|E(G)| \le |E(\mathcal{J}_{a,b,p})|$. Furthermore, the equality holds if and only if $G = \mathcal{J}_{a,b,p}$.

Proof. Let $G \subseteq K_{a,b}$ be a graph with the largest number of edges where every component has at most p vertices. We choose G to have as many components of p vertices as possible. Then the followings must hold.

- (1) Each non-trivial component of G is complete bipartite.
- (2) Every two components of G together have at least p vertices.

The following claims are easy to verify.

Claim 1. For every two components of G, there is one component with p vertices.

Claim 2. There is a component G_0 with s (if s > 0) vertices in G, and each other component of G has p Claim 3. If s > 0, then $G_0 = K_{\lceil \frac{s}{2} \rceil, \lceil \frac{s}{2} \rceil}$.

Claim 4. Each component of $G - G_0$ is $K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil}$.

The lemma follows clearly from the claims above.

Let $H_m = K_{\lceil \frac{m}{2} \rceil, \lfloor \frac{m}{2} \rfloor} + \mathcal{J}_{a-\lceil \frac{m}{2} \rceil, b-\lfloor \frac{m}{2} \rfloor, k-m} \subseteq K_{a,b}$, where $\lceil \frac{k}{2} \rceil \leq m \leq k-1$, $b \leq a \leq b+1$ and a+b>k. Clearly, $H_m \in \mathcal{L}(K_{a,b},k)$ and H_m contains a component with m vertices.

Lemma 3.3 Let $\lceil \frac{k}{2} \rceil \leq m \leq k-1$, $b \leq a \leq b+1$, a+b > k and $G \in \mathcal{L}(K_{a,b},k) \subseteq K_{a,b}$. If there is a component with m vertices in G, then $|E(G)| \leq |E(H_m)|$.

Proof. We choose G with the largest number of edges. Note that each non-trivial component of G is complete bipartite. Denote by A and B the parts of $K_{a,b}$, where |A|=a and |B|=b. Let G_0 be a component with m vertices in G and let $G_0=K_{e_0,f_0}$ where $|V(G_0)\cap A|=e_0$ and $|V(G_0)\cap B|=f_0$. Then each component of $G-G_0$ contains at most k-m vertices.

Now we prove that $|e_0 - f_0| \le 1$. Suppose that $e_0 \ge f_0 + 2$. From $b \le a \le b + 1$, there exists a component $G_1 = K_{e_1, f_1}$ in $G - G_0$, where $|V(G_1) \cap A| = e_1$ and $|V(G_1) \cap B| = f_1$, such that $f_1 \ge e_1 + 1$.

Let $G_0' = K_{e_0-1,f_0+1}$ and $G_1' = K_{e_1+1,f_1-1}$, where $V(G_0 \cup G_1) = V(G_0' \cup G_1')$. It is obvious that $G' = G - G_0 - G_1 + G_0' + G_1'$ contradicts the choice of G. So $e_0 - f_0 \le 1$. Also, from $b \le a$, we can show that $0 \le e_0 - f_0 \le 1$. Clearly, $G_0 = K_{\lceil \frac{m}{2} \rceil, \lfloor \frac{m}{2} \rfloor}$. From Lemma 3.2, we can show that $G - G_0 = \mathcal{J}_{a-\lceil \frac{m}{2} \rceil, b-\lfloor \frac{m}{2} \rfloor, k-m}$, i.e., $G = H_m$.

Lemma 3.4 Let $\lceil \frac{k}{2} \rceil \le m \le k-1$, $b \le a \le b+1$ and $a+b > k \ge 4$. If $k+1 \le a+b \le 2k-4$, then $|E(H_m)| \le |E(H_{k-1})|$.

Proof. Let $f(m) = -\frac{m^2}{2} + \frac{3k-4}{4}m - \frac{k^2}{4} - \frac{k}{2}$. From the definition of H_m , we have $|E((H_{k-1}))| - |E((H_m))| \ge \left\lceil \frac{k-1}{2} \right\rceil \left\lfloor \frac{k-1}{2} \right\rfloor - \left\lceil \frac{m}{2} \right\rceil \left\lfloor \frac{m}{2} \right\rfloor - \frac{a+b-m}{k-m} \left\lceil \frac{k-m}{2} \right\rceil \left\lfloor \frac{k-m}{2} \right\rfloor \ge f(m) \ge 0$ for $\frac{k}{2} \le m \le k-2$.

Lemma 3.5 Let $\lceil \frac{k}{2} \rceil \le m \le k-1$, $b \le a \le b+1$ and $a+b > k \ge 4$. If $a+b \ge \frac{k^2}{2} + 2k + 2$, then $|E(H_m)| \le |E(H_{\lceil \frac{k}{2} \rceil})|$.

Proof. We only need to show that $|E(H_{m+1})| - |E(H_m)| \le 0$ for $\lceil \frac{k}{2} \rceil \le m \le k-2$. By the definition of H_m , we have

$$|E(H_{m+1})| - |E(H_m)|$$

$$= \left\lceil \frac{m+1}{2} \right\rceil \left\lfloor \frac{m+1}{2} \right\rfloor + \left\lceil \frac{k-m-1}{2} \right\rceil \left\lfloor \frac{k-m-1}{2} \right\rfloor$$

$$+ \left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor \left\lceil \frac{k-m-1}{2} \right\rceil \left\lfloor \frac{k-m-1}{2} \right\rfloor$$

$$\begin{split} &+ \left\lceil \frac{S_{m+1}}{2} \right\rceil \left\lfloor \frac{S_{m+1}}{2} \right\rfloor - \left(\left\lceil \frac{m}{2} \right\rceil \left\lfloor \frac{m}{2} \right\rfloor + \left\lceil \frac{k-m}{2} \right\rceil \left\lfloor \frac{k-m}{2} \right\rfloor \right) \\ &- \left\lfloor \frac{a+b-k}{k-m} \right\rfloor \left\lceil \frac{k-m}{2} \right\rfloor \left\lfloor \frac{k-m}{2} \right\rfloor - \left\lceil \frac{S_m}{2} \right\rceil \left\lfloor \frac{S_m}{2} \right\rfloor, \end{split}$$

where $S_m = a + b - k - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor (k-m)$. Clearly, $\left\lceil \frac{S_{m+1}}{2} \right\rceil \left\lfloor \frac{S_{m+1}}{2} \right\rfloor \leq \left\lceil \frac{k-m-1}{2} \right\rceil \left\lfloor \frac{k-m-1}{2} \right\rfloor$.

We distinguish the following cases.

Case 2.1. $k, m \equiv 0 \pmod{2}$.

Then we have

$$\begin{aligned} & |E\left(H_{m+1}\right)| - |E\left(H_{m}\right)| \\ & \leq \frac{m-k}{2} \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k}{k-m} \right) \\ & + \frac{m-k}{2} \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+2}{2}. \end{aligned}$$

Since $m \le k-2$, we only need to show that $g(m) = \left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k}{k-m} +$

$$\left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+2}{2} \ge 0.$$

Clearly, $\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor \ge \frac{a+b-2k+m+2}{k-m-1}$, $\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor \le \frac{a+b-k}{k-m-1}$ and

 $\left| \frac{a+b-k}{k-m} \right| \ge \frac{a+b-2k+m+1}{k-m}$. Then

$$g(m) = \left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor + 1 + \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor \right) \frac{m-k}{2}$$

$$-\frac{2m-k}{k-m} + \frac{m-k}{2}$$

$$\geq \frac{a+b-k+1}{k-m-1} - \frac{a+b-k(k-m)}{2(k-m-1)} - \frac{3k-2m-1}{2} - \frac{2m-k}{k-m}$$

$$\geq \frac{a+b+k(k-m)-4m+2}{2(k-m-1)} - \frac{3k-2m-1}{2}$$

$$\geq \frac{a+b-\frac{k^2}{2}+2}{k-2} > 0.$$

Thus $|E(H_{m+1})| - |E(H_m)| \le 0$.

Case 2.2. $m \equiv 0 \pmod{2}$ and $k \equiv 1 \pmod{2}$.

Then we have

$$|E(H_{m+1})| - |E(H_m)| \le \left(\left|\frac{a+b-k}{k-m}\right| - \frac{2m-k+1}{k-m-1}\right) \frac{m-k+1}{2}$$

$$+ \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{(k-m-1)^2}{4}$$

$$= \frac{m-k+1}{2} \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+1}{k-m-1} \right)$$

$$+ \frac{m-k+1}{2} \left(\left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+1}{2} \right).$$

Since m-k+1<0, we only need to show that $\left\lfloor\frac{a+b-k}{k-m}\right\rfloor-\frac{2m-k+1}{k-m-1}+\left(\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor-\left\lfloor\frac{a+b-k}{k-m}\right\rfloor+1\right)\frac{m-k+1}{2}\geq 0$. Clearly, $\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor\geq\frac{a+b-2k+m+2}{k-m-1}$, $\left\lfloor\frac{a+b-k}{k-m}\right\rfloor\geq\frac{a+b-2k+m+1}{k-m}$ and $\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor\leq\frac{a+b-k}{k-m-1}$. Since $m\equiv 0\ (\text{mod }2)$ and $k\equiv 1\ (\text{mod }2)$, we have $k\geq 5$ and $\frac{k+1}{2}\leq m\leq k-3$. Hence $k^2-km+k-4m-1>0$. Then

$$\left[\frac{a+b-k}{k-m}\right] - \frac{2m-k+1}{k-m-1} + \left(\left[\frac{a+b-k}{k-m-1}\right] - \left[\frac{a+b-k}{k-m}\right] + 1\right) \frac{m-k+1}{2}$$

$$\geq \frac{a+b-2k+m+1}{2(k-m)} + \frac{k^2-km+k-4m-1}{2(k-m-1)} - \frac{3k-2m-1}{2}$$

$$\geq \frac{a+b-2k+m+1}{2(k-m)} + \frac{k^2-km+k-4m-1}{2(k-m-1)} - k+1$$

$$\geq \frac{a+b-2k+m+1}{2(k-m)} + \frac{k^2-km+k-4m-1}{2(k-m-1)} - k+1$$

$$\geq \frac{a+b+k^2-km-k-3m-2k^2+2km+2k-2m}{2(k-m)}$$

$$\geq \frac{a+b-\frac{k^2}{2}-k-\frac{5}{2}}{2(k-m)} \geq 0.$$

Thus $|E(H_{m+1})| - |E(H_m)| \le 0$. Case 2.3. $m \equiv 1 \pmod{2}$ and $k \equiv 0 \pmod{2}$. Then we have

$$\begin{aligned} &|E\left(H_{m+1}\right)| - |E\left(H_{m}\right)| \\ &\leq \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+2}{k-m-1} \right) \frac{m-k+1}{2} \\ &+ \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{\left(k-m-1\right)^{2}}{4} \\ &= \frac{m-k+1}{2} \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+2}{k-m-1} \right) \\ &+ \frac{m-k+1}{2} \left(\left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+1}{2} \right). \end{aligned}$$

Since m-k+1<0, we only need to show that $\left\lfloor\frac{a+b-k}{k-m}\right\rfloor-\frac{2m-k+2}{k-m-1}+\left(\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor-\left\lfloor\frac{a+b-k}{k-m}\right\rfloor+1\right)\frac{m-k+1}{2}\geq 0$. Clearly, $\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor\geq\frac{a+b-2k+m+2}{k-m-1}$, $\left\lfloor\frac{a+b-k}{k-m}\right\rfloor\geq\frac{a+b-2k+m+1}{k-m}$ and $\left\lfloor\frac{a+b-k}{k-m-1}\right\rfloor\leq\frac{a+b-k}{k-m-1}$. Since $m\equiv 1\ (\text{mod }2)$ and $k\equiv 0\ (\text{mod }2)$, we have $k\geq 6$ and $\left\lceil\frac{k}{2}\right\rceil\leq m\leq k-3$. Hence $k^2-km+k-4m-3>0$. Thus

$$\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+2}{k-m-1} + \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+1}{2}$$

$$\geq \frac{a+b-2k+m+1}{2(k-m)} + \frac{k^2-km+k-4m-3}{2(k-m-1)} - \frac{3k-2m-1}{2}$$

$$\geq \frac{a+b-2k+m+1+k^2-km+k-4m-3-(3k-2m-1)(k-m)}{2(k-m)}$$

$$a+b-\frac{k^2}{2}-2k-2$$

$$\geq \frac{a+b-\frac{k^2}{2}-2k-2}{2(k-m)} \geq 0.$$

Thus $|E(H_{m+1})| - |E(H_m)| \le 0$. Case 2.4. $m, k \equiv 1 \pmod{2}$.

Then we have

$$\begin{aligned} |E(H_{m+1})| - |E(H_m)| &\leq \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+1}{k-m} \right) \frac{m-k}{2} \\ &+ \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \left(\frac{(k-m)^2}{4} - \frac{k-m}{2} \right) \\ &= \frac{m-k}{2} \left(\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+1}{k-m} \right) \\ &+ \frac{m-k}{2} \left(\left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+2}{2} \right). \end{aligned}$$

Since m-k < 0, it suffices to show that $\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+1}{k-m} + \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \left(\frac{m-k}{2} + 1 \right) \ge 0$.

Clearly, $\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor \ge \frac{a+b-2k+m+2}{k-m-1}$, $\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor \le \frac{a+b-k}{k-m-1}$ and $\left\lfloor \frac{a+b-k}{k-m} \right\rfloor \ge \frac{a+b-2k+m+1}{k-m}$. Then

$$\left\lfloor \frac{a+b-k}{k-m} \right\rfloor - \frac{2m-k+1}{k-m} + \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor + 1 \right) \frac{m-k+2}{2}$$

$$= \left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor + \left(\left\lfloor \frac{a+b-k}{k-m-1} \right\rfloor - \left\lfloor \frac{a+b-k}{k-m} \right\rfloor \right) \frac{m-k}{2}$$

$$-\frac{2m-k+1}{k-m} + \frac{m-k}{2} + 1$$

$$\geq \frac{a+b+k(k-m)-2k+2}{2(k-m-1)} - \frac{2m-k+1}{k-m} - \frac{2k-m-1}{2}$$

$$+ \frac{m-k}{2}$$

$$\geq \frac{a+b+k(k-m)-2k+2}{2(k-m-1)} - \frac{2m-k+1}{k-m-1} - \frac{3k-2m-1}{2}$$

$$\geq \frac{a+b+k(k-m)-2k+2}{2(k-m-1)} - k+1$$

$$= \frac{a+b+k^2-km-4m}{2(k-m-1)} - k+1$$

$$= \frac{a+b-k^2+(k-6)m+4k-2}{2(k-m-1)}$$

$$\geq \frac{a+b-\frac{k^2}{2}+2k-5}{k-2} \geq 0.$$

Thus $|E(H_{m+1})| - |E(H_m)| \le 0$. This completes the proof.

From Lemmas 3.3, 3.4 and 3.5, we have the following result.

Theorem 3.6 Let $b \le a \le b+1$ and $a+b > k \ge 4$. Then

(1) if $k+1 \le a+b \le 2k-4$, then $l(K_{a,b},k) = |E(K_{\lceil \frac{k-1}{2} \rceil, \lfloor \frac{k-1}{2} \rfloor})| = \lceil \frac{k-1}{2} \rceil \lfloor \frac{k-1}{2} \rfloor$;

(2) if
$$a + b \ge \frac{k^2}{2} + 2k + 2$$
, then $l(K_{a,b}, k) = |E(H_{\lceil \frac{k}{2} \rceil})| = \lceil \frac{\lceil \frac{k}{2} \rceil}{2} \rceil \left\lfloor \frac{\lceil \frac{k}{2} \rceil}{2} \right\rfloor + \lceil \frac{s}{2} \rceil \left\lfloor \frac{s}{2} \right\rfloor + r \left\lfloor \frac{\lfloor \frac{k}{2} \rfloor}{2} \right\rfloor \lceil \frac{\lfloor \frac{k}{2} \rfloor}{2} \rceil$, where $r = \lfloor \frac{a+b-\lceil \frac{k}{2} \rceil}{\lfloor \frac{k}{2} \rfloor} \rfloor$ and $s = a+b-\lceil \frac{k}{2} \rceil - r \lfloor \frac{k}{2} \rfloor$.

4 Concluding remarks

From previous section we know that the function $|E(H_m)|$ is decreasing for $\left\lceil \frac{k}{2} \right\rceil \leq m \leq k-1$ when $2n \geq \frac{k^2}{2} + 2k + 2$. However, the property may not hold when $2(k-1) \leq 2n < \frac{k^2}{2} + 2k + 2$. Even the value curve of $|E(H_m)|$ is tortuous in some cases of n and k with $2(k-1) \leq 2n < \frac{k^2}{2} + 2k + 2$, see Figure 1 for some examples. It is possible that one can improve the bound $a+b \geq \frac{k^2}{2} + 2k + 2$ in Lemma 3.5 and Theorem 3.6 by carefully computing.

For a + b = 2(k - 1), we have the following partial result.

Lemma 4.1 Let $\lceil \frac{k}{2} \rceil \le m \le k-1$, a = b = k-1 and $k \equiv 2 \pmod{2}$. If $m \equiv 0 \pmod{2}$, then $|E(H_m)| \le |E(H_{k-2})|$.

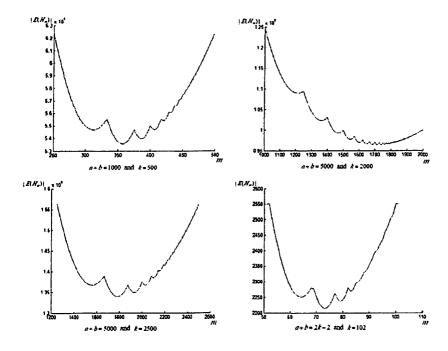


Figure 1: Examples for the value curve of $|E(H_m)|$

Proof. First we consider the case $k \equiv 2 \pmod{4}$. It is easy to see that $|E(H_{k-1})| = |E(H_{\frac{k}{2}})| = \frac{k^2}{4} - \frac{k}{2}$ and $|E(H_{k-2})| = \frac{k^2}{4} - \frac{k}{2} + 1$. For $\frac{k}{2} + 1 \le m \le k-2$, it is to verfy that $|E(H_m)| \le \frac{m^2}{4} + (k-1-\frac{m}{2}) \frac{k-m}{2} \le \frac{m^2}{2} - \frac{3k-2}{4}m + \frac{k^2+k}{2} \le \frac{k^2}{4} - \frac{k}{2} + 1 = |E(H_{k-2})|$. The case $k \equiv 0 \pmod{4}$ can be proved in the similar way.

However, we cannot put our hopes on $|E(H_{k-2})|$ for the case a = b = k-1, since $|E(H_{\lceil \frac{k}{2} \rceil})| > |E(H_{k-2})|$ for $k \equiv 1 \pmod{2}$. It is still very hard to solve the problem completely.

Acknowledgement The authors are very grateful to the referees for helpful suggestions.

References

- [1] N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 1(1983), 91-94.
- [2] M. Axenovich, T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, Ars Combin. 73(2004), 311-318.
- [3] M. Axenovich, T. Jiang, A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J. Graph Theory 47(2004), 9-28.
- [4] H. Chen, X.L. Li, J.H. Tu, Complete solution for the rainbow numbers of matchings, Discrete Math. 309(2009), 3370-3380.
- [5] P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, Colloq. Math. Soc. Janos Bolyai. Vol.10, Infinite and Finite Sets, Keszthely (Hungary), 1973, pp. 657-665.
- [6] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18(2002), 303-308.
- [7] T. Jiang, Anti-Ramsey numbers of subdivided graphs, J. Combin. Theory, Ser.B, 85(2002), 361-366.
- [8] T. Jiang, D.B. West, On the Erdős-Simonovits-Sós conjecture on the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12(2003), 585-598.
- [9] T. Jiang, D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274(2004), 137-145.
- [10] Z.M. Jin, X.L. Li, Anti-Ramsey numbers for graphs with independent cycles, Electron. J. Combin. 16(2009), #R85.
- [11] X.L. Li, J.H. Tu, Z.M. Jin, Bipartite rainbow numbers of matchings, Discrete Math. 309(2009), 2575-2578.
- [12] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem, Combinatorica 22(2002), 445-449.
- [13] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs Combin. 21(2005), 343-354.
- [14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286(2004), 157-162.
- [15] M. Simonovits, V.T. Sós, On restricting colorings of K_n , Combinatorica 4(1984), 101-110.