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Abstract

Let G be a family of graphs. The anti-Ramsey number AR(n, G)
for G is the maximum number of colors in an edge coloring of K,
that has no rainbow copy of any graph in G. In this paper, we
determine the bipartite anti-Ramsey number for the family of trees
with k edges.
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1 Introduction

An edge-colored graph is called rainbow if any of its two edges have
distinct colors. Let G be a family of graphs. The anti-Ramsey number
AR(n,G) for G is the maximum number of colors in an edge coloring of K,
that has no rainbow copy of any graph in G. The Turdn number ex(n,G)
is the maximum number of edges of a simple graph without a copy of any
graph in G. Clearly, by taking one edge of each color in an edge coloring
of K,, one can show that AR(n,G) < ex(n,G). When G consists of a
single graph H, we write AR(m,H) and ez(n,H) for AR(m,{H}) and
ex(n,{H}), respectively.

Anti-Ramsey number was introduced by Erdés et al. in [5], which is
showed to be connected not so much to Ramsey theory than to Turin
numbers. The anti-Ramsey numbers for some special graph classes have
been determined. As conjectured by Erd6s et al. [5], the anti-Ramsey
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number AR(n,Cy) for cycles was determined for ¥ < 6 in [1,5, 8], and
later completely solved in {13]. The anti-Ramsey number AR(n, Py4;) for
paths was determined in [15]. Independently, the authors of [12] and [14]
considered the anti-Ramsey number for complete graphs. The anti-Ramsey
numbers for other graph classes have been studied, including small bipartite
graphs (2], stars [6], subdivided graphs (7], trees with order & [9], graphs
with independent cycles [10] and matchings [4,14]. The bipartite analogue
of the anti-Ramsey number was studied for even cycles [3], stars (6] and
matchings [11].

Naturally, the host graph K, in the anti-Ramsey number can be gener-
alized to any graph G. The anti-Ramsey number AR(G,G) for the family
G in G is the maximum number of colors in an edge coloring of G that has
no rainbow copy of any graph in G.

In this paper, we consider the bipartite anti-Ramsey number
AR(Ka, Jk), where Ji denote the family of trees with k edges. Let
Z(Kap, k) denote the family of subgraphs of K, every two components
of which together have at most k vertices. Let [(K, 5, k) be the maximum
size of a graph in Z(K,p, k).

Let G be a graph and c be a coloring of E(G). A representing subgraph
of ¢ is spanning subgraph L of G which has exactly one edge of each color
of c. For an edge e € E(G), denote by c(e) the color assigned to the edge
e.

Let H C G. A coloring ¢ of G is induced by H if c assigns distinct colors
to each edge of H and assigns one additional color to all of E(G)\E(H).

2 Main Theorem

Obviously, AR(K, 5, Jx) = ab if k > a + b. The following lemma is
obvious.

Lemma 2.1 [9] Let G C K, where every two components together have
at most k vertices, then a coloring of E(K,p) induced by G has no any
rainbow trees with k edges.

Lemma 2.2 [9] Let G be a connected graph. Then G contains a vertez w
such that for all e C E(G), the component of G — e containing w has at
least L‘ﬁgll vertices.

As in [9] for the complete graphs, we have the following analogue result.
In fact, the following result holds also for any host graphs with a component
of order at least k£ + 1.

Theorem 2.3 Fora+b > k, AR(Kap, Ti) = [(Kap, k) + 1.
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Proof. By Lemma 2.1, we have the lower bound. So here we only need
to show that AR(K,, Zk) < U(Kap, k) + 1.

Let ¢ be a coloring of E(K, ) which avoids rainbow trees with k edges.
Let H be a representing subgraph of ¢ that has a largest possible compo-
nent, denoted by Fj. It is obviously that every component of H has at
most k vertices. It suffices to show that [E(H)| < [(Kap, k) + 1.

By Lemma 2.2, F) contain a vertex w such that for all e € E(F}), the
component containing w in F; — e has at least [Jﬂf—‘)-l] vertices. Let F

be a component in H — F; and let v € V(F3). Since H is a representing
subgraph of c and wv ¢ E(H), there is an edge e € E(H) with color e(wv),
and H = H — e + wv is also a representing subgraph of c. The edge e
must be a cut edge of F}, since otherwise H has a component with order
larger than Fi.

Let F3 and F; be the two components of F} — e where w € F3. So
|V (F3)| = [V(Fs)|. From the choice of H, we have that |V (F3)| 2 [V(Fy)| 2
|V (F3)|. This implies that F3 and Fy are the two largest components of
H —e. From |V(F3)| + |V(Fy)| = |[V(F1)| < k, any two components of
H — e together has at most k vertices. Hence H — e € Z(K,,k) and
|E(H —e)] < l(Kqap, k). Then |E(H)| < (Kap, k) + 1. |

3 Computing (K, p, k)

Lemma 3.1 Leta,b,c,d >0 anda+b=c+d. Ifla—b| <|c—d|, then
|E(Kap)| = |E(Ke,a)l-

Let [a—b] < 1and a+b > p. Let Tapp = rKf%H%J +KH_'I,HJ C K, p,
where r = |2tk | and s = a + b —rp.

Lemma 3.2 Let [a —b| < 1,a+b>p and G C K, . If each component
of G has at most p vertices, then |E(G)| < |E(Jap,p)|- Furthermore, the
equality holds if and only if G = Jup,p.

Proof. Let G C K, be a graph with the largest number of edges
where every component has at most p vertices. We choose G to have as
many components of p vertices as possible. Then the followings must hold.

(1) Each non-trivial component of G is complete bipartite.

(2) Every two components of G together have at least p vertices.

The following claims are easy to verify.

Claim 1. For every two components of G, there is one component with p
vertices.

Claim 2. There is a component Gy with s (if s > 0) vertices in G, and
each other component of G has p Claim 3. If s > 0, then Gy = Kfﬂ'lﬁ'
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Claim 4. Each component of G — Gy is Kfﬂ’l.ﬂ'
The lemma follows clearly from the claims above. [ |

Let H,, = Kr?]i?] + Ja-f‘i‘]'b"l-'i‘-J'k-m C K., where [g] <m<
k-1,b<a<b+1anda+b>k. Clearly Hn, € Z(K,s,k) and H,,
contains a component with m vertices.

Lemma 3.3 Let [-’.ﬂ <m<k-1,b<a<b+1l,a+b>k and
G e #(Kap k) C Ko p. If there is a component with m vertices in G, then
|E(G)| < |E(Hm)I-

Proof. We choose G with the largest number of edges. Note that
each non-trivial component of G is complete bipartite. Denote by A and
B the parts of K, 3, where |A| = a and |B| = b. Let Gy be a component
with m vertices in G and let Go = K., 5, where [V(Go) N A| = e and
|V(Go)NB| = fo. Then each component of G — G contains at most k—m
vertices.

Now we prove that |ep — fo| < 1. Suppose that eg > fo + 2. From
b < a < b+ 1, there exists a component G; = K., 5, in G — Gg, where
|V(G1) ﬂA| =¢e; and |V(G}) nBl f1, such that f1 > e; +1.

Let Gy = Keg-1,fo+1 80d Gy = Ke, 41,5, -1, Where V(GoUG)) = V(Gyu
G)). It is obvious that G' = G — Gy — Gy + Gy + G contradicts the choice
of G. So ¢p — fo < 1. Also, from b < a, we can show that 0 < eg — fo < 1.
Clearly, Go = Kr"!"‘”.'?J From Lemma 3.2, we can show that G — Gy =

J“f%"-'l.b—L%J,k_m, ie,G=Hn .

Lemma 3.4 Let [§] <m<k-1,b<a<b+loanda+b>k>4 If
k+1<a+b< 2k =4, then |E(Hn)| < |E (Heo1) -

Proof. Let f(m) = —m 4 Sy _ & _ g From the definition

of Ho, we have |E (Hi-1)) | - |E (Hm))| > [+ 1 152 - (3113 -
sfbom [h5m] |55 ] > f(m) 2 0 for § Sm < k- .

k—m

Lemma 3.5 Let [E] <m<k-1,b<a<b+landa+b>k>4 If
a+b> & 42k +2 then|E(Hm)|$lE(H|-§]) .

Proof. We only need to show that |E(Hm41)| — |E (Hm)| £ 0 for
[£] < m < k — 2. By the definition of Hy,, we have

|E (Hm1) | = | B (Hm) |
= sy

i il
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v [T | S| - (12113 [552] 1552)

_Jatb—k|Tk—m]|[k=m| [Sm]|Sm
k—m 2 || 2 2 [ 2]
where Sm = a+b—k — |52k | (k—m). Cleatly, [S321]
[e=g=t] |b=g=t), ‘
We distinguish the following cases.

Case 2.1. k,m = 0(mod 2).
Then we have

|E (Hm+1){ = |E (Hm) |

m—k (la+b—k _2m—k
2 k—m k—m

IA

2 k—-m-1 k—m

+m—k (la+b—kJ_ l-a+b—k—|+1)m—2k+2.

Since m < k — 2, we only need to show that g(m) = I.‘-‘E'_"%"J —mok

(e8] - 2 +) =g 20

k—m=1 k—m
b—k b—2k+m+2 b=k b—k
Clearly, l:fm.—lj > SRR, I.kafm—l < ¢y and

at+b—k a+b—2k+m+41
|t J > atb=2kimil Then

a+b—k a+b—k at+b-k|\m-k
g(m) = '_k—m-lJ+1+(lk—m—l__l k-m J) 2

2m—-k m-—k

Tk-m 2
> atb—k+1 a+b-k(k—m) 3k-2m-1 2m-k
= k—-m-—1 2(k—-m-1) 2 k—m
> atbtk(k-m)—-4m+2 3k-2m-1
= 2(k—m—1) )
k2
> a+bk——§+2>0'

Thus |E (Hm41) | — |E (Hm) | < 0.
Case 2.2. m = 0(mod 2) and k& =1 (mod 2).
Then we have

|E (Hm+1)| — |E (Hm) |

< a+b—k _2m—k+1 m—-k+1
- k—m k-m-—1 2
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a+b—k a+b—k (k—m —1)?
(== 5= =
_ m-k+1/la+b-k| 2m-k+1
- 2 k—m k-m-1
m—k+1 a+b—k a+b—k m—k+1
+ 2 ((_k—m—lJ_l k—-m J+1) 2 )
Since m — k + 1 < 0, we only need to show that lg,fb; J k’"_—:n"_'%‘-
a+b— _ | atb= m—kil
+([ezs] - [t 1) =g 20

Clearly, [ ,:"":1""1_[ > “:P’;cj_z’ﬁtM+2 '._’-ei—b— J >e b—2lcmm 1 and

I_ﬂi—ij < b=k Since m = 0(mod 2) and k = 1(mod 2), we have

k—m—1

kZSand—;—SmSk—& Hence k2 —km +k—4m —1 > 0. Then

[a+b—kJ_2m—k+1+(la+b—kJ : la-l-b—kJ +1) m—k+1
k—m k-m-1 k-m-1 k—-m 2
a+b—-2k+m+1 k®-km+k—-4m-1 3k-2m-1
= 2(k—m) 2(k—-m—-1) 2
a+b—2k+m+1 +k2—km+k—4m—1
2(k—m) 5(k—m—1)
a+b+k%—km—k—3m-—2k?+2km+ 2k —2m

—k+1

v

- 2(k—m)
a+b———k
2 T3k-m) 0
Thus |E (Hm41) | - |E (H, )|
Case 2.3. m =1(mod 2) and k = 0(mod 2).

Then we have
|E (Hmt1)| — |E (Hm) |

< a+b—-k _2m—k+2 m-k+1
- k—m k-m-1 2

a+b—k a+b—k (k—m—1)*
+([k—m—1J—|_ k—mJ+1) 4
m—k+1 (|la+b—k| 2m-k+2

2 k—m k—m-—1

m—-k+1 a+b-k a+b—-k m—-k+1
22 (=] - 5= ) =),
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Since m — k + 1 < 0, we only need to show that l“,‘:’_i;k J — Zm=ki2

(k] -] ) 20

Clearly, lﬁi-_ J > atb=tkimiz l"-;""; J > atbZkimil gng

k—m—1 F—m—1 -m
b=k | < adbok  Since m = 1(mod 2) and k = 0(mod 2), we have

k>6and [£] <m < k-3. Hence k2 — km + k — 4m — 3 > 0. Thus

a+b-k _2m—k+2+ a+b—-k _ a+b-k +1 m—k+1
k—m k—-m-1 k-m-1 k—m 2

a+b—2%+m+1 k*—km+k—4m—-3 3k—2m-—1

2 Tk—m) T 2(k-m-1 2
a+b—2k+m+1+k —km+k—4m—-3—(83k—2m —1)(k—m)
>
= 2(k—m)
—E ok
> at+b— % -2k 2>0.

2(k—m) =

Thus |E (Hm+1)| = |E(Ha)| £0.
Case 2.4. m,k = 1(mod 2).

Then we have
a+b—k| 2m—k+1\m—k
|E(Hm+1)|—|E(HM)IS(l k—m J_ k—m ) 2

a+b—k a+b-k (k=m)> k-m
(=] ) (-5
_ m—k(|lat+b-k| 2m—-k+1
- 2 k—m k—m

m—k a+b—k a+b—k m—k+2
SR =] ) 2=
Since m — k < 0, it suffices to show that '_3,3'_"—;"J — Zmokil
+ (let] - (22t 4 1) (=24 20

Clearly, |2itzt | > etboZbims? |atick | < atbok anq |gtizk| >
+b—2k+m+1
sto===tms. Then

a+b—-k _2m—k+1+ a+b-—k _ at+b—-k 1 m—k+2
k—m k—m k—-m-1 k—m 2
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la+b—kJ+(‘.a+b—kJ_[a+b—kDm—k

k—m-1 k—-m-1 k—-m 2

2m—k+1 m-—k

~~%"m + 3 +1

a+b+k(k—m)—2k+2 2m—-k+1 2k-m-1
2(k—m—1) T T k-m 2

m—k

2
a+b+k(k—m)—2k+2 2m—k+1 3k-2m-1

2(k—m—1) T k—m—-1 2
a+b+k%>—km-—4m
2(k-m-1)
a+b—k¥+(k—6)m+4k—2
2(k-m-1)
atb— 5 4+ 2%—5
k-2

Thus |E (Hm+1) | = |E(Hm)[ £ 0.
This completes the proof. [ |

v

v

-k+1

v

2 20.

From Lemmas 3.3, 3.4 and 3.5, we have the following result.

Theorem 3.6 Letb<a<b+1landa+b>k>4. Then
() ifk+1<a+b < 2%—4, then | (Kop k) = |E(Kr5_a_l],l£;_,‘,)| =

=4 1515

@) ifatb> 5 +2+2, then | (Kap,k) = |E(Hm)|=[ H }
k
5

141 L)+ [ [HL], where = [ 253380 | amd o =6 37— 15,

4 Concluding remarks

From previous section we know that the function |E (H)| is decreasing for
[¥] <m < k—1 when 2n > "—; + 2k + 2. However, the property may not hold
when2(k—1)<2n < 52-3 + 2k + 2. Even the value curve of |E (Hp) | is tortuous
in some cases of n and k with2(k—1) < 2n < %3 + 2k + 2, see Figure 1 for some

examples. It is possible that one can improve the bound a + b > "2—2 +2k+2in

Lemma 3.5 and Theorem 3.6 by carefully computing.
For a + b = 2 (k — 1), we have the following partial result.

Lemma 4.1 Let [§] <m < k-1,a=b=k-1and k = 2(mod2). If
m = 0(mod 2), then |E (Hm)| < |E (Hi-2) .
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Figure 1: Examples for the value curve of |E (Hm) |

Proof. First we con51der the case £k = 2(mod 4). It is easy to see that
|E (Hk—1)| = |E(Hk)| =& _%and IE(Hk D=L ki1 Fork+1g
m< k-2,it 1stoverfy that |E (Hm) | € B2+ (k- 1-2) kgm < m?_3ko2py
535";- < % — % +1=|E(Hi-2)|. The case k= 0(mod 4) can be proved in the
similar way. |

However, we cannot put our hopes on |E (Hi_2)| for the casea =b=k -1,
since |E (Hf"ﬂ) | > |E(Hg-2)| for k = 1(mod 2). It is still very hard to solve
the problem completely.
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