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Half a century ago authors counted maximal independent sets in a graph ([7, 8])
and the first results on the number of independent subsets of a graph appeared in
[11, 2, 3], here (G} was called the Fibonacci number of G. In chemical literature
i(G) is called the Merrifield-Simmons index. It is treated in a monograph ([6])
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Abstract

In Ars Comb. 84 (2007), 85-96, Pedersen and Vestergaard posed the
problem of determining a lower bound for the number of independent sets
in a tree of fixed order and diameter d. Asymptotically, we give here a
complete solution for trees of diameter d < 5. The lower bound is 5™/3 and
we give the structure of the extremal trees. A generalization to connected
graphs is stated.

Introduction

and in a wealth of later papers ([1, 17, 16, 15, 14, 13, 12]).
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In [10] several upper and lower bounds for #(G) were presented in terms of
order, size or independence number and also bounds for i(G) in trees and in
unicyclic graphs were obtained.

Denoting n-order trees with diameter d by T(n,d), we have that

i(T(n,d)) < fib(d) + 2"~ fib(d + 1) (1)

[9, Th. 3.1}, [5, Th. 1].

Formula (1) gives a tight upper bound for the number of independent sets
in a tree in terms of its diameter and order, in [9] we also determined the
trees for which that upper bound is attained. In the same paper we posed the
problem of determining the corresponding lower bound in terms of diameter and
order, and asked for a characterization of the trees for which the lower bound
is attained. This is for sufficiently large orders done here for diameters four
and five. Asymptotically the number of independent sets in n-order trees of
diameter five turns out to be 5/ (Corollary 3). The results for diameter three

and four are also given in a recent paper [4].

2 Notation

All graphs will be assumed simple and finite. A vertex of degree one is called a
leaf and its unique neighbour is called a stem. In a graph G the set of vertices
which are neigbours to a vertex v € V(G) is denoted by Ng(v) and by N(v)
if the graph G is obvious from context. The set of vertices consisting of the
vertex v and all its neighbours is denoted by N[v], i.e. Njv] = {v} U N(v). Let
S C V(G), then N(S) denotes the set of vertices in V(G) having a neighbour
in S and N[S] = SU N(S). For a set S of vertices, S C V(G) we let G- S
denote the graph obtained from G by deleting from G all vertices of S and all
edges incident with a vertex of S.

Given a graph G, a subset S of V(G) is said to be independent, if no two
vertices of S are adjacent in G, in particular, the empty set is considered to be
an independent set of any graph. The number of independent sets in a graph
G is denoted by i(G).

We shall often consider some tree T of a given diameter d and order n such
that #(T) is minimum. By this we mean that T is a tree of diameter d and
order n such that no other tree T of diameter d and order n contains fewer
independent sets than 7" does.

3 Helpful results

In this section we state some basic observations and results, which will be helpful
for characterizing trees of a given diameter and order which contain the fewest

possible number of independent sets.
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Observation 1. Let G be a graph and let v € V(G) and e = uz € E(G). Then
()  UG)=1i(G —v)+i(G— N[)

(%) (G -e)=1i(G)+i(G — N[{u, z}])

(#8) (G)=1i(G - {u,2})+i(G - N[u]) +i(G - N[z])

Observation 2. If H is a induced subgraph of G then i(H) < i(G) and equality
holds if and only if G = H. If H is a spanning subgraph of G then i(H) 2 i(G)
and equality holds if and only if H = G.

Lemma 1. Let G be a graph containing two leaves {; and la such that d(!;,l2) <
3 and let s; denote the stem adjacent to l; for i € {1,2}. If G’ := G — spla + L1
then i(G’) < {(G) and if equality holds then either

(i) d(l1,l2) = 2,81 = s2 and Ng(s1) = {l1,l2}, i.e, in G the three vertices
s1,11,l2 span a P; as a component or

(i) d(l;.l2) = 3,51 # s2 and Ng(s2) = {s1,0}.

Proof. Observe that G — l3ss = G’ — ljly so by Observation 1(ii)

{(G) = i(G') - i(G — Ng[{l2, s2}]) + i(G’ — Ne[{ls, l2}]) (2)
=i(G') = i(G — Ng[s2]) +i(G' — Ne+[la]).

Since G — Ng[s2] = (G’ — Ng:[l1]) — Ng(s2) the graph G — Ng[ss] is an
induced subgraph of G’ — Ng/[l3]. Therefore i(G' — Ng:[l]) —i(G — Ng[s2]) =2 0
and hence we have that i(G) > i(G’). If i(G) = i(G’) then {G’ — Ng:[li]) —
i(G - Ng[s2])) = 0 and for d(i1,l2) = 2, i.e., 81 = s2, we have Ng(s1) = {4, 2}
while for d(l;,l2) = 3, i.e., 57 # 82, we have that Ng(s2) = {s1,l2}. This proves
Lemma 1. a

Lemma 2. Let T be a tree of diameter d > 4 and order n such that i(T) is
minimum. Then no vertex in T is adjacent to more than two leaves, and if a
vertex is adjacent to two leaves then it is penultimate on a diametrical path of
G.

Proof. Assume that a vertex v is adjacent to two leaves /;, l,. By Lemma 1 it fol-
lows that v is the second vertex on a diametrical path v;,vo = v,v3,v4,...,V441-
Otherwise the graph G’ = G — via + 13 would have i(G’) < i(G) and the diam-
eter of G’ would not be larger than that of G. So only the penultimate vertex
of a diametrical path can support multiple leaves. We shall prove that v can
support at most two leaves. Let L := {l,...,l}, k£ > 3, be the leaves adjacent
to v and consider the tree T := T — {Liv,lpv} + {valy,lilz}. Let C be the
component of T — vyuz containing vz then

#(T) = i(C — v3)(2¥1 + 1) +i(C — N[uvs))2!*
> 3i(C — v3)(2172 + 1) + i(C ~ N[v3])2/51-1 = &(T").
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Since T" is a tree with diameter d and order n, we have a contradiction with
the minimality of (T). Thus, v is not adjacent to more than two leaves. ]

Lemma 3. Let H be a graph with a vertex v. Let Gy,...,Gx, k > 7, be
copies of K2 and let v; € G;. If G=HUG; U UGk + {vvy,...,vv,} and
G' = HUGU: - -UGgk-1 +{z,y} + {vvy,. .., v0k_1, 017, v2y}, then i(G') < i(G).

Proof. By considering G and G’ we observe that i(G) = 3¥i(H — v) + 25i(H —
Nv)) and i(G’) = 25 - 3¥=3i(H — v) + 2F+1i(H ~ N[v]). Thus, since k > 7, we
obtain

i(G)—i(C’) = 2-3*3i(H —v) — 2Fi(H - Nv]) > (2-3*3 —2%)i(H - N[v]) > 0.
|

4 Trees of diameter three

For trees of diameter three the problem is straightforward. For completeness we
describe the trees T of diameter three for which (T') is minimum.

Proposition 1. Given any fixed n > 4, let T denote a tree of diameter three and
order n for which the number of independent sets is minimum. Let Py : zoz; 2223
denote a diametrical path of T. Then

{deg(z1), deg(z2)} = { I_n ; 2J’ [n ; 2] }

5 Trees of diameter four

Let Gaky2, k > 2, be the graph obtained from Kj 4 by subdividing k of its
edges. Consider a tree T with diameter 4 and order n such that #(T") is minimum.
Let vy,...,vs be a diametrical path in T. If n > 7 it follows from Lemma 1
and Lemma 2 that T = G,, or that each component of T' — v3 is isomorphic to
Kj or P;. f T % G, then let s(T') and ¢(T') denote the number of components
from T — vs isomorphic to Ko and P, respectively. Then n =1+ 25+ 3t and
i(T) = 25(T)gHT) 4 3s(T)5UT),

Theorem 1. Let T, be a tree of diameter four and order n for which the
parameter i(T,) attains its minimum value and let v;,...,vs be a diametrical
path in T,,. Then Ty = P;, Ts = G¢ and if n > 7 then each component of
T, — v3 is isomorphic to K, or P; and

e 3(T,) is as indicated in the following table when 7 < n < 25.

e 3(T,)=2n+1 mod 3 for n > 26.
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7 8 9 10 11 12 13 14 15 16
s |3 2 4 3 5 4 6 5 4 3
17 18 19 20 21 22 23 24 25
5T | 5 4 3 2 4 3 2 1 3

Proof. The theorem is easily verified for n < 6. Thus, we may assume n > 7. By
considering Gn (if n is even) it easily follows that the graph T” obtained from G, by
removing the leaf adjacent to the center vertex and attaching a second leaf to another
stem satisfies i(T') < ¢(Gn). Thus we may assume that T, $ Gn and only s(7%) has
to be determined.

Now consider trees T and T* with the same structure as T, i.e., having diameter
four and such that all components obtained by deletion of the central vertex are K2's
or Ps’s. Assume further that that s(T7) = s(T') —3 > 0 and ¢(T") = ¢(T") + 2. If
&' :=s(T') and t' := ¢(T") then

L rt Loty L _2_ s’ gt pa’ 42t
(T - (T )—-273 5 2 .
It follows that

o t
(T -#T")>0e (g) (g) > % & s'log3/2+t'log5/4 > log 27/2.

Since n' := [V(T')| = 1 + 25’ + 3t' we may obtain that {(T") — «(T") > 0 if
and only if s’ > a — bn’ for real numbers a and b, a = 13(237/22-?(21/33) !1:3(55/ b =

o 3{(%{:)(5“2, (a' =~ 10,429 anc} b =~ 0,2898).

t follows that if k is the largest integer such that k< a—bnandn =142k + 3t
for some integer ¢t > 0 then s(Ty) = k if and only if k > 3. Using these observations, it
is straightforward to derive the values of s(Th) for n < 25. For n > 26 the inequality
s’ € a—bn implies that s’ < 3 and therefore s(T,) < 2. By the equation n = 14+2s+3t
we obtain that 2s(T,) = n— 1(mod 3) and the statement is obtained since this implies

that s(T) = —2s(Tw) =1 — n = 2n + 1(mod 3). (]

6 Trees of diameter five

In order to describe trees of diameter five with minimum number of independent sets
we introduce the following terminology.

Let T denote a tree of diameter five with a diametrical path
Ps : zox17273747s. If there is exactly one leaf attached to {z2,zs}, then we refer
to T as a center-leaf tree, and if there is no leaf attached to {z2,za}, then we refer to
T as a center-leaf-free tree.

Let T denote a center-leaf-free tree. If every component of T — {z2,z3} is a K11
then T is referred to as a center-leaf-free K,1-tree. If every component of T — {z2, 23}
is a K1,2, then T is referred to as a center-leaf-free K a-tree. If every component of
T — {z2,z3} is a K11 or a K12, then T is referred to as a center-leaf-free mixed-K1 1-

Kl,g-tree.
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6.1 Some lemmas concerning trees of diameter five

In the following we prove some results needed for the characterization of trees of
diameter five with minimum number of independent sets.

Lemma 4. Let T be a tree of diameter five for which i(T") is minimum, and let
Ps : zoz122232425 denote a diametrical path of T. Then

(1) The neighbourhood N[z2,z3) contains at most one leaf,

(2) if there is a leaf ! attached to either z2 or 3, then every component of T —
{z2,23,1} is a K1.1, and

(3) if neither x3 nor 3 has a leaf attached, then every component of T' — {z2, 3}
isa Ky,1 or a K 2.

Proof. Statement (1) follows from Lemma 1, while statement (3) follows from Lemma
2. To prove statement (2), we may assume that a leaf ! is adjacent to 2. From Lemma
1it follows that all vertices from N(z2)\{za} have degree at most two in T. Thus we
may assume that a vertex y € N(z3)\{z2} has degree at least three in T. By Lemma
2 y has degree exactly three.

Let I,z be a the two leaves adjacent to y and consider the tree T := T — yl’ + I’
Observe that an independent set S in T' is independent in T unless {!',y} € S. An
independent set in T containing both [ and !’ is not independent in T'. Therefore

i(T) = i(T') —i(T' — Np:[l',y]) + i(T — N[, l')). (3)

One component of T' — Np[l',y] is A, the subdivided star with center z2 and the
other components are a collection B of K),1’s and K},2’s, each joined by a (deleted)
edge to z3. Compare this to T — Nz[{{,!'}] which as components has A — z; and
the isolated vertex z in one group (corresponding to A) and one further component
Bu{z3}. We see by Observation 2 that i(T' — Ny« [l',y]) < #(T — Nr[l,l'}). Thus (3)
implies i(T") > i(T") which contradicts the choice of T

Lemma 4 states that given an integer n > 6, the minimum value of i(T) over all
trees of order n and diameter five is attained for a center-leaf K 1-tree or a center-
leaf-free mixed-K,1-K) 2-tree. Given any center-leaf-free mixed-Ky,1-K o-tree T, we
let p(T") and ¢(T) denote the number of K1,1’s attached to z2 and x3, respectively, and
let 7(T) and s(T') denote the number of K 2’s attached, by their center vertex, to z;
and z3, respectively. Whenever the context is clear we will simply write p,q,r and s
for p(T'), q(T), r(T') and s(T). For the number of independent sets in a center-leaf-free
mixed-K,1-K,2-tree T we can use Observation 1(iii) to obtain Proposition 2 below.

Proposition 2. The number of independent sets in any center-leaf-free mixed-K7,;-

K o-tree T is
3PHA5THY 4 9P39475" 4 293P574”, ()

Lemma 5. Let T be a tree of diameter five for which #(T’) is minimum. If there is a
leaf attached to x2 or z3, then n(T) < 27.
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Proof. Suppose there is a leaf attached to z2 or 3. Then it follows from Lemma 4,
that T is a center-leaf K i-tree. If p and q denote the number of K3’s attached to z
and z3, respectively, then p, ¢ < 6, according to Lemma 3. Since n(T) = 3+ 2(p +q),
the desired bound on n(T) follows. 0

Corollary 1. If n > 28, then a tree T of diameter five and order n for which i(T) is
minimum is a center-leaf-free mixed-K1,1-K,2-tree.

Proof. As noted above in Lemma 4, the tree T is either a center-leaf Ky,1-tree or a

center-leaf-free mixed-K,1-K 2-tree. Since n > 28, the claim follows from Lemma 5.
(]

Lemma 6. Let T be a tree of diameter five for which i(T) is minimum, and let
Ps : zoz172737475 denote a diametrical path of T. Let r and s denote the number
of K, 2's attached by their center vertex to z2 and z3, respectively. By symmetry, we
may assume r = s + ¢ for some non-negative integer c. If ¢ > 1 then p < ¢ and given
values of p and g we have that c is the largest possible integer such that

[log(5/4) +(g-p) 108(3/2)J
log(5/4) )

c<

Proof. Suppose that ¢ > 1. Let T’ denote the center-leaf-free mixed Ki,1-K),a-tree
with p(T") =p, ¢(T") =q, 7(T") =r -1 =s+c~1 and s(T’) = s + 1. According to
Observation 1(iii),

i(T) = 3°P+957+° 4 9P39475" + 293P574°  and

i(T’) = 3p+q5r+8 + 21’394”—153+1 + 2¢I3P5r—l4s+l.
Thus i(T) — i(T") = $27375"4" — 12P39475°. Now consider the logarithm of the ratio
of these two terms

FPALLG 4 (2\77P (5\° 4 2 3
5} = (= - = - - ol =
bg(%znawsa) log (5 (3) (4) log(s)+(q p) log (3)+clog(4).

This term is at most zero since i(T) < i(T”). This implies that p < ¢ and since i(T) is
minimum and we by hypothesis create a tree T with larger i(T’) each time we move a
K1,2-component attached to x2 over to x3 we want c to be the largest possible integer

such that :
o < 108(5/4) + (g — p) log(3/2)
= log(5/4) )

Analogously to Lemma 3 we can obtain Lemma 7.

Lemma 7. Let H be a graph with a vertex v. Let Gy,...,G9 be copies of K12 and
let v; be the center vertex of Gy, 1 < i < 9. Let F\, Fo, F3 be copies of K1,, and
let fi beavertexin F;,1 <i<3 IfG=HUG U---UGIURUFRUF +
{vvr,...,vvr,vf1,vf2,vfs} and G’ = HUG U --UGa + {vu1,...,vvr,vvs, vug}, then
i(G’) < i(G).
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Proof. z(G’) z(G') = 2.57-i(H—v)—2"i(H ~N[v]) > 0 because i(H~v) > i(H — N[v])
and 57 > 216

From Lemma 7 we obtain the following corollary.

Corollary 2. Let T be a tree of diameter five for which i(T") is minimum. If n > 88
thenp<2,g<2and|r—s|<4.

Proof. Assume that p > 3 or ¢ > 3. Since p < 6,g < 6 by Lemma 3 and thus
jr — s} £ 11 by Lemma 6 the assumption n > 88 implies that either p > 3 and r > 7
org > 3 and s > 7. Now Lemma 7 implies that {(T") is not minimum.

By using Lemma 6 and p < 2, ¢ < 2 we obtain that |»r — s| < 4 and if > s then
p<gq o

6.2 Main result for trees of diameter five

By using the results from Section 6.1 we obtain the main results for trees of diameter
five.

Theorem 2. For any n > 28, a tree T of diameter five and order n for which i(T) is
minimum is a center-leaf-free mixed- K 1-Ki,2-tree with r(T) = s(T') + c and ¢(T') =
p(T) + d for non-negative integers ¢ and d. Moreover, ¢ < 11 and p(T),q(T) < 6. If
n > 88 then ¢ < 4 and p(T),¢(T) < 2.

Proof. The proof relies on the results of Section 6.1. According to Corollary 1, the
tree T as described in the theorem is a center-leaf-free mixed-K,;1-K) 2-tree. The
bounds on the parameters p(T), ¢(T), r(T), s(T) follow from Lemma 3, Lemma 6 and
Corollary 2. (m]

If Tn is a tree of diameter five and order n for which i(T%) is minimum, then it
follows from the above theorem that as n increases the tree T, will be an increasingly
'well-balanced’ center-leaf-free mixed-K3j,1-K\ 2-tree, that is, the ratio of »(T,) and
s(T») will tend to one, and the ratio of (p(Tn) + g(Tn))/n will be small.

Lemma 8. There is an integer n’ such that if T, is a tree of diameter five and order
n 2> n’ for which i(T%) is minimum then p(Th) + ¢(Th) < 2.

Proof. Let T™ be any center-leaf-free mixed-K1,1-K1,2-tree of order n such that p(T™)+
g(T") 2 3 and p(T"),q(T™) < 6. Consider a center-leaf-free mixed-Ky,1-K1,2-tree
T3 of order n with p(T3) + ¢(73*) = p(T™) + q(T") — 3 and r(IF) + s(TF) =
(T") + s(T™) + 2. From equation (4) it follows that

lim i(T") =1 and lim {T7) =2
n—roo 3P(T™)+4(T™)5r(T™)+a(T") n—oo SP(TT)+a(TP)Br(T™)+s(T") ~ 97"

Thus there must exist an integer n’ such that {(T") > {(73') when n > n’.This implies
that Tr can not be the graph T™ for n > n’ and the statement follows. a

By using the result from Lemma 8 we can obtain the following characterization of
Tn when n > 7',
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Theorem 3. There is an integer n’ such that if T, is a tree of diameter five and order
n 2 n' for which i(T,) is minimum. Then T}, is a center-leaf-free mixed-K,1-K 2-tree
and p,q,r and s is as indicated in the following table (it is assumed that ¢ :=r—s >0

and p < g):
nmod6 (q p ¢
0 1 1 0
1 1 0 1
2 0 0 0
3 2 0 3
4 1 0 2
5 0 0 1

Proof. Let n’ be the integer from Lemma 8 and consider T, when n > n’. Then
p+ g < 2 and Lemma 6 implies that c < 1 if p=gq, c € {1,2} if g—p = 1 and
¢ € {3,4} if g—p = 2. By considering cases depending on n mod 6 it can be observed
that this determines the parameters p,q and ¢ when n mod 3 # 0. Further in the
casen mod 6 =0eitherp=1,g=landc=0o0rp=0,9=2and c =4 and in the
casen mod 6 =3 eitherp=1l,g=1andc=1o0orp=0,9=2 and c= 3. In both
cases we only have to compare the number of independent sets in the two trees that
might be isomorphic to T» and the result is as indicated in the table. (|

It can be shown that the integer »’ form Lemma 8 and Theorem 3 can be choosen

to be smaller than one hundred.
From Theorem 3 we immediately obtain

Corollary 3. Asymptotically the minimum number of independent sets in n-order
trees of diameter five is 57/3,

7 The lower bound of ¢ on graphs of fixed order
and diameter

The following theorem gives an optimal bound for ¢ for connected graphs of fixed order
and diameter. The graph obtained by attaching a path P to a vertex v in a graph G
is the graph PUG + uv where u is a vertex of P with minimum degree. The Fibonacci
numbers fib(0), fib(1),... is defined by the equations fib(0) := 0, fib(1) := 1 and
fib(n) := fib(n — 1) + fib(n —2) forn > 2.

Theorem 4. If G is a connected graph of order n and diameter d > 2, then
2fib(d + 1) + (n — d) fid(d) < i(G), (5)

where equality occurs if and only if G is isomorphic to the graph obtained from Kp—4+2
by removing an edge wv and attaching a path Py_2 at v (if d > 3).

Proof. If G 2 P44 then the statement is true for G since i(G) = fib{d + 3) =
2fib(d + 1) + (n — d) fib(d). Let G be a connected graph of order n and diameter
d, G % Psy1. Assume that the statement is true for each graph of order less than
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n. Consider a diametrical path P : vy,...,vd4+1 in G. Since G ¥ Py, there must
be a vertex u € V(P) such that G — u is connected and since P is a diametrical
path u can at most be adjacent to three vertices of P. Thus G — u is a graph with
diameter at least d and G ~ N[u] has at least d — 2 vertices. By assumption we
have that i{(G — u) > 2fib(d + 1) + (n — 1 — d)fib(d) and Observation 2 implies
that i(G — N[u]) > i(Ps-2) = fib(d). If equality holds in both inequalities then
G — N[u] = P33 and G — u has diameter d and can be constructed as one of the
graphs described in the statement. Thus if equality holds in both inequalities G must
be one of the graphs described in the statement. By applying Observation 1 we obtain
that
i{G) = i(G — u) +i(G ~ N[u]) = 2fib(d + 1) + (n — d) fib(d)

and equality occurs if and only if G is one of the graphs described in the statement. O
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