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Abstract

A Roman dominating function of a graph G is a labeling f :
V(G) — {0,1,2} such that every vertex with label 0 has a neigh-
bor with label 2. The Roman domination number yr(G) of G is
the minimum of 3 ¢y () f(v) over such functions. The Roman
domination subdivision number sd,;(G) is the minimum number of
edges that must be subdivided (each edge in G can be subdivided
at most once) in order to increase the Roman domination number.
In this paper, we prove that if G is a graph of order n > 4 such
that G and G have connected components of order at least 3, then

314 (G) +5d2e(C) < |5 +3.
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1 Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set
E(G) (briefly V and E). For every vertex v € V, the open neighborhood
N(v) is the set {u € V(G) | wv € E(G)} and its closed neighborhood is
N[v] = N(v) U {v}. Similarly, the open neighborhood of a set S C V is the
set N(S) = UyesN(v) and its closed neighborhood is N[S] = N(S)uU S.
The minimum and maximum vertex degrees in G are respectively denoted
by 4(G) and A(G). Given graphs G and H, the cartesian product GOH is
the graph with vertex set V(G) x V(H) and edge set defined by making
(u,v) and (v/,v’) adjacent if and only if either (1) v = v’ and v’ € E(H)
or (2) v =1 and uv’ € E(G).

A subset S of vertices of G is a dominating set if N[S] =V. A Roman
dominating function (RDF) on a graph G = (V, E) is defined in [6, 7] as a
function f: V — {0, 1,2} satisfying the condition that every vertex v for
which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The
weight of a RDF is the value w(f) = }_ ¢y f(v). The Roman domination
number of a graph G, denoted by yr(G), equals the minimum weight of
. a RDF on G. A vr(G)-function is a Roman dominating function of G
with weight yr(G). A Roman dominating function f V — {0,1,2}
may be represented by the ordered partition (V0 ,V1 ,V2 ) of V, where
V/ = {v € V| f(v) = i}. For a more thorough treatment of domination
parameters and for terminology not presented here see [5, 8].

The Roman domination subdivision number of a graph G is the mini-
mum number of edges that must be subdivided (where each edge in G can
be subdivided at most once) in order to increase the Roman domination
number of G. The Roman domination subdivision number was introduced
by Atapour et al. in [1, 2] and denoted by sdy,(G).

The complement G of a graph G has vertex set V(G) and zy € E(G)
if and only if zy ¢ E(G). For any graph parameter y, bounds on p(G) +
p(G) and on u(G)u(G) are called Nordhaus-Gaddum inequalities. Many
Nordhaus-Gaddum bounds have been obtained on various domination pa-
rameters. For instance,

Theorem A. (Chambers et al. [3]) If G is an n-vertex graph, with n > 3,

then _
5 <Yr(G) +7r(G) £ n +3.

Furthermore, equality holds in the upper bound only when G or G is Cs
n
=K.
or 2 2
In this paper, we prove that if G is a graph of order n > 4 such that
G and G have connected components of order at least 3, then sd.,,(G) +
sdya(C) < |5] +3.
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We make use of the following results. Recall that aset S C V is a
2-packing set of G if N[u] N N{v] = @ holds for any two distinct vertices
u,v € S.

‘Theorem B. (Cockayne et al. [4]). Let f = (V{,V{, Vi) be a yp-function
for a simple graph G, such that IVlf | is minimum. Then Vj is a 2-packing.

Theorem C. (Atapour et al. [1]) Let G be a simple connected graph of
order n > 3. If yr(G) = 2 or 3, then sd,(G) = 1.

Theorem D. (Atapour et al. {1]) If G contains a matching M such that
G
LI%G—) | +1 < |M|, then sd,4(G) < RSy

2
Theorem E. (Atapour et al. [1]) For every simple connected graph G of
order n 2 3, sd,,(G) < [g—] -1

2 An upper bound for sd,,(G) + sd,,(G)

Theorem 1. Let G be a simple connected graph of order n. If yr(G) = 4,
then sd.;(G) < 2. Furthermore, this bound is sharp.

Proof. Let f be a yr(G)-function such that V; is minimum. Since yr(G) =
4, n > 5 which implies that Vyf # 0.

Case 1 V/ = {u,v} and V{ = {w}).

By the choice of f, u and v are non-adjacent and have no common neigh-
bors. Let up € N(u)N V},f and vo € N(v)NV{ and let G’ be obtained from
G by subdividing the edges uug and vvg with vertices w’,v', respectively.
Assume g is a yr(G')-function. We have the following subcases.

Subcase 1.1 g(u') = 1 (the case g(v') = 1 is similar).

Subcase 1.2 g(v') = 2 and g(v’) = 0 (the case g(v') = 2 and g(»’) =0
is similar).

Subcase 1.3 g(u') = g(v') = 2.

Subcase 1.4 g(u') = g(v') = 0.

It is straightforward to see that in each case yg(G’) > 5.

Case 2 V{ =0 and V{ = {z,3}.
We consider two subcases.

Subcase 2.1 zy ¢ E(G). Let z; € N(z) \ N(y) and y; € N(y) \ N(z).
Note that since vr(G) = 4, the vertices z; and y; exist. Suppose that
G’ is obtained by subdividing the edges zz; and yy; with vertices =/, ¢/,
respectively. Assume g is a yg(G’)-function. A simple case checking similar
to that given in Case 1 shows that yg(G') = 5.



Subcase 2.2 zy € E(G).

Then each of z and y have at least two private neighbors in Vof , otherwise .
7r(G) < 3, a contradiction. Suppose that z1,z2 are two private neighbors
of z in Vof and that y;,y2 are two private neighbors of y in Vof . Consider
two subcases.

Subcase 2.2.1 z and y have private neighbors z; and y; such that 2y, ¢
E(G). Let G' be obtained from G by subdividing the edges zz; and yy,
with vertices z’ and ¥/, respectively. A simple case checking similar to that
given in Case 1 shows that yg(G') > 5.

Thus we may assume each private neighbor of z is adjacent to every
private neighbor of y.

Subcase 2.2.2 =z has two private neighbors z; and z, which are not
adjacent.
Assume y has two private neighbors y; and yo which are not adjacent.
Let Gy be obtained from G by subdividing the edges zz; and yy;. It is
straightforward to see that ygr(G;) > 5. Therefore, we may assume that
every pair of private neighbors of y are adjacent. Since ygr(G) = 4, no
vertex of Vof is adjacent to all vertices in Vof . Hence, no private neighbor
of y is adjacent to all vertices in N(z)N N(y). Let y; be a private neighbor
of y and z € N(z) N N(y) such that y,2 € E(G). Let G2 be obtained from
G by subdividing the edges zz and yy;. It is easy to see that ygr(G2) > 5.

Therefore we may assume the subgraph induced by private neighbors of
z and private neighbors of y is a complete graph. If N(z)NN(y)n Vof =0,
then G[V{] is a complete graph which forces yr(G) = 3, a contradiction.
Therefore we assume z € N(z)NN(y)NVy # 0. Assume z is not adjacent to
z1, a private neighbor of z (the case z is not adjacent to a private neighbor
of y is similar). Let G5 be obtained from G by subdividing the edges yz
and zz;. Then vg(G3) > 5. Finally, if every vertex in N(z) N N(y) N Vof
is adjacent to all private neighbors of =z and y, then G[Vof ] is a complete
graph and yr(G) = 3, a contradiction.

In order to prove that the bound is sharp, let G be the cartesian product
K,,0OP,, m > 3. Obviously, vr(G) = 4. It is easy to see that sd. (g) = 2.
This completes the proof. O

By Theorems C and 1 we have:

Corollary 2. Let G be a simple connected graph of order n > 3. If
sdyp (G) > 2, then vr(G) > 5.

Theorem 3. If G and G are n-vertex graphs with vr(G),vr(G) > 5,
then G (respectively, G) have a matching of size at least [——'YRga)J +1

100



(respectively, [’YRéG)J +1).
Proof. Since yr(G),vr(G) > 5, G and G are connected. We consider two
cases.

Case 1 For every vr(G)-function f for which lVlf | is minimum, Vlf #0.
Obviously, Vz # 0. Assume Vl = {vl, .,v¢} and v = {ug,...,um}.
By the choice of f and Theorem B, Vl is an independent set and N(v;) N

N ('v,)r'ﬂ/b = () for i # j. Let G’ be obtained from G by removing deg(v;)—1
edges at v; for 1 < ¢ < k, all the edges at u; which have one endpoint in
Uf;llN (u;) for j = 2,...,m and the edges whose endpoints are both in Vof
or both in sz (see Figure 1). (Note that G’ is not unique.) Let G; be
the connected component of G’ containing u;. It is straightforward to see
that yr(G) = 1r(G') = 2, 1r(G:) and &/(G) 2 o/(G") = 311, &/(Gy),
where o' denotes the matching number. Now we distinguish two subcases
for each .

Subcase 1.1 u; has a private neighbor w; in V0 , which is not adjacent
to the vertices of Vf NV(G;). Let M; € E(G;) be the set consisting of u;w;
and all edges of G; with one endpoint in Vf NV(G;). Obv1ously, M; isa
matching of G;. Since |V{f N V(G;)| = 1, we have [M;| = IV nv(G) +1
and yr(G;) = 2+ |V{ NV(G;)|. Hence,

G; vinv G;
al(Gi) 2 |M1,| =7R(G,) _ 1 = 7R(2 ) + | 1 2 ( )l

subcase 1.2 All private neighbors of u; in Vof are adjacent to some ver-
tices in Vlf NV(G;). We claim that u; has at least three private neighbors
in Vof . First assume w is the only private neighbor of u;. By assump-
tions, w has a neighbor w’ in Vlf N V(G;). Then the ordered partition
((Vf = {w})U{us, w'}, VF = {w'}, (Vi — {ui})U{w}) defines a RDF of G of
size less than yr(G), a contradiction. Now assume w; and ws are the only
private neighbors of u;. By assumptions, w; (respectively, ws) has a neigh-
bor in V{f N V(G;), say w} (respectively, wh). Then the ordered partition
9 = ((V§ ~ {wr, wa) Ufus, wh, wh}, W — w4}, (Vf — {us}) U fuwn, we))
defines a yr(G) with |V¥| < |V{|, a contradiction. Therefore, u; has at
least three private neighbors in V. This forces that yr(G;) > 5.
Let M; € E(G;) be the set consisting of all edges of G; with one endpomt
in V'an(G ). Since |M;| = |V(G; )ﬂV1 | and yr(G;) = 2+ [V(G; )ﬁV1 Iy
o (Gy) 2 |My| = r(Gi) —2 2 ——= m(G 2 2'
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Now M = U2, M; is a matching of G and it is easy to see that

o/(G) 2 1] = 3 1M > (22D 4.

i=1

NG

“ K [N

S = XN A
<25
€ =7~
(51
U1 U2
G
51

Figure 1: The graphs G and G’ in Case 1: Vlf = {v,} and sz = {u1,uz2}

Case 2 There exists a yg(G)-function f such that Vlf = 0. Then
4r(G) > 6 and so |V2f = {u1,...,ux}| = 3. Assume v; € V;,f is a pri-
vate neighbor of u; for each 1 <7 < k. First assume Vof is an independent
set. Let u,v € ng and let up (respectively, vg) be a private neighbor of
u (respectively, v) in Vof . Obviously, {up, v} is a dominating set for G,
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which implies that yr(G) < 4, a contradiction. Now assume Vof is not
an independent set. Let ug,vp € Vof and upvg € E(G). We consider two
subcases.

subcase 2.1 ug and vy have distinct neighbors in sz . Without loss of
generality we assume ujug, ueto € E(G). If N(u;) N Vof = {uo} (the case
N(ug) Vg = {w} is similar), then ug is the private neighbor of u; in Vi
and so the ordered partition (V(G) — {uo, 1}, 0, {0, u1}) defines a RDF of
G of size 4, a contradiction. Let {ug} G N(u)nVy and {vo} G N(ug)nVy.
If u;, up have distinct neighbors w;, w2 in Vof — {ug,v0}, respectively, then
M = {uv; | 3 < i < k} U {uovo, u1wy, u2wa} is a matching in G of size
I_’Y—R(Q)J + 1, as desired. If ujvg, upup € E(G), then obviously u; and us

2
have distinct neighbors in Vof — {uo, w0} and the result follows as before.

Thus we may assume u;vp € E(G) or upup € E(G). Consider two subcases.

Subcase 2.2.1 wuj vy € E(G) and ugug € E(G) (the case uyvo € E(G)
and upup € E(G) is similar). Then u; has a private neighbor w in Vof CIfuy
has a neighbor in Vof — {ug,vo}, then u; and ug have distinct neighbors in
Vi —{uo,v0} and the result follows as before. So let N (u1)NVy = {uo,v0}.
If w is the only neighbor of u; in Vof — {uo,vp}, then the ordered partition
((VF = {wo, w}) U {ur,us}, {w}, (V§ — {u1,u2}) U {p}) defines a RDF of
G of size less than ygr(G), a contradiction. Therefore we assume us has
at least two neighbors in Vo"r — {uo,vo}. If up has two adjacent neighbors
wy, ws in V},f — {uo, v}, then M = {u;v; | 3 < i < k} U {wywa, u1ug, ugvo}

is a matching of G of size [1112——] + 1, as desired. Assume now N(up) N

(Vof — {ug,vo}) is an independent set. If uo has a private neighbor w in
K)f — {uo,v0} such that wvy & E(G), then {ug,w} is a dominating set for
G, hence yr(G) < 4, a contradiction. Thus we may assume v is adjacent
to all private neighbors of uy. Then the ordered partition ((V[)f —{w}u
{u1,u2},0, (V§ — {u1,u2}) U {wp}) defines a RDF of G of size less than
vr(G), a contradiction.

Subcase 2.2.2 ujvg, uoug & E(G). Using an argument similar to that de-
scribed in the first part of Case 2, we may assume N (ul)n(Vof —{up,v0}) =
N(ug) N (Vof — {uo,vw}) = {z}. If z has another neighbor in V;/, then
the ordered partition (Vg — {uo}) U {w1}, {ua}, (V{ — {u1,u2}) U {uo})
defines a RDF of G of size less than yr(G), a contradiction. Now as-
sume N(z) NV = {u;,us}. If wyuz € E(G), then the ordered partition
(V§ = {uo}) U {u1}, {uo}, Vi — {u1}) defines a RDF of G of size less than
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~4r(G), a contradiction. Suppose that ujup; € E(G). It is easy to see that
the assumption 2uq € E(G) (respectively, 2v9 € E(G)) leads to a contra-
diction. Thus we assume z is not adjacent to up and vg. Then obviously
{u1,2} is a dominating set for G, hence vr(G) < 4, a contradiction.

subcase 2.2 ug and vp have precisely one common neighbor in sz . With-
out loss of generality we may assume u; = N(up) N N(vg)N V{ . Ifu; hasa
neighbor w in Vf {uo,vo}, then M = {ujw,uovo} U {u;v; |2 <i < k}is

a matching of G of size |_ (G)j + 1. Suppose that N(uy)N Vof = {up, vo}.

If ug (respectively, vp) has a nelghbor win Vo — {ug, w0}, then obviously ug
and w (respectively, vg and w) have distinct neighbors in sz and the result
follows by Subcase 2.1. So we assume ug (respectively, vg) does not have
other neighbors in Vof . This implies that deg(up) = deg(vg) = 2. Since
n 2 5, we have k > 2. Consider vy, a private neighbor of uy in Vof . Obvi-
ously, the ordered partition (V(G) — {vo, v2}, 8, {vo, v2}) defines a RDF for
G of weight 4, a contradiction. This completes the proof. O

Theorem 4. Let G be a graph of order n > 4 such that G and G have
connected components of order at least 3. Then

sdye(G) + 5y (C) < 5] +3.

Proof. First let G be disconnected (the case G is disconnected is similar).
Then obviously G is connected and 2 < vg(G) < 4. By Theorems C and
1, sdyz(G) < 2. Suppose that G is a connected component of G of order
more than 2. Then by Theorem E

543a(G) + 53 (@) < 1+ [ 11 < 3] +2.

Now let G and G be connected. If Yr(G) < 4 or yr(G) < 4, then the result
follows as before. Suppose now that yg(G),Yr(G) > 5. Then G and G

are connected and n > 5. Therefore G,G ¢ {Cs, aKz}. Hence, we have
Yr(G) + vr(G) < n + 2 by Theorem A. Now by Theorems 3 and D

$dys(G) +5d1,(G) < URéG) Jﬂ“mé@) |42

['m(G) +vr(G)
2

IA

J+2

[w1+2<[ 2+,

IA

This completes the proof. O
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We conclude this paper with a result on the sum of the Roman domi-
nation subdivision number of the components of G of order at least 3.

Theorem 5. Let G be a simple disconnected graph of order n > 4 such
that each of G and G has at least one component of order at least 3. Then

k _ n-k-r +1 ifé=1
Y sdya(Gi) +5dyx (@) < { %,
i=1 — +2 iféd>2,
where G, ...,Gg are the connected components of G of order at least 3

and 7 is the number of even connected components of G of order at least
3. Furthermore, the bound is sharp when § = 1,2.

Proof. Since G is disconnected, vr(G) < 3if6(G) =1 and 73(5)_5 4 if
8(G) > 2. By Theorems C and 1, 5d,,(G) = 1if §(G) = 1 and sd,x(G) < 2
if §(G) > 2. By Theorem E, each connected component G; of G of order at

; V(G -
least 3 satisfies sd(Gi) < [M] — 1. Hence, sd,,(G;) < V(G| -2
2 V(G;)| -1
if G; is an even connected component and sd,,(G;) < I‘T if G; is
an odd connected component. Thus,
u I (=LA Y

D _5dya(G) +5d, (@) < p_%_,

=1 — +2 ifd>2
If G is the disjoint union of paths (respectively, cycles) of order 5, then the
upper bound is achieved when § = 1 (respectively, § = 2). O
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