Super (a, 1)-cycle-antimagic labeling of the grid

¹ Ming-Ju Lee *, ² Wei-Han Tsai, ³ Chiang Lin †

¹Jen-Teh Junior College of Medicine, Nursing and Management Houlong, Miaoli, Taiwan 356, R.O.C.

mingju99@jente.edu.tw

^{2,3} Department of Mathematics

National Central University, Chung-Li, Taiwan 320, R.O.C.

2: john123qazpo@yahoo.com.tw

3: lchiang@math.ncu.edu.tw

Abstract

Let G and F be graphs. If every edge of G belongs to a subgraph of G isomorphic to F, and there exists a bijection $\lambda:V(G)\cup E(G)\to \{1,2,...,|V(G)|+|E(G)|\}$ such that the set $\{\sum_{v\in V(F')}\lambda(v)+\sum_{e\in E(F')}\lambda(e):F'\cong F,F'\subseteq G\}$ form an arithmetic progression starting from a and having common difference d, then we say that G is (a,d)-F-antimagic. If, in addition, $\lambda(V(G))=\{1,2,...,|V(G)|\}$, then G is super (a,d)-F-antimagic. In this paper, we prove that the grid (i.e. the Cartesian product of two nontrivial paths) is super (a,1)- C_4 -antimagic.

1 Introduction

We consider finite simple graphs. Let G be a graph. An edge labeling of G is a bijection from E(G) to $\{1,2,...,|E(G)|\}$. A vertex labeling of G is a bijection from V(G) to $\{1,2,...,|V(G)|\}$. A total labeling of G is a bijection from $V(G) \cup E(G)$ to $\{1,2,...,|V(G)|+|E(G)|\}$. Suppose λ is a total labeling of G, and H is a subgraph of G, we let $\sum \lambda(H) = \sum_{v \in V(H)} \lambda(v) + \sum_{e \in E(H)} \lambda(e)$.

 $^{^{\}bullet}$ Corresponding author. This research was supported by NSC of R.O.C. under grant NSC 100-2115-M-407-001

[†]This research was supported by NSC of R.O.C. under grant NSC 101-2115-M-008-003

Let G and F be graphs. If every edge of G belongs to a subgraph of G isomorphic to F and there exists a total labeling λ of G such that for every subgraph F' of G which is isomorphic to F, the set $\{\sum \lambda(F'): F' \cong F, F' \subseteq G\}$ form an arithmetic progression starting from G and having common difference G, then we say that G is G is G is super G is a super G is super G is super G is a super G is a super G is a super G is super G is super G is a super G is a super G is a super G is super G is super G is a supe

Let C_n denote a cycle on n vertices. The Cartesian product of graphs G_1 and G_2 , denoted by $G_1 \square G_2$, is the graph with vertex set $V(G_1) \times V(G_2)$ such that a vertex (u,v) is adjacent to a vertex (u',v') if and only if either u=u' and $vv' \in E(G_2)$ or v=v' and $uu' \in E(G_1)$. We call $P_m \square P_n$ $(m,n \geq 2)$ a grid. In [7], A.A.G. Ngurah et al. proved that $P_m \square P_n$ is super (a,0)- C_4 -antimagic for $m \geq 2$, n=2,3,4,5. Furthermore, in [8], the authors proved that every grid $P_m \square P_n$ $(m,n \geq 2)$ is super (a,0)- C_4 -antimagic. The purpose of this paper is to show that every grid $P_m \square P_n$ $(m,n \geq 2)$ is super (a,1)- C_4 -antimagic.

2 Main Result

Suppose that $m, n \geq 2$ are integers. Let P_m be a path $u_1 \varepsilon_1 u_2 \varepsilon_2 u_3 ... u_{m-1} \varepsilon_{m-1} u_m$ where $u_1, u_2, u_3, ..., u_m \in V(P_m)$, and $\varepsilon_i = u_i u_{i+1} \in E(P_m)$ for i = 1, 2, ..., m-1, and P_n be a path $v_1 e_1 v_2 e_2 v_3 ... v_{n-1} e_{n-1} v_n$ where $v_1, v_2, v_3, ..., v_n \in V(P_n)$, and $e_j = v_j v_{j+1} \in E(P_n)$ for j = 1, 2, ..., n-1. Then in the grid $P_m \square P_n$ the following notations are used. The vertex (u_i, v_j) is denoted by $w_{i,j}$. The edge joining $w_{i,j}$ and $w_{i+1,j}$ is denoted by $\varepsilon_{i,j}$. Thus $\varepsilon_{i,j}$ is the edge corresponding to the edge ε_i in P_m and the vertex v_j in P_n . The edge joining $w_{i,j}$ and $w_{i,j+1}$ is denoted by $e_{i,j}$. Thus $e_{i,j}$ is the edge corresponding to the vertex u_i in P_m and the edge e_j in P_n . For i = 1, 2, ..., m-1, j = 1, 2, ..., n-1, the cycle $w_{i,j} w_{i+1,j} w_{i+1,j+1} w_{i,j+1} w_{i,j}$ is denoted by $C_{i,j}$. Thus $C_{i,j}$ is the cycle consisting of the edges $\varepsilon_{i,j}$, $\varepsilon_{i,j+1}$, $e_{i,j}$ and $e_{i+1,j}$.

We begin with some definitions, remarks and lemmas. Suppose that g is an edge labeling of a graph G, and H is a subgraph of G. We let $\sum g(H) = \sum_{e \in E(H)} g(e)$. The following remark is trivial.

Remark 2.1 Let g be an edge labeling of $P_m \square P_n$ $(m, n \ge 2)$. Then

(1)
$$\sum g(C_{i,j}) - \sum g(C_{i+1,j}) = (g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j})) + (g(\varepsilon_{i,j+1}) - g(\varepsilon_{i+1,j+1})) + (g(\varepsilon_{i,j}) - g(\varepsilon_{i+2,j})), \text{ for } 1 \le i \le m-2, 1 \le j \le n-1, \text{ and}$$

(2)
$$\sum g(C_{i,j}) - \sum g(C_{i,j+1}) = (g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2})) + (g(e_{i,j}) - g(e_{i,j+1})) + (g(e_{i+1,j}) - g(e_{i+1,j+1})), \text{ for } 1 \le i \le m-1, 1 \le j \le n-2.$$

Lemma 2.2 There exists an edge labeling g of $P_m \square P_n$ $(m, n \ge 2)$ such that

$$(1) \sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1 \text{ for } 1 \le i \le m-2, \ 1 \le j \le n-1, \text{ and } 1 \le j \le n-1, \text{ and } 2 \le j \le n-1, \text{ and } 3 \le j \le n-1, \text{ and } 3$$

(1)
$$\sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1$$
 for $1 \le i \le m-2$, $1 \le j \le n-1$, and (2) $\sum g(C_{i,j}) = \sum g(C_{i,j+1}) + 1 - m$ for $1 \le i \le m-1$, $1 \le j \le n-2$.

Proof. We distinguish three cases according to the parity of m and n. Case 1. m and n are odd.

A required edge labeling of $P_5 \square P_7$ is given in Fig. 1.

Fig. 1. An edge labeling of $P_5 \square P_7$

In general, we consider the edge labeling of $P_m \square P_n$ defined as follows:

For
$$1 \le i \le m$$
, $1 \le j \le n-1$, let
$$g(e_{i,j}) = \begin{cases} \frac{j-1}{2}m + \frac{i+1}{2}, & \text{if } i+j \equiv 0 \pmod{2}; \\ \frac{n+j-2}{2}m + \frac{i}{2}, & \text{if } i+j \equiv 1 \pmod{2}. \end{cases}$$

For
$$1 \le i \le m-1$$
, $1 \le j \le n$, let
$$g(\varepsilon_{i,j}) = \begin{cases} (n-1)m + \frac{m+i-1}{2}n - \frac{j-2}{2}, & \text{if } i+j \equiv 0 \pmod{2}; \\ (n-1)m + \frac{m-i}{2}n - \frac{j-2}{2}, & \text{if } i+j \equiv 1 \pmod{2}. \end{cases}$$

We first show that $\sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1$ for $1 \le i \le m-2, 1 \le j \le m-2$ n-1. It is not difficult to see that $g(e_{i,j}) - g(e_{i+2,j}) = -1$ and $g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j}) = (-1)^{i+j} in.$

Then

$$\sum_{i=0}^{n} g(C_{i,j}) - \sum_{i=0}^{n} g(C_{i+1,j})$$

$$= (g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j})) + (g(\varepsilon_{i,j+1}) - g(\varepsilon_{i+1,j+1})) + (g(e_{i,j}) - g(e_{i+2,j}))$$

$$= (-1)^{i+j} in + (-1)^{i+j+1} in + (-1)$$

$$= -1.$$

Thus, condition (1) holds for the edge labeling g.

Next, we show that $\sum g(C_{i,j}) = \sum g(C_{i,j+1}) + 1 - m$ for $1 \le i \le m-1$, $1 \le j \le n-2$. It is not difficult to see that $g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2}) = 1$ and $g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+1}) = ((-1)^{i+j} - 1)m/2 + (-1)^{i+j+1}(mn-1)/2$. Then

$$\sum_{i=0}^{n} g(C_{i,j}) - \sum_{i=0}^{n} g(C_{i,j+1})$$

$$= (g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2})) + (g(e_{i,j}) - g(e_{i,j+1})) + (g(e_{i+1,j}) - g(e_{i+1,j+1}))$$

$$= 1 + ((-1)^{i+j} - 1)m/2 + (-1)^{i+j+1}(mn-1)/2$$

$$+ ((-1)^{i+j+1} - 1)m/2 + (-1)^{i+j+2}(mn-1)/2$$

$$= 1 - m.$$

Thus, condition (2) also holds for the edge labeling g.

Case 2. m is odd, n is even or m is even, n is odd.

Without loss of generality, assume that n is even. A required edge labeling of $P_5 \square P_6$ is given in Fig. 2.

Fig. 2. An edge labeling of $P_5 \square P_6$

In general, we consider the edge labeling of $P_m \square P_n$ defined as follows:

For
$$1 \le i \le m$$
, $1 \le j \le n - 1$, let
$$g(e_{i,j}) = \begin{cases} \frac{j-1}{2}m + \frac{i+1}{2}, & \text{if } i+j \equiv 0 \pmod{2}; \\ \frac{n+j-2}{2}m + \frac{i+1}{2}, & \text{if } i+j \equiv 1 \pmod{2}. \end{cases}$$

For
$$1 \le i \le m-1$$
, $1 \le j \le n$, let
$$g(\varepsilon_{i,j}) = \begin{cases} (n-1)m + (\frac{m-i}{2})n + \frac{2-j}{2}, & \text{if } j \text{ is even;} \\ (n-1)m + (\frac{m+i-1}{2})n + \frac{1-j}{2}, & \text{if } j \text{ is odd.} \end{cases}$$

First, we show that $\sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1$ for $1 \leq i \leq m-2$, $1 \leq j \leq n-1$. It is not difficult to see that $g(e_{i,j}) - g(e_{i+2,j}) = -1$ and $g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j}) = (-1)^j n/2$.

Then

$$\sum_{i=0}^{n} g(C_{i,j}) - \sum_{i=0}^{n} g(C_{i+1,j})$$

$$= (g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j})) + (g(\varepsilon_{i,j+1}) - g(\varepsilon_{i+1,j+1})) + (g(e_{i,j}) - g(e_{i+2,j}))$$

$$= (-1)^{j} n/2 + (-1)^{j+1} n/2 + (-1)$$

$$= -1.$$

Thus, condition (1) holds for the edge labeling g.

Next, we show that $\sum g(C_{i,j}) = \sum g(C_{i,j+1}) + 1 - m$ for $1 \le i \le m-1$, $1 \le j \le n-2$. It is not difficult to see that $g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2}) = 1$ and $g(e_{i,j}) - g(e_{i,j+1}) = ((-1)^{i+j} - 1)m/2 + (-1)^{i+j+1}mn/2$. Then

$$\sum g(C_{i,j}) - \sum g(C_{i,j+1})$$
= $(g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2})) + (g(e_{i,j}) - g(e_{i,j+1})) + (g(e_{i+1,j}) - g(e_{i+1,j+1}))$
= $1 + ((-1)^{i+j} - 1)m/2 + (-1)^{i+j+1}mn/2 + ((-1)^{i+j+1} - 1)m/2 + (-1)^{i+j+2}mn/2$
= $1 - m$.

Thus, condition (2) also holds for the edge labeling g.

Case 3. m and n are even.

A required edge labeling of $P_4 \square P_6$ is given in Fig. 3.

Fig. 3. An edge labeling of $P_4 \square P_6$

In general, we consider the edge labeling of $P_m \square P_n$ defined as follows: For $1 \le i \le m$, $1 \le i \le n-1$, let

For
$$1 \le i \le m$$
, $1 \le j \le n-1$, let
$$g(e_{i,j}) = \begin{cases} \frac{n+j-2}{2}m + \frac{i}{2}, & \text{if } i \text{ is even;} \\ \frac{j-1}{2}m + \frac{j+1}{2}, & \text{if } i \text{ is odd.} \end{cases}$$

For
$$1 \leq i \leq m-1$$
, $1 \leq j \leq n$, let
$$g(\varepsilon_{i,j}) = \left\{ \begin{array}{ll} (n-1)m + (\frac{m-i}{2})n + \frac{2-j}{2}, & \text{if } j \text{ is even;} \\ (n-1)m + (\frac{m+i-1}{2})n + \frac{1-j}{2}, & \text{if } j \text{ is odd.} \end{array} \right.$$

First, we show that $\sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1$ for $1 \leq i \leq m-2$, $1 \leq j \leq n-1$. It is not difficult to see that $g(e_{i,j}) - g(e_{i+2,j}) = -1$ and $g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j}) = (-1)^j n/2$.

Then

$$\sum_{j} g(C_{i,j}) - \sum_{j} g(C_{i+1,j})$$

$$= (g(\varepsilon_{i,j}) - g(\varepsilon_{i+1,j})) + (g(\varepsilon_{i,j+1}) - g(\varepsilon_{i+1,j+1})) + (g(e_{i,j}) - g(e_{i+2,j}))$$

$$= (-1)^{j} n/2 + (-1)^{j+1} n/2 + (-1)$$

$$= -1$$

Thus, condition (1) holds for the edge labeling g.

Next, we show that $\sum g(C_{i,j}) = \sum g(C_{i,j+1}) + 1 - m$ for $1 \le i \le m-1$, $1 \le j \le n-2$. It is not difficult to see that $g(e_{i,j}) - g(e_{i,j+1}) = -m/2$ and $g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2}) = 1$.

Then

$$\sum_{i=0}^{n} g(C_{i,j}) - \sum_{i=0}^{n} g(C_{i,j+1})$$

$$= (g(\varepsilon_{i,j}) - g(\varepsilon_{i,j+2})) + (g(e_{i,j}) - g(e_{i,j+1})) + (g(e_{i+1,j}) - g(e_{i+1,j+1}))$$

$$= 1 - m/2 - m/2$$

$$= 1 - m.$$

Thus, condition (2) also holds for the edge labeling g. This completes the proof.

Suppose that f is a vertex labeling of a graph G, and H is a subgraph of G. We let $\sum f(H) = \sum_{v \in V(H)} f(v)$. The following remark is trivial.

Remark 2.3 Let f be a vertex labeling of $P_m \square P_n$ $(m, n \ge 2)$. Then

(1)
$$\sum f(C_{i,j}) - \sum f(C_{i+1,j}) = (f(w_{i,j}) - f(w_{i+2,j})) + (f(w_{i,j+1}) - f(w_{i+2,j+1}))$$

for $1 \le i \le m-2, \ 1 \le j \le n-1, \ and$

(2)
$$\sum_{f(C_{i,j})-\sum_{f}} f(C_{i,j+1}) = (f(w_{i,j})-f(w_{i,j+2}))+(f(w_{i+1,j})-f(w_{i+1,j+2}))$$
$$for \ 1 \leq i \leq m-1, \ 1 \leq j \leq n-2.$$

Lemma 2.4 There exists a vertex labeling f of $P_m \square P_n$ $(m, n \ge 2)$ such that

(1)
$$\sum f(C_{i,j}) = \sum f(C_{i+1,j}) + 2$$
 for $1 \le i \le m-2$, $1 \le j \le n-1$, and (2) $\sum f(C_{i,j}) = \sum f(C_{i,j+1})$ for $1 \le i \le m-1$, $1 \le j \le n-2$.

Proof. We distinguish two cases according to the parity of m and n.

Case 1. m and n are even.

A required vertex labeling of $P_4 \square P_6$ is given in Fig. 4.

Fig. 4. A vertex labeling of $P_4 \square P_6$

In general, we consider the vertex labeling of $P_m \square P_n$ defined as follows: For $1 \le i \le m$, $1 \le j \le n$, let

$$f(w_{i,j}) = \left\{ \begin{array}{ll} \frac{j}{2}m + \frac{2-i}{2}, & \text{if } i \text{ is even;} \\ mn + (\frac{1-j}{2})m + \frac{1-i}{2}, & \text{if } i \text{ is odd.} \end{array} \right.$$

First we show that $\sum f(C_{i,j}) = \sum f(C_{i+1,j}) + 2$ for $1 \leq i \leq m-2$, $1 \leq j \leq n-1$. Notice that $f(w_{i,j}) - f(w_{i+2,j}) = 1$.

$$\sum_{i=0}^{\infty} f(C_{i,j}) - \sum_{i=0}^{\infty} f(C_{i+1,j})$$

$$= (f(w_{i,j}) - f(w_{i+2,j})) + (f(w_{i,j+1}) - f(w_{i+2,j+1}))$$

$$= 2.$$

Thus, condition (1) holds for the vertex labeling f.

Next, we show that $\sum f(C_{i,j}) = \sum f(C_{i,j+1})$ for $1 \le i \le m-1$, $1 \le j \le n-2$. Notice that $f(w_{i,j}) - f(w_{i,j+2}) = (-1)^{i+1}m$. Then

$$\sum_{i=0}^{\infty} f(C_{i,j}) - \sum_{i=0}^{\infty} f(C_{i,j+1})$$

$$= (f(w_{i,j}) - f(w_{i,j+2})) + (f(w_{i+1,j}) - f(w_{i+1,j+2}))$$

$$= (-1)^{i+1}m + (-1)^{i+2}m$$

$$= 0.$$

Thus, condition (2) also holds for the vertex labeling f.

Case 2. m or n is odd.

Without loss of generality, assume that m is odd. A required vertex labeling of $P_5 \square P_7$ is given in Fig. 5.

Fig. 5. A vertex labeling of $P_5 \square P_7$

In general, we consider the vertex labeling of $P_m \square P_n$ defined as follows: For $1 \le i \le m$, $1 \le j \le n$, let

$$f(w_{i,j}) = \begin{cases} \frac{j}{2}m + \frac{2-i}{2}, & \text{if } i+j \equiv 0 \pmod{2}; \\ mn + (\frac{1-j}{2})m + \frac{2-i}{2}, & \text{if } i+j \equiv 1 \pmod{2}. \end{cases}$$

First we show that $\sum f(C_{i,j}) = \sum f(C_{i+1,j}) + 2$ for $1 \leq i \leq m-2$, $1 \leq j \leq n-1$. Notice that $f(w_{i,j}) - f(w_{i+2,j}) = 1$.

$$\sum_{i=1}^{n} f(C_{i,j}) - \sum_{i=1}^{n} f(C_{i+1,j})$$

$$= (f(w_{i,j}) - f(w_{i+2,j})) + (f(w_{i,j+1}) - f(w_{i+2,j+1}))$$

$$= 2.$$

Thus, condition (1) holds for the vertex labeling f.

Next, we show that $\sum f(C_{i,j}) = \sum f(C_{i,j+1})$ for $1 \le i \le m-1$, $1 \le j \le n-2$. Notice that $f(w_{i,j}) - f(w_{i,j+2}) = (-1)^{i+j+1}m$.

$$\sum_{i=1}^{n} f(C_{i,j}) - \sum_{i=1}^{n} f(C_{i,j+1})$$

$$= (f(w_{i,j}) - f(w_{i,j+2})) + (f(w_{i+1,j}) - f(w_{i+1,j+2}))$$

$$= (-1)^{i+j+1} m + (-1)^{i+j+2} m$$

$$= 0.$$

Thus, condition (2) also holds for the vertex labeling f. This completes the proof.

The main result of this section follows from Lemma 2.2 and Lemma 2.4.

Theorem 2.5 The grid $P_m \square P_n$ $(m, n \ge 2)$ is super (a, 1)- C_4 -antimagic.

Proof. By Lemma 2.2, there exists an edge labeling g of $P_m \square P_n$ such that

$$\sum g(C_{i,j}) = \sum g(C_{i+1,j}) - 1 \quad \text{for } 1 \le i \le m-2, \ 1 \le j \le n-1, \text{ and}$$

$$\sum g(C_{i,j}) = \sum g(C_{i,j+1}) + 1 - m \quad \text{for } 1 \le i \le m-1, \ 1 \le j \le n-2.$$

By Lemma 2.4, there exists a vertex labeling f of $P_m \square P_n$ such that

$$\sum f(C_{i,j}) = \sum f(C_{i+1,j}) + 2 \quad \text{for } 1 \le i \le m-2, \ 1 \le j \le n-1, \text{ and}$$

$$\sum f(C_{i,j}) = \sum f(C_{i,j+1}) \quad \text{for } 1 \le i \le m-1, \ 1 \le j \le n-2.$$

We consider the total labeling of $P_m \square P_n$ defined by

$$\lambda(x) = \left\{ \begin{array}{ll} f(x), & \text{if } x \in V(P_m \square P_n); \\ mn + g(x), & \text{if } x \in E(P_m \square P_n). \end{array} \right.$$

Notice that $\sum \lambda(C_{i,j}) = \sum f(C_{i,j}) + 4mn + \sum g(C_{i,j})$.

Thus, by the first part of Lemmas 2.2 and 2.4, we get

$$\sum \lambda(C_{i,j}) = \sum f(C_{i+1,j}) + 4mn + \sum g(C_{i+1,j}) + 1, \text{ that is }$$
$$\sum \lambda(C_{i,j}) = \sum \lambda(C_{i+1,j}) + 1.$$
(1)

Similarly, using the second part of Lemmas 2.2 and 2.4, we get $\sum \lambda(C_{i,j}) = \sum \lambda(C_{i,j+1}) + 1 - m. \tag{2}$

Thus, combining equalities (1) and (2), it follows that,

$$\sum \lambda(C_{1,j})$$
= $\sum \lambda(C_{2,j}) + 1$
= \cdots
= $\sum \lambda(C_{i,j}) + i - 1$
= \cdots
= $\sum \lambda(C_{m-1,j}) + m - 2$
= $[\sum \lambda(C_{m-1,j+1}) + 1 - m] + m - 2$
= $\sum \lambda(C_{m-1,j+1}) - 1$ for $1 \le j \le n - 2$.

Hence the set $\{\sum \lambda(C_{i,j}): 1 \leq i \leq m-1, 1 \leq j \leq n-1\} = \{\sum \lambda(C_{m-1,1}), \sum \lambda(C_{m-2,1}), \cdots, \sum \lambda(C_{1,1}), \sum \lambda(C_{m-1,2}), \sum \lambda(C_{m-2,2}), \cdots, \sum \lambda(C_{1,2}), \sum \lambda(C_{m-1,3}), \sum \lambda(C_{m-2,3}), \cdots, \sum \lambda(C_{1,3}), \cdots, \cdots, \sum \lambda(C_{m-1,n-1}), \sum \lambda(C_{m-2,n-1}), \cdots, \sum \lambda(C_{1,n-1}) \}$ constitutes an arithmetic progression of difference 1. Therefore, the graph $P_m \square P_n$ $(m, n \geq 2)$ is super (a, 1)- C_4 -antimagic. \square

Acknowledgment

The authors would like to thank the anonymous referees for their valuable comments.

References

- J.A. Gallian, Graph labeling, Electron. J Combin., Dynamic Survey 6, 17 (2010).
- [2] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput., 55 (2005) 43-56.
- [3] N. Inayah, A.N.M. Salman, and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput., 71 (2009) 273-281.
- [4] M-J Lee, C. Lin, W-H Tsai, On Antimagic Labeling For Power of Cycles, ARS Combinatoria, 98 (2011) 161-165.
- [5] M-J Lee, On super (a, 1)-edge-antimagic total labelings of grids and crowns, ARS Combinatoria, 104 (2012) 97-105.
- [6] M-J Lee, W-H Tsai, C. Lin, On super (a, 1)-edge-antimagic total labelings of subivision of stars, Util. Math., 88 (2012) 355-366.
- [7] A.A.G. Ngurah, A.N.M. Salman, L. Susilowati, H-supermagic labelings of graphs, Discrete Math., 310(8) (2010) 1293-1300.
- [8] W-H. Tsai, M-J. Lee, C. Lin, A cycle-magic labeling and an edgeantimagic labeling of the grid, Util. Math., 88 (2012) 107-118.