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Abstract

The Sum-Balaban index defined as

E(G)| 1
8J(G) = l__ z : —_—
u+1 & /De(u) + Da(v)

where . is the cyclomatic number of G and De(u) = 3 e v(c) e (2, v)-
In this paper, we characterize the tree with the maximum Sum-
Balaban index among all trees with n vertices and diameter d. We
also give a new proof of the result that the star S, is the graph
which has the maximum Sum-Balaban index among all trees with n
vertices. Furthermore, we propose a problem for further research.

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set
E(G). The distance between vertices u and v in G, denoted by dg(u,v),
is the length of the shortest path connecting u and v in G. Let Dg(u) =
Evev(a) dg(u,v), which is the distance sum of vertex u in G.

Let |V(G)| = n and |E(G)| = m. The cyclomatic number p of G is
the minimum number of edges that must be removed from G in order to
transform it to an acyclic graph. It is known that 4 = m — n + 1([14]).
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The Balaban index (also called J index) of a connected graph G is

defined as m 1
J=J(G) = —— —_—,
@)= 2 bewtem

It was proposed by A. T. Balaban [1, 2], which also called the average
distance-sum connectivity index or J index. It appear to be a very useful
molecular descriptor with attractive properties. It has been used successful-
ly in developing QSAR/QSPR models([13]) and in drug design([10]). Math-
ematical properties of Balaban index may be found in [4, 6, 7, 8, 11, 12, 16].

Balaban et al. ([3]) also proposed the study of the sum-Balaban index
of a connected graph G, defined as

SJ(G) =

m 1
p+1 wezE(G) v De(u) +Da(v).

Mathematical properties of Sum-Balaban index may be found in [5, 15].

Theorem 1.1. [5, 15] If T is a tree with n > 2 vertices, then SJ(P,) <
SJ(T) < SJ(S,) with left (or right) equality if and only if T = P, (or
T 2 S,)), where P, is the path on n vertices and S,, is the star on n vertices.

In [6, 7], Dong and Guo characterized the tree with the maximum Bal-
aban index among all the trees with n vertices and either given diameter,
or the maximum degree, or a given degree sequence, or k pendent ver-
tices, the tree with the minimum Balaban index among all the trees with
n vertices and the maximum degree. In [8], they give some order relation-
s of trees about Balaban index among all the trees with n vertices, and
they determined at most 21st largest Balaban indices among all the trees
with n vertices. In [7], they also proposed to characterize the graphs with
maximum Balaban index among graphs with n vertices and given diameter.

In this paper, we characterize the tree with the maximum Sum-Balaban
index among all trees with n vertices and diameter d in Section 2. In Section
3, we give a new proof of the result that the star S, is the graph which
has the maximum Sum-Balaban index among all trees with n vertices.
Furthermore, we propose a problem for further research in Section 4.

2 The tree with maximum Sum-Balaban in-
dex among trees with n vertices and diam-
eter d

In this section, we will introduce two transformations which are impor-
tant to our main results, and then we will characterize the tree with the
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maximum Sum-Balaban index among all trees with n vertices and diameter
d.

A rooted graph has one of its vertex, called the root, distinguished from
the others. Let T be a tree and V; C V(T'), then for any vertex u € V(T),
we define Dr(u, V1) = Y_,cy, dr(u,v). Note that the distance between
vertices 4 and v in a tree T, dT(u, v), is the length of the path from vertex
u to vertex v in T because that the path from u to v in a tree is unique.

2.1 Branch transformation

Branch transformation: Let T be a tree, p,¢ be positive integers
withp < q, P = upu, ) - - - ugu  uoUo1v2 « - - vg be the longest path in T', T
and T3 be the component of T — ugvo rooted at ug and v, respectively. Let
T., and T, be the component of T — E(P) rooted at u; and v; (0 < i <
p,0 < j < q), respectively. Then T” is obtained by deleting T,,, except for
vertex u; for 0 < ¢ < p from T and adding T} to the root v; for 0 < ¢ < p,
where T}, is a rooted tree obtained from Tu replacing u; by v; for any
0<i< p We call T” is obtained from T by branch transformation (see
Fig.1).

Note that P is the longest path in T, so V(T,,) = {u,} and V(T,,) =

Fig.1: A tree T” is obtained from a tree T by branch transformation.

Lemma 2.1. Let T’ be a graph obtained from T by branch transformation,
then SJ(T') > SJ(T), and SJ(T") = SJ(T) if and only if T = T".

PTOOﬁ Let Uo = {UO,UI, U2, ,'up}; ‘/0 = {vOa V1,V2,° " )vp}a Ul = V(Tl)\
Up, and V; = V(T2) \ Vo. Suppose T # T”, then U, # ¢ and V) # ¢.
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For any s with 0 < s < p, it is clearly that u, € Uy and v, € Vp, and

DT(us) = DT(us» UO) + DT(‘Us, Ul) + DT('U'a, VO) + DT(u:H Vl)a (2-1)

and

Dr:(vs) = Dr:(vs, Vo) + Drv(v5,Us) + D+ (vs,U) + D1 (v5, V1), (2.2)
Note that T'[Uo) = T[Vo) and Ty = T'[Vo U U4), so
DT(usa UO) = DT’ ('Ua, ‘/0)9 DT(u31 ‘/0) = DT’ ('031 UO))

and
DT(us’ Ul) = DT' (vS) Ul)a .DT(’U;, Vl) > DT’ ('Us, Vl)-

Thus we have
Dr(us) — Dp:(vs) = Dp(us, Vi) — Dpi(vs, V1) > 0. (2.3)

Similarly, we have

Dr(vs) = Dr(vs, Uo) + Dr(vs,U1) + Dr(vs, Vo) + Dr(vs, V1),  (24)
and
D1+ (us) = Dy (us, Vo) + D (us, Ur) + Dr(us, Up) + Dre(us, V1) (2.5)
Thus
Dri(us) — Dr(vs) = Dy (us, Vi) — Dp(vs, V1) > 0. (2.6)
Note that Dy(us, V1) = Dri(us, V1) and Dpi(v,, Vi) = Dr(vs, V1), by
(2.3) and (2.6), we have

D’I‘(us) - DT’('US) = DT‘(us) - DT(’U,) = DT(us: Vl) - DT'(vs: ‘/1) >( 0.
2.7)
By (2.1}, (2.2), (2.4) and (2.5), we have
Dy (us) — Dp(us) = Dr(vs) — D (vs) > 0. (2.8)

Let a = Dpi(u,) — Dr(us), @’ = Dypi(uy) — Dp(ue), b = Dp(v,) —
Dqgi(vs), ¥ = Dr(v;) — Dpv(v:) for any s,t with 0 < s,¢t < p. Then
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b=a>0,4 =a>0Dby (2.8).
Let f(z) = 71; - m, f(z) is decreasing function of z since f/(z) <
0. Note that Dr(u,) + Dr(ue) > Dr+(vs) + Dr+(ve) = Dr(vs) + Dr(ve) —

a —a’, we have
1

_ 1
V4 D'r(un)+113'z'("¢) V4 DT("!)+DT§1‘¢)+“+“'

S JBreaibrtooace  VBrGotbeGy
1 1

\/DTl(ug) + D (ut) * vV Dy (v,) + D (‘Ug)
> S S + —
vV Dr(us) + Dr(w)  /Dr(vs) + Dr(ve)

Similarly, for any vertex w € Uy V1, we can show Dr(w) > Dp/(w).
Then it implies that the following inequalities (2.10)-(2.12) hold.
For any edge e = wv € E(T[U;]) U E(T[V1]), we have

1 1

/D@ Dr(o) . v/Dr(@) £ Dr(o).

For any edge u,w € E(Ty) C E(T) with u, € Uy where 0 < s < p and
w € Uj, the corresponding edge is v,w € E(T"), we have

1 1
V/Dr(5:) + Do)  v/Dr(us) + Dr@)’

For any edge vs,w € E(T3) with v; € Vp where 0 < s < pand w € W,
we have

Thus

(2.9)

(2.10)

(2.11)

- > — 1 (2.12)
VDr:(vs)+ Dpi(w) ~ +/Dr(vs) + Dr(w)
For edge uovg, by (2.8), we have
L ! (2.13)

vV D7 (uo) + D (o) - TB;(UO) +3T(”0).

From (2.9) to (2.13), we obtain SJ(T") > SJ(T) by the definition of
Sum-Balaban index. a

2.2 Edge-lifting transformation

Let P = v1v2v3 - - - v, be a path of length r — 1(> 1), Gy be a connected
graph with ng(> 1) vertices and Gy be a connected graph with n,(> 2)
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vertices. Let x € V(Go), y € V(G1) and vx € V(P) where 1 < k < 7.
G is a graph obtained from Gy, Gy, P by identifying vertex x with vertex
vy and adding an edge e = zy. G’ is a graph obtained from Gy, Gy, P
by identifying vertices z, vx and y, and adding a pendent edge e = 2w to
z(= v = y). We call G’ is obtained from G by edge-lifting transformation
(see Fig.2).

w
V1 V2 Vg1 Vk+1 Ur . .
xr U1 V2 Vg Vk+1 Uy
Go
1
G G

Fig.2: G’ is obtained from G by edge-lifting transformation.

Lemma 2.2. Let P,Go,Gi,G be connected graphs and defined as above,
G’ is obtained from G by edge-lifting transformation. Then

D¢(u) = Der(u) + { ;‘; ; i’_ 2 z 2 Kgg‘l’gu V(P); (2.14)
and
Dg/(w) = Dg(y) +n1 — 1. (2.15)

Proof. In the graph G, note that v, = z and dg(vk,y) = 1, then for any
u € V(G), we have
Case 1: u € V(Gy).
Da(u) = Yyev(co) d6(u:v) + Tty da(w v:)
+Xvev(cy) g4, v) — da(u,z)
= D, (u) + 371 lde (u, ve) + de(ve, vi)l
+ X uev(onlde(w, vk) + da(ve, y) + da(y, )] — de(v, )
= Dg,(u) + Dp(vk) + Dg, (y) + (n1 + 7 — 1de(u, ) + n1.
Case 2: u € V(G)).
De(u) = ZveV(Go) dg(u,v) + ¥i; do(u, vi)
+ Y evicy) 96w, v) — do(u, )
= Z‘UGV(Go) [da(u,y) + dg(y,z) + dc(=, 'U)]
+ Z:=l [de(u,y)+da(y, vk)+da(Vk, vi)]+De, (u) — [de(u, y)+1]
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= Dg,(z)+ Dp(vi) + Dg, (v) + (no + 7 —1)dg(u, y) +no+r—1.
Case 3: u € V(P).
Dg(u) = ZueV(Go) de(u,v) + i do(u, v:)
-+ Z‘UGV(G;) dG(u, 'U) -_— da(’ll,, x)
= EueV(Go)[dG(ua z) + dg(z,v)] + Dp(u)
+ Y vevieylde(,z) + do(z,y) + de(y,v)] — de (v, 2)
= Dg,(z) + Dp(u) + Dg, (¥) + (n0 + n1 — 1)da (u, vk) + 1.
In the graph &, note that v, = z = y and dg/(z,w) = 1, then for any
u € V(G'), we have
Case 1: u € V(Gy).
Dg/(u) = ZveV(Go) dg(u,v) + Z:=1 dgr (u, v;)
+ Y vevicy) 4o (v, v) — 2der (v, z) + dg (u, w)
= DGO (u) + E:=1 [dG' (uv 'Uk) + dG' ('Uk, 'U,')]
+ ZUGV(GI)[dG' (ua y) + dG' (ys 'U)] - 2dG' (u) IL')
+[der (v, z) + dor (z, w))
= Dg,(u) + Dp(vk) + De, (@) + (01 + 7 = 1)de (u, z)+1
= Dg,(u) + Dp(vk) + D, (¥) + (n1 +7—1)dg(u,z) + 1.
Case 2: u € V(Gy).
Dg(u) = ZUEV(GO) dg(u,v) + > =1 4o (4, vi)
+ Y vevicy der (u,v) — 2dg: (u, ) + dov (u, w)
= EvGV(Go) [de (u, 2)+dg (2, V)41 [der (u, vi)+der (Vk, ;)]
+Deg, (v) — 2dg (4, ) + [der (4, ) + do (z, W)
= Dg,(z) + Dp(vi) + Dg, (u) + (no + r — 1)dar (u,y) + 1
= Dg,(z) + Dp(vk) + Dg, (u) + (no + 7 — 1)dg(u,y) + 1.
Case 3: u € V(P).
DGI ('u,) = ZvGV(Go) dGl (u, v) + E::l d(;l (‘U., ’Di)
=+ EuEV(Gl) dgr(u,v) — 2dg/(u,z) + dgr (u, w)
= Zuewco) [der(u,z) + dg/(z,v)] + Dp(u)
+3evionlde (v, 9) + do (,v)] — 2dgr (u, 7)
+lde (u, z) + dor(z, w)]
= Dg,(z) + Dp(u) + Dg, (¥) + (no + n1 — Dder (v, vk) + 1
= DGo(x) + DP(“) + DG;('!I) + (no +n; — l)dG(u,’Uk) +1
Case 4: u=w.
DG" (w) = ZuéV(Go) de (w, v) + Z::l dG"(’w,’U,')
+ vevias) dor (w,v) — 2dg(w, z) + dor (w, w)
= Y vevico)lder (w, 2)+d (2, )]+ 20 [der (w, vi) o (Vkyv3)]
+Xoevienlde (w,y) +de (v, v)] -2
= Dg,(z) + Dp(vc) + Dg,(y) + no+ny +7 — 2.
Combing the above arguments, we obtain (2.14) and (2.15). O
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Lemma 2.3. Let P,Gqy, G1,G be connected graphs and defined as above, G’
be a graph obtained from G by edge-lifting transformation. Then SJ(G') >
SJ(G).

Proof. From Lemma 2.2, for any edge wv € E(Go)J E(G1) U E(P), we
e D¢(u) + Dg(v) > Dgr(u) + Dg (v).

For edge zy € E(G), the corresponding edge in E(G’) is zw, then we
" Do) + Do(s) = [Der (2-+ (rs ~ D]+ (Do) (3 ~ 1] = Do)+
DG%Zl)ls we have SJ(G’) > SJ(G) by the definition of Sum-Balaban indeyé

2.3 The tree with maximum Sum-Balaban index a-
mong trees with n vertices and diameter d

Let T be a tree with n vertices. Then |E(T)| =n —1, u =0, and thus

1
SJHT)=(n-1 e —
)= ),,Em, N OEIZI0)

Let n,d,% be positive integers with n > 3, 2 < d < n —1, a path
Pys1 = v192 -+ - v441. We define T} 4 is & tree with n vertices and diameter
d obtained from S,_4 and Pay; by identifying the center vertex v in S,_q4
to v g}y, in Py 1(see Fig.3).

n—-d-1
e e,

VLY g Vgl Yigee Ve Ten

Fig.3: T4

Lemma 2.4. Let n,d be positive integers with2 < d <n—1. Then

n—d-l . 21d;
SJ( d) Yi<icd WT}’ ;7-*’ -d;-!.’»n— 7 td (2.16)
n-1 Z1<z<% \/f ) ‘/ —d+3n—4’ 2le;

where
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fild) = Dr; ,(vi) + Dr; , (vi41)

(n—1)d+2n— 1+ 2i2 — 2n;, 2fd,1sisd—;—‘:
_ ) £-2d+3n-3, 2{dz=_-,5_;
(2d+1-n—di)d+2n—1+(2i—4+2n)i, 2{d,42<i<q;
(n—2)d + 3n — 2 4 2i2 — 2ni, 2|d.
(2.17)

Proof. Let k = |§] + 1, we calculate Dr ,(u) for any vertex u € V(T ).
Case 1: u € V(T J\V(FPas1)-
Dr; (u) —2(n d= -2)+(1+2+---+kB)+ 243+ +(d+2-F)]
+ d 4 9n—2+k%—2k—dk
£ g +2n - o 21d;
-— - - +2n-3, 2]d.
Case 2: u= vi € V(Pd.,.l) where 1 <i<d+1.
Subcase 2.1: d is even.
Note that DT;. L) = DT;' . (vd+2—:), We only need to calculate Dz (vi)
for 1§i_<_k=%+l. Clearly,whenl§i5k=%+l,wehave
Dr: (i) =[142+ -+ (-] +[1+2+3+---+(d+1-1)
+k—-i+1l)(n—d-1)
=22 o — 1442 — (n+1)i.
Subcase 2.2: d is odd.
Subcase 2.2.1: 1<i<k= %‘—1-.
Drs (i) =142+ -+ (G- +[1+2+3+---+(d+1-1)
+(k—i+1)(n—d-1)
=@ld 3142 (n+1)i
Subcase 2.2.2: -‘%ﬁ <i<d+ 1
Drs () =[1+2+4 -+ G -] +[1+243+---+(d+1—1)]
+(i—-k+1)(n—d-1)
=d?+3¢ —2d 4 ntl 4 324 (n—3 - 2d)i.
Combing the above arguments, (2.17) holds.
Let w € V(T ;)\V(Pa+1), we can show (2.16) by (2.17) and the fol-
lowing formula.

SJ(T SJ(Ty 4)
—Zwez(mvm
n—d—1 4
21<t<d \/Dr' (.,,)+D,,.. G (Or1) \/D'r- (v_.;_‘)+Dq-- (w)’ 21d; (]
2 n—d—1
El<t<§ \/Dq" (v.)+Dr' g (1) 73:-- (v§+1)+DT- (w)’ 2|d
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Theorem 2.1. Let n,d be positive integers withn >4 and2<d<n-1,
T be a tree with n vertices and diameter d. Then SJ(T) < SJ(T}; ;), with

equality holds if and only if T =T ,.

Proof. It is obvious that d is the length of the longest path of T by the

definition of diameter.

Let Pyy1 = vivg---vgvg41 be the longest path in tree T, T, be the
component of T — E(Py4,) rooted at v; (¢ = 2,3,--- ,d). T’ is obtained
from T by branch transformation repeatedly, where all T, are rooted at
v with k = [gj + 1 by replacing v; by vk. Then T}; , is obtained from T”
by edge-lifting transformation repeatedly.

Thus by Lemmas 2.1 and Lemma 2.3, we have SJ(T') < SJ(T}; ;) with
equality holds if and only if T =T ;. O

Up Vo Yo Vo

v V2 VU3 V4 Vs Vg U7 Vg Vg V1 V2 V3 Y4 Vs Usg VUr Ug Vg
T(7) T(6)
3
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.4

V1 VU2 V3 V4 Vs Vg VU7 Vg Vg V1 VY2 V3 Y4 Vs Vg VU7 Ug Vg
T(8) Tiss
Fig.4: A tree T with 18 vertices and diameter 8 is transformation to a

new tree T'(5) by three branch transformations and T'(6)(= T'(5)) is trans-
formation to tree T7; g by three edge-lifting transformations

3 The maximum Sum-Balaban index among
all trees on n vertices

In this section, we will give a new proof of the result that the star S,
is the graph which has the maximum Sum-Balaban index among all trees
with n vertices.

Theorem 3.1. ([5, 15]) Let T be a tree with n > 4 vertices. Then SJ(T) <
SJ(S,), with the equality holds if and only if T = S,,.

Proof. Note that T} , = Sy, so we only need to show SJ(T}; ;) is a mono-
tonically decreasing function of d by Theorem 2.1.

Let n,d, s,t be positive integers withn > 4,3 <d<n-1,s+t=d
and s = t (when d is even) or s = t + 1 (when d is odd). Let Vp =
{’U, U2, Uzy " - )un—d-1}7 I,l. = {vls Vg, 7’08}1 Vo= {11)1,'!02, WY, ul}a
Go,G1, P be the deduced graph of vertex set V5, V], V5, respectively. Then
we can obtain T} ;_, by edge-lifting transformation on T ,(see Fig.5).

Thus SJ(T; 4) < SJ(T; 4-) for 3 < d < n—1 by Lemma 2.3. So
SJ(T, 4) is a monotonically decreasing function of d. O

v V2 eee Vg1 Yy u; v V2 eae Vgl u;

Ug u2
- v .

» Un—d—1
wl w2 eoe wt n—d—1 wl w2 coe wt ‘Us

Fig.5: T;,_, is obtained from T} ; by edge-lifting transformation

n

4 Some open problems

In this section, we propose some problems for further research.

125



By the proof of Theorem 3.1, we know T; 5 is the graph which has the
second largest Sum-Balaban index. So we define the double star S,(a,b)
as follows. In fact, T} 3 = Sn(2,n — 2) = Sa(n — 2,2).

Let a(> 2),b(= 2),n be positive integers and a + b = n, S,(a, b) be the
tree formed by adding an edge between the centers of the stars S, and S;.
We call Sy, (a,b) the double star.

w1 (21 U "
Ug V2 Uz V2
==
Ua—-2 Vp-1 Ug—2 Vp--1
Ug—1 Sn(a,b) Sp(a—1,04+1) \ v

Fig.6: Sp(e—1,b+ 1) is obtained from S,(a,b).
Lemma 4.1. Leta — b > 2. Then SJ(S,(a,b)) > SJ(Sn(a —1,b+ 1)).

Proof. Fora+b=mn,a2>2b>2anda~-b>2,wehave2<b< |Z].
By direct calculation, we have

SJ! Sn(a,b))
_ S + b—1 + n—b-1
V(ntb—2)+(2n—5-2) = /(2n—b-2)+(3n—-b-4) ' /(n+b-2)+(2n+b-4)

= 1 + b—1 + n—b—1 .

n—4 ' bn—26-6 ' /3n+25—6
Let h(:t) = 7§%=:4= + Vgn—%_:fl:? + ﬁ%& where2 <z < I_%J Then
hl(x) = Sn—z-7 + —4n—z47

; ; (5n—2z-6)3 ;; (3n+2z-6)3
_ (bn—2z-6)+(x—1 —(3n4+22—6)—n+2+1
- (5n—2z—6)3 (3n+2z—6)3
1 1

= ——) z—1 _ n—z—1
T VBn—2z-6  3nt2z-6 + V(6n—-22-6)%  |/(3n+2z-6)3°

Note that 52 — 2z — 6 — (3n + 22 — 6) = 2n — 4z > 0. It implies
—1 - n—z—1 —n4-2z 1 _
that v/ (6n—22-6)3 v/ (3n+22-6)3 < v/ (3n+2z—6)3 < 0 and VEn=—2z—6

lz_ < 0. Thus A'(z) < 0 when 2 < z < |%] and S§J(Sx(a,d)) >

n+

ST(Sn(a—1,b+1)). o

Corollary 4.1. Let n > 4 be an integer. Then
SJ(Sp) > SI(T; 3) = ST(Sn(n —2,2)) = SJ(S.(2,n — 2))
> SJ(Sn(n —3,3)) = SJ(S.(3,n — 3))
> “ee
> SJ(Sn([3]+1,15) = 1)) = SJ(Sa(l5] —1,[3] + 1))
> 8J(Sn([51: 13)) = SI(Sa(12], [51))-
Let n,a(> 2), b(> 2),! be positive integers and a+b+! = n+1, S,(a, b,!)

be the tree formed by adding a path with length ! between the centers of
the stars S, and Sp. We call S,,(a,b,!) the like double star.
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Uy

U2 \ / Vg
. Wo w wa Wi-1 'IN

Ug—2 Vp—1

Ug—1

Fig.7: The like double star S,(a, b, ).

It is known that P, is the tree with the smallest Sum-Balaban index
among all trees with n vertices. Now we propose a conjecture about the
smallest Sum-Balaban index with given vertices and given diameter.

Conjecture 4.1. Letn,d be positive integers withn > 4 and2 <d < n-—1,
T be a tree with n vertices and diameter d. Then

n—-d+3, n—-d+3
2 J’r D) .I’d_z)))

with equality holds if and only if T = S,.([ﬁ’%iﬁj, [9—’#3], d—2).

Let n,i be positive integers with n > 4, and 2 < i < n — 2, a path
P, = vjvg---vp;. We define T,(%) is a tree with n vertices obtained
from P,-; by adding an edge v;w where w & {v;,vs,-++ ,vn_1}.

Clearly, T,(%) is a tree with n vertices and diameter n — 2. By branch
transformation and Lemma 2.1, we can show

SI(T) = SI(SA(|

SJ(Pn) < SI(Ta(2)) < SI(Ta(3)) <+ < SJ(Tn(ng))-

In [8], the authors ordered the first 21st largest Balaban indices among
all trees with n vertices. Naturely, we can propose the following problems:
Problem 1. Order the largest Sum-Balaban indices among all trees with

n vertices.
Problem 2. Order the smallest Sum-Balaban indices among all trees with

n vertices.
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