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Abstract

A vertex irregular total labeling o of a graph G is a labeling of
vertices and edges of G with labels from the set {1,2,...,k} in such
a way that for any two different vertices z and y their weights wt(z)
and wi(y) are distinct. The weight wt(z) of a vertex = in G is the
sum of its label and the labels of all edges incident with a given vertex
z. The minimum k for which the graph G has a vertex irregular total
labeling is called the total vertez irregularity strength of G. In this
paper, we study the total vertex irregularity strength for two families
of graphs, namely Jahangir graphs and circulant graphs.

Keywords : vertez irregular total labeling, total vertex irregularity strength,
Jahangir graph, circulant graph.

1 Introduction

As a standard notation, assume that G = G(V, E) is a finite, simple and
undirected graph with p vertices and ¢ edges. A labeling of a graph is
any mapping that sends some set of graph elements to a set of numbers
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(usually positive integers). If the domain is the vertex-set or the edge-set,
the labelings are called respectively vertex-labelings or edge-labelings. If
the domain is VUE then we call the labeling a total labeling. In many cases
it is interesting to consider the sum of all labels associated with a graph
element. This will be called the weight of element.

Chartrand et al. in [4] introduced edge-labelings of a graph G with positive
integers such that the sum of the labels of edges incident with a vertex
is different for all the vertices in G. Such labelings were called irregular
assignments. What is the minimum value of the largest label over all such
irregular assignments? This parameter of a graph G is well known as the
irregularity strength of the graph G, s(G).

The irregularity strength s(G) can be interpreted as the smallest integer k
for which G can be turned into a multigraph G’ by replacing each edge by
a set of at most k parallel edges, such that the degrees of the vertices in G’
are all different.

Finding the irregularity strength of a graph seems to be hard even for
simple graphs, see (3, 5, 6, 8, 9].

Motivated by this research and by total labelings mentioned in a book
of Wallis [13], BaZa et al. in [1] recently defined a vertex irregular total
labelings of graphs. For a simple graph G = (V, E) with vertex set V and
edge set E, a labeling o : VUE — {1,2,...,k} is called total k—labeling.
The associated vertex weight of a vertex z € V(G) under a total k—labeling

o is defined as
wt() =o(z) + ) olwy),
yeEN(z)

where N(z) is the set of neighbors of z. A total k-labeling o is defined to
be a vertex irregular total labeling of a graph G if for every two different
vertices z and y of G,

wi(z) # wi(y).
The minimum & for which a graph G has a vertex irregular total k-labeling
is called the total vertez irregularity strength of G, tvs(G).

It is easy to see that irregularity strength s(G) of a graph G is defined
only for graphs containing at most one isolated vertex and no connected
component of order 2. On the other hand, the total vertex irregularity
strength tvs(G) is defined for every graph G.

If an edge labeling ¢ : E — {1,2,..., s(G)} provide the irregularity strength
s(G), then we extend this labeling to total labeling o in such a way
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o(zy) = ((zy) for every zy € E(G),
o(z) =1 for every z € V(G).

Thus, the total labeling o is a vertex irregular total labeling and for graphs
with no component of order < 2 is tvs(G) < s(G).

Nierhoff [11] proved that for all graphs G with no component of order at
most 2 and G # Kj, the irregularity strength s(G) < p — 1. From this
result it follows that

tws(G) <p-1L (1)

In this paper, we study properties of the vertex irregular total labelings
and determine a value of the total vertex irregularity strength for Jahangir
graphs and circulant graphs.

2 Known Results

The following theorem proved in [1], establishes lower and upper bound for
the total vertex irregularity strength of a (p, ¢)-graph.

Theorem 1 [1] Let G be a (p, g)-graph with minimum degree § = 6(G) and
mazimum degree A = A(G). Then

If G is an r-regular (p, g)-graph then from Theorem 1 it follows:

p+r
P < <p- )
L__i_l]_tvs(G)_p r+1

For a regular hamiltonian (p, ¢)-graph G, it was showed in [1] that tvs(G) <
[252]. Thus for cycle Cp we have that tvs(C,) = [2£2].

In [1] is determined an exact value of the total vertex irregularity strength
for the complete graph of order p (tvs(Kp) = 2), for the prism Dy, n > 3,
(tvs(Dn) = [22£2]) and the star K, with n pendant vertices (tvs(K1,2) =
(2]

2
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3 Main Results

In this part, we study the parameter tvs for two families of graphs i.e.
Jahangir graphs and circulant graphs.

The Jahangir graph J, m, n 2> 3, m > 1, consists of a cycle Cp., and one
additional vertex which is adjacent to n vertices of Cy,, at distance m to
each other on Cpry,. The Jahangir graph was introduced by Tomescu in
[12]. The Jahangir graph J, 2 is also known as the gear graph, see Ma and
Feng [10], and also Gallian (7], page 7. For m = 1, the Jahangir graph is
wheel W,,. It was shown in [14] that tvs(W,) = [233].

Lemma 1 Let J, ;m, n 2 3, m > 2, be the Jahangir graph. Then

max{ l'n(m —31) + 2'| ’ [nm4+ 2] , "n;n++13'|} < tos(Jnm) < .

Proof. The Jahangir graph J, .», has n vertices of degree 3, n(m — 1)
vertices of degree 2 and one vertex of degree n. The upper bound of tvs
follows from (1). To prove the lower bound consider the weights of the
vertices. The smallest weight among all vertices of J, y, is at least 3, so
the largest weight of vertex of degree 2 is at least n(m — 1) + 2. Since the
weight of any vertex of degree 2 is the sum of three positive integers, so at

least one label is at least l-ﬂﬂg-w.l

The largest value among the weights of vertices of degree 2 and 3 is at least
nm + 2 and this weight is the sum of at most four integers. Hence the
largest label contributing to this weight must be at least %2]

If we consider all vertices of the Jahangir graph J, ,, then the lower bound

[n;‘rf-_lf*'l follows from (2).

This gives max{l—f-(m—;l-w-] , [2mt2], [%.'%5’-]} < tvs(Jp,m) and we are
done. m|

Lemma 2 tvs(Jz2) = 3.
Proof. From Lemma 1 it follows that tvs(Js2) > max{[31,2,[§]} = 3.

For the converse, we define a suitable vertex irregular total labeling by
Figure 1.

(]
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Figure 1: Jahangir graph J3 2.

Theorem 2 Forn > 4, tvs(Jn2) = [2f2].

Proof. According to Lemma 1, we have that tvs(Jn2) > [2H]. Put
k = [2£L]. It is enough to d&ecnbe a suitable vertex 1rregular total k-
labehng Let v be the central vertex of degree n and wj,us,...,u, be
the vertices of degree 2 and v;,vs,...,v, be the vertices of degree 3. Let
E(Jn2) ={uw; : 1 <i<n}U{mup1:1<i<n-1}U{vy; :1<i <
n} U {vpu,} be the edge set of Jy, 2.

We define a labeling o : V(Jp2) U E(Jn2) — {1,2,...,k} in the following
way
o(vpuy) =1, o(v) =k,

(usvs) = i for 1<i<k
TUYUI=Y n42—i for k+1<i<n

] for 1<i<k-1

k for i=k if n is odd

o(vivig1) = n+l—k for i=k if n is even

n+l—-4¢ for k+1<i<n-1.

For1<i<n weput
o(w) =1, o(v)=k,

(ov;) = k if n is odd
o) = k-1 if n is even.

The weights of vertices of J, 2 are as follows:

3 for i=1
wi(u;)) =< 2 for 2<i<k
2n+2—-4i)+1 for k+1<i<n
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t(0) = k(n+1)—n if n is even
PZN k1) if nis odd.

If n is even then

) 2(k+1i)~1 for 1<i<k-1
wiv;) =
2n+1+k—1i) for k<i<n.

If n is odd then

oo = { 26+ for 1<i<k
PRIEY 2n+14k—i)+1 for k+1<i<n.

The weights of vertices u;, 1 < ¢ < n, successively attain values 3,4,...,n+
2 and the weights of vertices v;, 1 < 7 < n, receive distinct values from n+3
up to 2n + 2.

Thus the labeling o is the desired vertex irregular total k-labeling. a

Forn>3and m >3 ["("‘;l)“"l > [";Tis-l, and forn > 4and m > 3

[2mi2] > [Z‘ﬂilél . Thus we believe that the following conjecture is true.

Conjecture 1 Let J, m be a Jahangir graph forn > 3, m > 3. Then

t0s(Jn.m) = max { l’n(m -31) + 2-’ ’ ,'nm4+ 2" } .

The total vertex irregularity strengths for cycle C, and complete graph K,
are known. Our aim is to study the parameter tvs for circulant graphs.
The circulant graphs are an important class of graphs, which can be used
in the design of local area networks [2]. Let n,m and a,,...,an, be positive
integers, 1 < a; < |3 and a; # a; for all 1 < i < j < m. An undirected
graph with the set of vertices V = {vi1,...,v,} and the set of edges F =
{viViga, : 1 £ i < 1,1 < j < m}, the indices being taken modulo n, is
called a circulant graph and it is denoted by Cyr(ay,...,an). The numbers
ay, ..., are called the generators and we say that the edge v;v;4,, is of

type a;.

It is easy to see that the circulant graph Cp(as,...,an) is a regular graph
of degree r, where

2m—1 if §€{ay,...,an}
=
2m otherwise.
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From Theorem 1, it follows that for r-regular circulant graph
Cn(aly“'vam)v n 23, 1 5 a; S |_"12£J:

n+r
< <n-— .
[r+1., < tvs(Cplar,...;am)) <n—-r+1

The following theorem gives the exact value of the total vertex irregularity
strength for circulant graphs Cy(1,2).

Theorem 3 For the circulant graph C,(1,2), n > 5, we have

t0s(Ca(1,2)) = [ ”T*ﬂ :

Proof. According to Theorem 1 we have tvs(C,(1,2)) > [2+4]. In or-
der to show the converse inequality, it only remains to describe a vertex
irregular total [2f4]-labeling. Let us distinguish four cases:

Case 1. n =0,1 (mod 5)
Define the function %, as follows:
For1<i<[%] put
1+2|¢] if i=1,2 (mod 5)
Yi(v) = 2+2|E] if §=3,4 (mod5)
z if i=0 (mod 5)
1+2¢] if i=1 (mod5)
Yr(viviga) = § 2+2|%] if i=2,3,4 (mod 5)
1+%  if i=0 (mod 5)
1+2[¢] if i=1,2 (mod 5)
Y1(vivipr) = 2+2¢] if i=3,4 (mod 5)
1+%  if i=0 (mod 5).
For [3]+1<i<n-1put
24225 if n—i=1,2 (mod 5)
Yi(v)) =4 3+2[22%] if n—i=3,4(mod5)
1+222%  if n—i=0 (mod5)
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2+2|2%) if n—i=1,2,3 (mod 5)
P1(vivig1) = 3+2l"T—iJ if n—i=4 (mod5)
1+222  if n—i=0 (mod 5).
For [3]+1<i<n-—2put
1+2|2%] if n—i=1 (mod 5)
24212 if n—1i=2,3 (mod 5)
342|125 if n—i=4(mod5)
1+222%  if n—i=0 (mod 5).

Y1 (vivig2) =

Moreover put

¥1(va) = Y1(vav1) = Y1(vn-1v1) = Y1(vav2) = 1.

Observe that
wt(v;) = ¥1(vi) + Y1(viviga) + Y (viervi) + Y1 (viviga) + Y1 (vie2vi)
5 for i=1
=<{ 2+2i for 2<i< 5] +1

m+7-2i for |3]+2<i<n
with indices taken modulo n.

The function ¥, is a map from V(Cr(1,2)) U E(Cn(1,2)) into {1,2,...,
[2+4]} and the weights of the vertices under the labeling 1, constitute the
set {5,6,...,n +4}.

Case 2. n =2 (mod 5)

Define the function ¥ : V(Cn(1,2))UE(Cn(1,2)) — {1,2,..., [24]} such
that:

Yr(vs) for 1<i<[g]

[2£2] for i=[3]+1

P1(w) for [3]+2<i<n-1
1 for t=n

PYa(Vivig1) = Y1(viviq1) for 1<i<n—-1

Po(v;) =
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Pa(viviya) = 1/)1(1);'1).'4.2) for 1<i<n-2
PY2(vav1) = Y2(vn—191) = Ya(vnve) = 1.
One can see that the weights of vertices under the function s receive

distinct labels from the set {5,6,...,n+ 4} and that 2 is vertex irregular
total labeling having the required property.

Case 8. n =3 (mod 5)
Define the function %3 : V(Cn(1,2)) U E(Ca(1,2)) — {1,2,...,[24]} in
the following way:
Ya(v;) = a(v;) for 1<i<n
Pr1(vivigr) for 1<i< 3] -1
Y3(vivigp1) = [2$4 for i=[%]
P (vivig1) for [F]+1<i<n~-1
P3(vivige) = P1(vivige) for 1<i<n -2
P3(vnv1) = ¥3(vn-1v1) = Pa(vavz) = L.

Case 4. n =4 (mod 5)

Define the function ¥4 : V(Ca(1,2)) U E(Ca(1,2)) — {1,2,...,[2]} as
follow:
Ya(vivig1) = Y1 (vivig1) for 1<i<n—-1

Ya(vivigz) = Y1(vivige) for 1<i<n -2
Ya(vnv1) = Ya(vn-111) = Ya(vav2) = 1.
If n =9 (mod 10) we put
[ 1(v;) for 1<i<[3] -1
[2£4] for i=[}]
Y1(v;) for [3]+1<i<n-1

L 1 for i=n.

Pa(vs) = |

If n = 4 (mod 10) we put
[ 1(v;) for 1<i<[3]+1
[244] for i=[3]+2

V=1 ) for [31+3<i<n-1

(1 for i=n.
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For the labelings 13 and 14, we use a similar observation applied in Case 1
that the weights of vertices successively attain values 5,6,...,n+ 4. Thus
the labelings 13 and 4 are the desired vertex irregular total [24]-labe-
lings.

O

Although we have not yet found the general formulas for vertex irregular
total labeling of circulant graph Cy(a1,...,an), 7 2 3,1 < a; < |3},
that will determine the lower bound in Theorem 1 as exact value of the
parameter tvs, the result from Theorem 3 leads us to suggest the following

Conjecture 2 Let Cp(ay,...,am) be a circulant graph of degree r > 5,
n>6andl<a; <|%]. Then

tus(Cn(ay,...,am)) = F;i:] .
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