A new family of pooling designs

Haixia Guo^{1,2,*}, Jizhu Nan ¹

 Dept. of Applied Math., Dalian University of Technology, Dalian, 116024, P.R. China
College of Science, Tianjin University of Technology and Education, Tianjin, 300222, P.R. China

Abstract

In [J. Guo, K. Wang, A construction of pooling designs with high degree of error correction, J. Combin. Theory Ser. A 118 (2011) 2056–2058], Guo and Wang proposed a new model for disjunct matrices. As a generalization of Guo-Wang's designs, we obtain a new family of pooling designs. Our designs and Guo-Wang's designs have the same numbers of items and pools, but the error-tolerance property of our design is better than that of Guo-Wang's designs under some conditions.

Key words: Pooling design; Finite set; Disjunct matrix

The basic problem of non-adaptive group testing is to identify the defective parts as the subset of objects being tested. Pooling design is a mathematical tool to non-adaptive group testing and it can reduce the number of tests in many areas such as DNA library screening ([1, 2]). A mathematical model of pooling designs is an s^e -disjunct matrix. A binary matrix M is called s^e -disjunct if given any s+1 columns of M with one designated, there are e+1 rows with a 1 in the designated column and 0 in each of the other s columns ([3, 4]). An s^0 -disjunct matrix is called s-disjunct.

For positive integers k < n, let $[n] = \{1, 2, ..., n\}$ and $\binom{[n]}{k}$ be the set of all k-subsets of [n].

Macula ([4]) proposed a novel way of constructing d-disjunct matrices which uses the containment relation in a structure. Guo and Wang ([5]) proposed a new model for pooling designs.

^{*}E-mail address: ghx626@126.com.

Definition 1. ([5]) Given integers $1 \le d < k < n$ and $0 \le i \le d$. Let M(i; n, d, k) be the binary matrix with rows indexed with $\binom{[n]}{d}$ and columns indexed with $\binom{[n]}{k}$ such that M(A, B) = 1 if and only if $|A \cap B| = i$.

Theorem 2. ([5]) Let $1 \le s \le i$, $\lfloor (d+1)/2 \rfloor \le i \le d < k$ and $n-k-s(k+d-2i) \ge d-i$. Then M(i;n,d,k) is an s^{e_1} -disjunct matrix, where $e_1 = \binom{k-s}{i-s} \binom{n-k-s(k+d-2i)}{d-i} - 1$.

In [5], Guo and Wang provided the following construction, and proposed the following problem.

Problem. For positive integers $1 \le d < k < n$, let I be a nonempty proper subset of $\{0, 1, \ldots, d\}$, and let M(I; d, k, n) be the binary matrix with rows indexed with $\binom{[n]}{d}$ and columns indexed with $\binom{[n]}{k}$ such that M(A, B) = 1 if and only if $|A \cap B| \in I$. How about the error-tolerant property of this matrix?

In this note we solve this problem when $I = \{i, i+1, ..., d-1\}$.

Theorem 3. Let $1 \le s < i$ and $n-sk+(s-1)\max\{2(k-i+1)-n+d,0\} \ge d$. Then M(I;d,k,n) is an s^{e_2} -disjunct matrix, where

$$e_2 = \binom{k-s}{k-i} \binom{n-i-sk+(s-1)\max\{2(k-i+1)-n+d,0\}}{d-i} - 1.$$

Proof. Let $B_0, B_1, \dots, B_s \in \binom{[n]}{k}$ be any s+1 distinct columns of M(I; d, k, n). Then, for each $j \in [s]$, there exists an x_j such that $x_j \in B_0 \setminus B_j$. Suppose $X_0 = \{x_j \mid 1 \leq j \leq s\}$. Then $X_0 \subseteq B_0$, and $X_0 \not\subseteq B_j$ for each $j \in [s]$. Note that the number of i-subsets of B_0 containing X_0 is $\binom{k-|X_0|}{i-|X_0|} = \binom{k-|X_0|}{k-i}$. Since $\binom{k-|X_0|}{k-i}$ is decreasing for $1 \leq |X_0| \leq s$ and gets its minimum at $|X_0| = s$, the number of i-subsets of B_0 containing X_0 is at least $\binom{k-s}{k-i}$. Let A_0 be an i-subset of B_0 containing X_0 and D be a d-subset of [n] containing A_0 . Then $|D \cap B_0| \geq i$, and $|D \cap B_j| < i$ if and only if $|\overline{D} \cap B_j| \geq k-i+1$ for each $j \in [s]$, where $\overline{D} = [n] \setminus D$. Therefore, for each $j \in \{2, \dots, s\}$, we have $|B_1 \cap B_j| \geq |\overline{D} \cap B_1 \cap B_j| \geq \max\{2(k-i+1)-n+d,0\}$, which implies that $|\bigcup_{j=1}^s B_j| \leq sk - (s-1)\max\{2(k-i+1)-n+d,0\}$. Since $|A_0 \cup (\bigcup_{j=1}^s B_j)| \leq i+sk-(s-1)\max\{2(k-i+1)-n+d,0\}$, the number of d-subsets D of [n] containing A_0 such that $|D \cap B_0| \geq i$, and $|D \cap B_j| < i$

for each $j \in [s]$ is at least $\binom{n-i-sk+(s-1)\max\{2(k-i+1)-n+d,0\}}{d-i}$. Hence the number of d-subsets D of [n] satisfying $|D \cap B_0| \ge i$, and $|D \cap B_j| < i$ for each $j \in [s]$ is at least $\binom{k-s}{i-s}\binom{n-i-sk+(s-1)\max\{2(k-i+1)-n+d,0\}}{d-i}$, as desired. \square

If
$$n-k-s(k+d-2i) \ge d-i$$
, $n-sk+(s-1)\max\{2(k-i+1)-n+d,0\} > (s-1)n+1 > n-k-s(k+d-2i)$, then $e_2 > e_1$.

Example 1. $M(\{3,4\};5,7,50)$ is 1^{11699} , 2^{2639} and 3^{324} -disjunct, but M(3;5,7,50) is 1^{9989} , 2^{2324} and 3^{299} -disjunct.

Acknowledgements

This research is supported by the NSF of Tianjin Municipal of China (No. 11JCYBJC00500) and Research Fund for the Doctoral Program of Higher Education of China (No. 201101647).

References

- D. Du, F.K. Hwang, Combinatorial Group Testing and Its Applications, 2nd ed., World Scientific, Singapore (2000).
- [2] A. G. D'yachkov, A. J. Macula, P. A. Vilenkin, Nonadaptive and two-stage group testing with error-correcting d^e-disjunct inclusion matrices, in: Entropy, Search, Complexity, in: BolyaiSoc. Math. Stud. 16 (2007), 71-83.
- [3] A. G. D'yachkov, F. K. Hwang, A. J. Macula, P. A. Vilenkin, C. Weng, A construction of pooling designs with some happy surprise, Comput. Biol. 12 (2005), 1127-1134.
- [4] A. J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Math. 162 (1996), 311-312.
- [5] J. Guo, K. Wang, A construction of pooling designs with surprisingly high degree of error correction, J. Comb. Theory 118 (2011), 2056-2058.