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Abstract

In response surface analysis, it is generally assumed that the observations are
independent and there is no effect of neighbouring units. But under the situation
when the units are placed linearly with no gaps, the experimental units may
experience neighbour or overlap effects from neighbouring units. Hence, for
proper specification it is important to include the neighbour effects in the model.
First order response surface model with neighbour effects from immediate left
and right neighbouring units has been considered here and the conditions have
been derived for the orthogonal estimation of coefficients of this model. The
variance of estimated response has also been obtained and conditions for first
order response surface model with neighbour effects to be rotatable have been
obtained. A method of obtaining designs satisfying the derived conditions has
been proposed. A first order rotatable design with neighbour effects using half
replicate of 2° has also been given.

Keywords: Neighbour effects; orthogonal estimation; response surface;
rotatable design.

1. Introduction

Response surface methodology explores the relationships between response
variable(s) and several explanatory variables and the main idea is to obtain an
optimal response using a set of designed points. The methodology includes
setting up of an appropriately designed experiment, recording observations on
the response of interest, determining a model that best fits the collected data and
determining the optimal settings of the experimental factors that produce the
maximum (or minimum) value of the response.

Let there be Vv input factors (explanatory variables) x,,X,,..,x, and a
response variable y . The response is a function of input factors, i.e.,

Yo =X ius X2y Xagsen Xy ) F€u s U=12,... N 1
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where x;, is the level of the i factor (i=12,..,v) in the u® treatment

combination, y, denotes the response obtained from u" treatment
combination. The function f describes the form in which the response and the
input variables are related and e, is the random error associated with the u®
observation which is assumed to be identically and independently distributed

normally with mean zero and constant variance o®. f given in (1) is
approximated, within the experimental region, by a polynomial of suitable
degree in variables. Response surface models are polynomials which adequately
represent the input-response relationship. The designs that allow the fitting of
response surfaces and provide a measure for testing their adequacy are called
response surface designs. For details on response surface methodology, one can
refer to Box and Draper [2], Myers and Montgomery [6], Khuri and Cornell [1].

In general, while carrying out response surface analysis, it is assumed that the
observations are independent and there is no effect of neighbouring plots. But in
field experiments this assumption seems to be unrealistic. In field experiments,
the neighbour effects from the treatments applied to the adjacent neighbouring
plots may arise which may affect the response of the treatment applied to the
plot under consideration. These neighbour effects are also called as overlap or
interference or competition effects. For example, if one plot receives a spray
chemical treatment, wind drift may cause the effect of spray spill over to
adjacent plots. Therefore, it is more realistic to postulate that the response
depends not only on the treatment combination applied to that particular plot but
also depends on the treatments combination applied to the neighbouring plots.
Hence, it is important to include the neighbour effects in the model to have the
proper specification.

Draper and Guttman [5] suggested a general model for response surface
problems in which it is anticipated that the response on a particular unit will be
affected by overlap effects from neighbouring units and the same have been
illustrated. Designs with neighbouring effects for single factor in block design
setup have been extensively studied in the literature. (see e.g., Azais et al. [3],
Tomar et al. [4] and Jaggi et al. [7]).

Here, we have studied the response surface model in which the experimental
units experience the neighbour effects from immediate left and right
neighbouring units assuming the units to be adjacent linearly with no gaps.
Conditions have been derived for the orthogonal estimation of coefficients of
first order response surface. Further, conditions for first order response surface
model with neighbour effects to be rotatable have also been obtained. A method
of constructing designs for fitting first order response surfaces in the presence of
neighbour effects has also been developed and has been illustrated.
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2. Response Surface Model with Neighbour Effects
Consider the model (1) where the response is a function of input factors, i.e.,

yu =f(xy)+e, u=12,..,N,
where X, = (X1y,X2y,--sXyy) defines the set of predictor values at which the
response y, is observed. The model incorporating the neighbour effects from
immediate left and right neighbouring units can be written as:

N
Yu= ZBwi(xy)+ey, @
uzu'=l
where
g = I, ifu=u’ 3)

=0, |a|<l,if |u-u]=1, ie.plots are physically adjacent and
=0, otherwise.

It may be mentioned here that the layout of the experiment for estimating this
model includes border units for the end units. The treatment combinations
applied on them are the treatment combinations from the experiment.
Observations for border units are not modelled. Thus, model (2) can be written
as

Y =GXB+e, @

where G =((g,,)) is the N x (N +2) neighbour matrix, X isa (N +2) x (v + 1)
matrix of N points (runs) with two border units (treatment combinations applied
on these units are the treatment combinations from the N points) and v predictor
variables with first column of unities, p is a (v + 1) x 1 vector of parameters and
e is N x 1 vector of errors which is N(0, o°I). If G is known, using Ordinary
Least Squares (OLS) procedure, estimates of B’s are obtained as follows in the
presence of neighbour effects:

p=(z'z)'z'Y, )
where

Z=GX
with
D(B)=6%(Z'Z)".
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3. First Order Response Surface Model with Neighbour Effects
Let v =2, the (N + 2) x 3 matrix X of 2 predictor variables with first column of
1’s, the coefTicients of mean and two extra points as border points is written as:

1_Xin _Xon

1 xy; Xy

1 X3 Xy
X= )

1 xlu XZu

1 Xin _Xon

I Xy Xy J

The N x (N + 2) neighbour matrix G as defined in (3) is

‘a:1aooo...oio’
]
0O!a 1 o« 0 O 0t0
o;o a l a0 ogo
0/]0 0 o | « OEO
I
G=|.! I 6)
[} )
t t
[} ]
] ]
. : . . : .
0:0 o 0 . . . ol a;O
0i0 00 . . . 0 a Iia
Now,
[142a)  xpy+o(X)y +X2) X +(Xpp + X33)
(1+2a) Xjp +0(Xy; + X13) Xa3 + (X5 + X23)
(1+2a) Xy3 F (X +X4) Xq3 +a(Xqp + X24)
Z=GX=

1+20) Xy + (X gy + Xyan) X2y T (X0 + Xo(uer))

|_(l +2a) Xy +Ha(Xnoy X)) XonFo(Xygnop t+ X91) |
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N@+22)?  (+20)% §lx.u) 1+2a)%( Exm)
us=| u=|

Z'Z2= ¢)

N N
1+202) zlx,{, Y+A; (1+2a%) ):lx,ule,) +Cpy
u=. u=
2, N 5
(+2a°) ZIqu Y+A,
o

where,

N
2
A =20 [ ) Xnuxx[(u+z)modN]]+4°‘[ )} xlu"l[(u+l)mt>le]
u

u=] =1

N N
2
Aj =20 [ leZuXZ[(u+2) mod N]]+ 40‘[ Z,lxzu"z[(uﬂ) mole]
u= u=

N N
2
Cip=a [zlxlu"Z[(u+2)mod Nt zlxl[(u+2)mod lezn]
u=! u=

N N
+ 20‘[ lelux?.[(uﬂ)mod Nt leluXZ[(u~l)mod N]]
u= u=

In general for v factors, the (N + 2) x (v + 1) matrix X with two extra points as
border points is :

1 XIN Xa2N - - +« X{N - - + XN
1 X11 X3 - - o Xi1o- . . Xy
1 Xp2 X22 . .« . Xj2 .« . . Xy
X=
I Xy Xoy - - - Xjg - . . Xy
1_}qu-_}gN . o XN - - - XN
_l X1 X211 - . - Xj1o- o . Xy

The neighbour matrix G is of the form (6) which yields Z'Z as:
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N eotln (2P, a+2a)’Nz;lq.. a+2a>‘§‘xvn
(|+2a2)§x§,m, a+2a2)%l(,,xm+q2 - a+2o?)§‘{‘,,>q,,+q - (1+2m‘)Elx,ux\,.,arc,v
(1+2a2)§l)é,+Az ) (|+2a2)§lcz,:qu+c, ) (|+zc?)§lxw+c,,,
N N
(1+203)zlx§,+;ai ) a+zu2)zl)q.;(w+qv
N
a+2o?)rl)éu+m
®

with o # - 0.5, otherwise |Z'Z | = 0. Further,

N N
A= 20‘2[ ZI xiuxi[(u+2)modN]]+4a[ Zl xiuxi[(u+l)modN]]
U= u=

i=12,...,v
and

N N
Cir = 0‘2[ leiuxi'[(u+2)modN] + zlxi[(u+2)modN]xi'u] +
u= u=|

N N
20‘[ zlxiuxi'[(uﬂ)modN] + leiuxi'[(u-l)mod N]]
u= u=

i#i'=12,...,v

To ensure orthogonality in the estimation of the parameters, Z'Z has to be
diagonal. This gives rise to the following conditions:

N
DY x, =0 Vi=12,...,v
u=l
N
i) ) XXy, =0 Vizi'=12,...,v ©)
u=l
iiiy C; =0 Vizi'=12,..,v

Thus, in view of (9), Z'Z can be written as:
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[NQ1+2a)? 0 0 0
N
0 0+20?) Tx}, +4A, 0 o
u=l
2, N o
0 ° 1+2) Txd, +A, 0 0
u=i
2, N,
0 o 0 (¢ +2a Y Ixiy +A; 1]
u=al
23, N2
° 0 0 0 (t+2a?) Tx2, + A,
u=) )

(10)

The normal equations for the estimation of (v +1) parameters are

[Na +20)? o'] [Bo] - [YJ an
0 S|L® T

where 0 = (B, B2 B3 -.. By)’ is the v x 1 vector of parameters corresponding to

N '
predictor variables, Y.= Yy, and T=(T,T,,..,T, ,,T,) is the vector of
u=l

N
treatment combination totals, T, = meyu ,i=1,2,...,vand

u=l

[(1+2a2)§,x,2“ +A]] [(l+2a2)§1xi2u +Ai]

S = diag u=l .
...[(l+2a2) Y x2, +AV]
u=l]
Equation (11) yields
A -1 -2
[B(: ] _ [N a ;j;) Y.] a2)
and
A -1 -2 ¢
D B‘o = o2 N7(1+2a) ‘1, . 13)
0 0 S
We thus obtain the variance of parameter estimates as
2 2
A o A o
VBo)=——"=, VBi)= - for i=1,2,...,v
N
N(i+2a) [(1+2a2)zxﬁ, +Ai]
u=l
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The estimated response at the point xyis ¥4 =xg ﬁ with its variance
Vo) =xaVB)xo =0’ x(Z'2)'x,

Thus,

2
( 1 Xjo , X30

5= N ' N

[N( +2a)7) [(l +2a%) ¥x}, +Al_‘ [(l +20%) Txd, + Az]
V(g,o) _ 52< ) u=l] , u=] v
N Xio Xvo

+.. N +..+ N
[(l+2a2) ¥x2 +Aa] {(l+2a") X2 +Av]
1 =1

u=| u=

(14)
The constancy of the variances of the parameter estimates is ensured by the

following conditions:

N
i) fon =§,aconstant V i=12,...,v

u=l

ii) Aj=A,aconstant V i=12,...,v (15)
Therefore,
! xfo ot Xib
. N(+2a)® (1+202)5+A 1+20%)5+ A
V(y0)=021 ( o ) (2 )
g Xv0
{ 1+20%)5+ A
i.e.,
v
2 1 ‘leizo
V(¥,) = 673 + 1=
(Yo) N(+2a)? (1+20°)5+A

Hence, the variances of B;’s (i =1,2,...,v) are same and it is seen that the

v
variance of estimated response is a function of Zx?o . For given o, the points
i=l

for which ixfo is same, the estimated response will have the same variance.
i=l

The designs satisfying this property are called First Order Rotatable Designs

with Neighbour Effects (FORDNE). We now present a method of constructing

FORDNE.
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4. Method of Constructing FORDNE

Construct a 2" full factorial for v factors each at 2 levels and arrange the
combinations in lexicographic order in reverse order. Obtain (v-1)2' more
combinations by circularly rotating the columns of 2V factorial such that each
column occupies all the v positions. The design so obtained is a FORDNE in

vx2" points. Besides, two extra units are added as border units for neighbour
effects.

Example 4.1: Let v = 2 with each factor at two levels, then we get four runs in
full factorial. There are two columns for two factors. We write the second
column below first column and first column below second column, i.e. first 22
runs are repeated with positions in each row shifted in circular fashion. Finally,
we add the first run at the bottom and last run at the top as border rows. The 10
x 3 matrix X of 2 predictor variables with first column of 1’s, the coefficients of
mean and two extra points as border points and matrix G is written as follows:

Wt (0!l o 0 0 0 . . . 0!0]
i:_: Oga]aOO 0§0
Lol 050 ol o 0 050
L o1 -1 O:OOala 0:0

X= , G=| .1 i
1 1 1 ! E
1 -1 1 § . P
. 0i0 00 . . .al ald
it W’ 0i0 00 . . .0a lia
11 1 - -
[(1+20) 1 (1-2a)]
(1+20) 1 Qa-1
(+2a) -1 (1-20)

7= (1+2a) -1 QQa-1)
(1+2a) (1-20) 1
(1+2a) Ro-1) 1
(1+20) (1-20) -1
((1+20) Qa-1) -1 |

8(1+20)? 0 0
and Z'Z=| 0 4+40-20> 0 with @ # - 0.5.
0 0 4+4(1-20)
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Therefore,

V(ﬁo) =

2 2

vlB.)=—S%
®:) 41+(1-20)%]

(o)

— > fori=1,2 and
8(1+2a)

2
V(§,) =2 ! + 2 .
(o) =3 {(l+2a)2 (l+2a2)—2a}

It can be seen that V(ﬁi) is maximum at o = 0.5 for v=2.
For a =0.1,

V(Bo) =0.086802, V(B;) =0.1524 62, i=1,2 and V(§,) = 0.39160"

Example 4.2: For v = 3 with each factor at two levels, the following design
matrix of order 26x4 is obtained:

121 =1 -]
11
111 -l
1 1-1 1
11 -1 -1
1-1 1 1
1-1 1 -1
1-1-1 1
[ =1 -1 -1
T N B
1-1 11
I
-1 1 -1
X=o1-1
1-1-1 1
1 1-1-1
1-1-1-1
1111
1 1-1 1
-1 1 1
1 -1-1 1
111 -1
T
[-1 1 -1
LW el Wl
1111
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Further,

24(1 + 20L)2 b3

YA , W ,
031 [4(1+2a)* +8(1-20c)* +12] I

Thus,

0.2

V(Bo) = m’

0_2

VvV A. =
@) 4[(1+20)% +2(1-20) +3]

i=1,2,3 and

V(3§ _o° 1 3
(o)=3% {3(1+20¢)2 +3(l+2oc2)—2a}

Here, the maximum of V(ﬁi) is attained at o = 0.16.

For o =0.4,
V(By)=0.012902, V(B;)=0.039602,i=1,2,3
and V() =0.13150°

Table 4.1 presents the variance of estimates at different values of o from 0 to 1
forv=2, 3, 4, 5. It is seen that as the value of o increases, Var ([30) decreases

for all the values of a and v (=2, 3, 4, 5). For v=2, the Var (ﬁi) first increases

as oo — 0.5 and becomes maximum at o. = 0.5 and decreases there after till o. = 1
and exactly same is the case with Var(y ). For v = 3, as indicated earlier, the

Var (fii) attains maximum at o = 0.16, so it increases from o = 0 till o = 0.2 and
there after, it keeps on decreasing till & = 1; however, the Var( ¥ ) is not affected
significantly, so it decreases as the value of « increases in the range 0 to 1. For v
=3, 4, the Var(f}‘) and Var( ¥) both decrease with increase in the value of o
from0to 1.

Figure 4.1 presents the variance of estimated response at different values of o
varying from 0 to 1 for v=2, 3, 4, 5. It is seen that as the value of O increases,

Var(¥) decreases except for v =2 with values of ¢ <0.8.
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Table 4.1: Variance of estimates at different values of o for first order model

yO) o

o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ﬁo 0.1250 | 0.0868 | 0.0638 | 0.0488 | 0.0386 | 0.0313 | 0.0258 | 0.0217 | 0.0185 } 0.0159 | 0.0139
[Si 0.1250 | 0.1524 | 0.1838 | 0.2155 | 0.2404 | 0.2500 | 0.2404 | 0.2155 | 0.1838 | 0.1524 | 0.1250
y 0.3750 | 0.3916 | 0.4314 | 0.4798 | 0.5193 | 0.5313 | 0.5066 | 0.4527 | 0.3861 | 0.3208 | 0.2639
ﬁo 0.0417 | 0.0289 | 0.0213 | 0.0163 | 0.0129 | 0.0104 | 0.0086 | 0.0072 | 0.0062 | 0.0053 | 0.0046
fii 0.0417 | 0.0437 | 0.0440 | 0.0425 | 0.0396 | 0.0357 | 0.0316 | 0.0275 | 0.0239 | 0.0206 | 0.0179
y 0.1667 | 0.1601 | 0.1533 | 0.1438 | 0.1315 | 0.1176 | 0.1033 | 0.0898 | 0.0777 | 0.0672 | 0.0582
Bo 0.0156 | 0.0109 | 0.0080 | 0.0061 | 0.0048 | 0.0039 | 0.0032 | 0.0027 | 0.0023 } 0.0020 | 0.0017
ﬁi 0.0156 | 0.0149 | 0.0137 | 0.0122 | 0.0107 | 0.0093 [ 0.0080 | 0.0069 | 0.0059 | 0.0051 | 0.0045
y 0.0781 | 0.0705 | 0.0628 | 0.0550 | 0.0476 | 0.0409 | 0.0351 | 0.0302 | 0.0260 | 0.0225 | 0.0196
By | 0.0063 | 0.0043 | 0.0032 | 0.0024 | 0.0019 | 0.0016 | 0.0013 | 0.0011 | 0.0009 | 0.0008 | 0.0007
B; 0.0063 | 0.0056 | 0.0049 | 0.0042 | 0.0036 | 0.0030 | 0.0026 | 0.0022 | 0.0019 | 0.0016 | 0.0014
y 0.0375 | 0.0324 | 0.0276 | 0.0233 | 0.0197 | 0.0166 | 0.0141 | 0.0120 [ 0.0103 | 0.0089 | 0.0078
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Fig. 4.1: Variance of estimated response for varying from 0 to 1

5. Another Design for Three Factors

Here, we present a FORDNE using a fraction of eight combinations resulting
from three factors each at two levels. This is not a general method as described
in Section 4.

Consider a half replicate of 2° resulting in 4 points in each replicate. Taking the
non-key block, the three columns for three factors are circularly rotated resulting
in 12 design points. Appropriately taking the border plots, the following design
matrix is obtained:

1 1 1 1]
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
: : ; : 3888 0 0 0
- - 0 816 0 0
1 -1 -1 1 =04, 2'Z=
x=| T, D and for o 0 0 816 0
L1l 0 0 0 816
1 -1 -1 1
11 -1 -1
1 -1 1 -1
1111
D
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with V(B,) = 0.02576%, V(f,)=0.12256> i =1,2,3 and V(§,) = 0.3934.

Table 5.1 presents the variance of estimates at different values of Q. from 0 to 1
for the above design. It is seen that as the value of O increases,

Var(fio) decreases, whereas Var(fii) first increases till a = 0.5 and then

decreases. Similar is the trend in case of V(¥). It is seen that the variance of

estimates is almost doubled in case of taking a half fraction of 2* but there is
saving with respect to the number of combinations required. Efficiency (Eff.) of
this design as compared to full factorial with respect to variances of estimated
response is also presented. The efficiency decreases as the value of o increases.

Concluding Remarks

It is seen that for two factors when o > 0.8 and for three, four and five factors
inclusion of neighbour effects in the model improves the precision of estimates
of the parameters of the response model and results in more precise estimate of
the predicted response at a given point. Hence, it is important to include the
neighbour effects in the model to have the proper specification and to use a
proper design.
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Table 5.1: Variance of estimates at different values of o for FORDNE obtained through a fraction of 2°

=

o 0 0.1 0.2 0.3 0.4 O(TS 0.6 0.7 0.8 0.9 1
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