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Abstract

Let G be a graph with vertex set V. A set D C V is a total
restrained dominating set of G if every vertex in V' has a neighbor in
D and every vertex in V — D has a neighbor in V —D. The minimum
cardinality of a total restrained dominating set of G is called the
total restrained domination number of G, and is denoted by ¥:-(G).
Cyman and Raczek in 2006 showed that if G is a connected graph
of order n and minimum degree ¢ such that 2 < § < n — 2, then
~7r(G) < n—4§. In this paper, we first introduce the concept of
max-min total restrained domination number, denoted by v (G), of
G, and extend the above result by showing that :-(G) < YM(G) <
n—4. We then proceed to establish that (1) v:-(G) < n—-26ifn>6
and G contains a cut-vertex and (2) 7:-(G) < n—4if n > 11 and
§>2.

Key Words: Domination; Total restrained dominating set; Total re-

strained domination number; Max-min total restrained domination number.

1 Preliminaries

Let G = (V, E) be a simple graph of order n(G) and size m(G). The degree
of a vertex v in G is the number of vertices adjacent to v, and denoted by
degg(v). A vertex with no neighbor in G is called an isolated vertez. A
vertex of degree one in G is called an end verter, and the vertex adjacent
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to an end vertex is called a support vertez. The minimum degree and the
maximum degree among the vertices of G are denoted by 6(G) and A(G),
respectively. If there is no confusion, we omit G in these notations. A graph

= (V', E') is called a subgraph of G and denoted by H C G,if V' C V and
E' C E. The open neighborhood of v is the set Ng(v) :={u €V |uv € E}
and the closed neighborhood of v is Ng[v] := Ng(v)U{v}. Foraset X C V,
Ng(X) = Uyex Na(v) and Ng[X] = U,ex Nalv]-

A set D C V is a dominating set (DS) of G if every vertexin V — D
has a neighbor in D. The minimum cardinality of a dominating set of
G is the domination number of G and denoted by v(G) (see [4, 5]). If,
in addition, the induced subgraph (D) has no isolated vertex, then D is
called a total dominating set (TDS) of G. The minimum cardinality of
a TDS of G is called the total domination number and denoted by v(G).
The notion of total domination in graphs was introduced by Cockayne et al.
in [1] (see also [3, 4, 9]). Further, if D is a dominating set and the induced
subgraph (V — D) has no isolated vertex, then D is called a restrained
dominating set (RDS) of G. The minimum cardinality of a RDS of G
is called the restrained domination number and denoted by +.(G). The
notion of restrained domination in graphs was introduced by Telle and
Proskurowski implicitly in [10].

Throughout this paper, we assume that G' contains no isolated vertex.
A set D C V is a total restrained dominating set of G (TRDS) if D is both a
TDS and a RDS of G. Note that the set V' is a TRDS of G. The minimum
cardinality of a TRDS of G is called the total restrained domination number
of G and denoted by 7;,(G). The concept of the total restrained domination
was also introduced by Telle and Proskurowski implicitly in [10] and was
formally presented in graph theory by De-Xiang Ma et al. in [8]. (See also
[2, 6, 7].)

We now state some known results which are relevant to our work in this
paper. For unexplained terms and symbols, see [11].

Proposition A. [2] Every end vertez and support vertez in a graph G are
in every TRDS of G.

Proposition B. [8] For path P, and cycle Cy, of order n,
(i) 'Ytr(Pn)=n—2lnT-2'J7n22;

(i) %(Ca)=n-2[%|,n23.

Theorem A. [2] If G is a connected graph of order n and minimum degree
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0 such that2 < 6 <n-—2, then
7tr(G) Sn—&

Theorem B. [6] If G is a connected graph of order n, mazimum degree A
and minimum degree 6, where 2< 6 < A <n -2, then

A
Yr(G) <n— 7~ L

In Section 2 below, we shall introduce the concept of the max-min total
restrained domination number of @, 7*(G), and extend Theorem A by
showing that 7:-(G) < Y#(G) < n — 4. In Section 3, we further show
that (1) 9:-(G) < n—26 if n > 6 and G contains a cut-vertex and (2)
r(G)<n—4ifn>11and 5> 2.

2 Max-min total restrained domination number

We begin with the introduction of the following notions.

Definition. Let G = (V, E) be a graph. For a vertez v € V, define
domy,(v,G) := min{|S| | S is ¢ TRDS of G and v € S}.

The max-min total restrained domination number of G, denoted by
1M (G), is defined by

YM(G) := max{dome(v,G) | v € V}.

Obviously, v:+(G) = min{dom;(v,G) | v € V}. Thus, if G is a graph
of order n, then
2<7(G) <1 (@) <.

Remark 1. The difference 7 (G) — 1tr(G) can be as large as desired.
For example, if the graph G in Fig. 1 has k end vertices, then we have
7r(G) = k + 1 and yM(G) = dom(v,G) = 2k + 2. On the other hand,
for complete t—partite graph G = K, ng,....n05 1L (G) = 72(G).

It is not hard to see that if o is an automorphism of graph G and D is
a TRDS of G, then D = {u° | u € D} is also a TRDS of G. So, if G is
a vertex transitive graph and for two vertices u and v, v = v, and Sisa
TRDS of G containing u, then S is a TRDS of G containing v. We thus
have the next proposition.
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Figure 1: Graph G, where 1 (@) — 7:+(G) can be arbitrarily large.

Proposition 1. For every vertez transitive graph G, YM(G) = % (G).

Corollary 1. Yir (Cn) = 'Ytr(Cn)r Vir (Kn) = 'Ttr(Kn)
Theorem 1. For n > 4, YM(P,) = 71r(Po-2) + 2.

Proof. We prove the equality by induction on n. For 4 < n < 5, by
Proposmon B(i), 1r(Pn) = n. Since n = 44 (Py) < 741 (P,,) < n, we
have YY(P,) = n = Y(Pn-2) + 2. Let P, = vv3...v, be a path of
order n. Now assume that n > 5 and the equality holds for every path
P, with m < n. Let D be an arbitrary TRDS of P, containing v4. By
Proposition A, v; and v, belong to D; also since (V' — D) has no isolated
vertex, vg belongs to D. Thus, D — {v;, v} is a TRDS of P,, — {v;,v2}, and
$0 |D| 2 7ir(Pn-2) + 2. Hence, 'YtA;-I(Pn) > domr (v, Po) 2 yer(Pr—2) + 2.

On the other hand, for n € {6,7}, dom,(v4, P,) = n, and so 7 (P,) =
N = Yir(Pn-2) +2. Now, if n > 7, then for every v € V — {v1,v2,v3,v4 }, the
union of every TRDS of (V — {v1,v2,vs,v4}) which contains v and {v;, v2}
is a TRDS of P, containing v. Hence, domg,(v, P,;) < domy (v, Pa—4)+2 <
M (Pn-4)+2. Therefore, by the induction hypothesis and Proposition B(i),

domtr(v; Pn) < 'ygl(Pn—tt) +2= ('er(Pn—B) + 2) +2= 'er(Pn—2) +2.

For the vertices v and v4 (similarly for v,_3 and v,—_3), dom,(vs, P,) and
domy(vq, P,) are at most v;r(Pp—2) + 2. Also, we have dom¢,(vy, P,) =
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domye(v2, Pp) = 4tr(Pn) < Yer(Pa—2) + 2, in which the last inequality
follows by Proposition B(i). Thus, for every v € V(P,), dom¢ (v, P,) <
Yer(Pa—2) + 2. Hence, v4(P,) < 7r(Pa-2) + 2. Therefore, v (P,) =
')’tr(Pn—2) +2. n

The next corollary follows readily from Theorem 1. Note that it provides
graphs G which are not vertex transitive but ,-(G) = Y (G).

Corollary 2. Forn>2 andn=0 or 1 (mod 4),

73.{(1:’,.) = Yer(Pa)-

Let v be a vertex in V and D be a subset of V. We define §, =
min{degg(w) | w € V — {v}}. Also, we call a vertex v a bad vertez with
respect to D if it has no neighbor in D, or it is an isolated vertex in (V — D).
Otherwise we call v a good verter with respect to D. It is obvious that D
is a TRDS of G if and only if G has no bad vertex with respect to D.

Theorem 2. Let G be a connected graph of order n and minimum degree
6 such that 2 < 6§ < n—2. Let wv € E. Then there is a subset D of V with
the following properties:

1.veD,
2. V- D C Ngluy),
3. |Dl=n-6,

4. {V — D) has a vertez of degree 6, — 1,

5. every vertez in V — {v} is a good vertex with respect to D.

Proof. Let u;,us,...,u5,—1 be 8, — 1 neighbors of u other than v and
D :=V - {u,uy,...,u5,—1}. It is obvious that D has Properties 1 to
4. Moreover, the induced subgraph (V — D) has no isolated vertex. Also,
|V — D| = é,, hence, each vertex in V — D has at least one neighbor in D.
To see Property 5, we shall show that (D) has no isolated vertex, except
possibly v or we find a set D' with the desired properties.

Suppose that (D) has an isolated vertex, say w, w # v. Then Ng(w) C
{u,uy,...,u5,-1} and degg(w) < dy. On the other hand, as w # v,
degg(w) > d,. Hence, degg(w) = 6, and Ng(w) = {uo(= u),u1,...,us5,-1}.
Now we shall either find a subset D’ of V having the desired properties or
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prove that degg(u) = &,, which contradicts the existence of such a vertex
w. For this purpose, assume that u; is a neighbor of w with maximum
degree among the neighbors of w. Let D' := V — (Ng[w] — {w;}). It is
obvious that v € D', V — D' C Ng[u), |D'| = n - 8, and the degree of
vertex w in (V — D') is equal to 8, — 1. Also, there is no isolated vertex
in (V — D') and every vertex in V — D' has at least one neighbor in D'.
Therefore, if there is no isolated vertex except possibly v in (D'}, then D’
is a desired subset.

Otherwise, (D'} has an isolated vertex other than v, say z. Then by the
same reason for w, we get degg(z) = 8, and Ng(2) = {w,uo,us,u2,...,
us,—1} — {u;}. Since Ng(w) = {uo,w1,...,us,~1}, the only neighbor of w
in V — D' is u;. Hence, z = u;; so degg(u;) = 8,. By the choice of u;, the
degree of all neighbors of w is §,. Thus degg(ug) = 4y, while the adjacency
of w and up = u implies that degg(u) > 4y, a contradiction. Therefore, D
or D' is a desired subset of V. [ |

Corollary 3. Let G be a connected graph of order n and minimum degree
0 such that 2 < 6§ < n—2. If uww € E, such that Ng[v] € Ng[u], then
dom,(v,G) < n —4,.

Proof. Let D be a subset of V containing the vertex v with the properties
as stated in Theorem 2. Since Ng[v] € Ng[u] and V — D C Nglu), v is
not an isolated vertex in D. Hence, G has no bad vertex with respect to D
and D is a TRDS of G of size n — §, containing v. Clearly, dom(v,G) <
n —0y. n

Now we provide an upper bound for 4 of graphs.

Theorem 3. If G is a connected graph of order n and minimum degree §
such that 2 < 6 <n—2, then

Y (G)<n-34.

Proof. Let v be an arbitrary vertex in G. We shall show that dom, (v, G)
< n—4. If v has a neighbor, say u, such that Ng[v] € Ng(u], then by
Corollary 3, dom,(v,G) < n -4, < n— 4. If for every neighbor u of v,
Nglu] = Ng[v], then by the connectedness of G, we conclude that G is a
complete graph, which is a contradiction.

Now we assume that for each neighbor w of v, Ng[v] C Ng[w] and v has
a neighbor u such that Ng[v] G Ng[u]. Thus, Ng[v] is a clique of order
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degg(v) + 1. If the degree of a neighbor of v other than u, say w, is more
than degg(v), then for graph G'(= G — uw) we have 2 < §(G') < n -2
and Ng/[v] € Ng'[u]. Hence, by Corollary 3, domy,(v,G") < n — 6,(G") <
n —8(G"). On the other hand, since G' C G, domy,(v,G) < dom,(v,G");
moreover, degg(u) > degg(v) > 6(G) and degg(w) > degg(v) > 6(Q),
which imply that §(G') = 6(G). Hence, domy,(v,G) < n — 6(G). Thus,
we assume that the degree of each neighbor of v other than v is equal to
degg(v).

Let z be a neighbor of u which is not in Ng[v] and w be a neighbor of v other
than u. We claim that D := (V — (Ng(v) U {2})) U {w} is a TRDS of G.
By the discussion above, if y is an isolated vertex in (D), then degg(y) = 2
and Ng(y) = {2,u}. Hence, § = 2. In this case, it can be easily seen that
V — {y,2} is a TRDS of G containing v of size n — 2. So, suppose that
{D) has no isolated vertex. Since § > 2 and u is the only neighbor of 2 in
V — D, z has at least one neighbor in D. Also, every vertex in V — D — {2}
is adjacent to v € D, thus, every vertex in V — D has a neighbor in D.
Moreover, since V — D — {2} C Ng(v), the vertices in V — D other than z
induce a clique. Hence, every vertex in V — D is adjacent tou € V — D, and
(V - D) has no isolated vertex. Therefore, D is a TRDS of G containing
v. Hence, dom,,(v,G) < n — degg(v) < n -4, as required. ]

Remark 2. The following examples show that the upper bound in Theo-
rem 3 may no longer valid if any condition is violated. (i) If G is a star of
order n, then YM(G)=n g n—4. (ii) If6 =n -1, thenn — § = 1; while
for every graph G, 2< yM(G) £ n - 4.

3 Upper bounds for «,,

In this section, we first give an upper bound for graphs with cut vertex, in
terms of the order and the minimum degree of graph, and then characterize
graphs of order n with total restrained domination number equal to n — 2.
Finally, we give an upper bound for the total restrained domination number
of graphs in terms of order of graph.

The upper bound given in the next theorem improves the upper bound
in Theorem A for graphs which are not 2-connected. We call a graph of
order 5 formed by two triangles with a common vertex a bow-tie. In a
connected graph contains a cut vertex, the blocks which contains exactly
one cut vertex are called end blocks. It is obvious that such a graph has at
least two end blocks.

167



Theorem 4. If G is a connected graph of order n and minimum degree
& > 2 containing a cut vertex and G is not a bow-tie, then

7r(G) <n —26.

Proof. Let B; and B; be two end blocks of G. Since §(G) > 2,n(B;) > 3
and n(B2) > 3; also, 6(B1) > 2 and §(B;) > 2. Let v; and vp be the unique
cut vertices in B; and By, respectively.

If §(B;) < n(B;) — 2,1 = 1,2, then by Theorem 2, V(B;) has a subset, D;,
such that v; € D;, |D;| = n(B;) — 6y, (B;) < n(B;) — § and every vertex in
V(B;) — {v:} is a good vertex with respect to D;. If §(B;) = n(B;) — 1,
i = 1,2, then let D; := {v;}. Thus, in each case, we have a subset D; of
V(B;) such that v; € D;, | D;| < n(B;) - d and every vertex in V(B;) — {v;}
is a good vertex with respect to D;. Now let D := D, UD, U (V(G) -
(V(B1) UV (By))), where |[D| <n —24. If D is a TRDS of G, we are done.

If D is not a TRDS of G, then G = B UB; and v; = vz and |D| =
|D1|+|D2|—1 < n—-20—1. IfD1 = Dz = {'01(= ‘llz)}, since G is not a bow-
tie, then at least one of B; or B, has more than 3 vertices. Suppose that
n(B,) > 4. In this case, since §(B;) = n(B1)—1 and 6(B2) = n(B2)—1, the
blocks By and B; are complete subgraphs. Therefore, the set D = {vy, u},
where u € By, is a TRDS of G of order 2. It is obvious that n(B,) < & or
n(B;) < 4. Thus, § < 5 —1. Hence, 2 <n—26 and D is a TRDS of order
at most n — 24.

Otherwise, without loss of generality suppose that Dy # {v,}. If 8,,(B1) =
2, then § = 2. In this case by Theorem 3, we have TRDS Dj and Dj of
B, and B, respectively, containing v; = v,, such that |D}| < n(B;) — 2
and |Dj| < n(B2) — 2. Hence, Dj U Dj is a desired TRDS of G. Thus,
assume that §,, (B;) > 2. Since by the choice of D,, D, has the properties
of Theorem 2 and by assumption D is not a TRDS of G, v; is a bad vertex
with respect to D,. Let u be a vertex of degree 4,,(B;) —1in V — D,
which exists by Theorem 2(4) and w be a neighbor of v, in V — D; other
than u. It can be seen that DU {w} isa TRDSof G ofordern —25. =

Let G be a graph of order n. In [2], those G with 74,.(G) = n were
characterized. It is obvious that ;,(G) # n — 1. In the following theorem,
we characterize the 2-connected graphs of order n with the total restrained
domination number equal to n — 2. Obviously, for all 2-connected graphs
G of order 4, 7-(G) =n—2.

Theorem 5. Let G be a 2-connected graph of order n > 4. Then v-(G) =
n—2 if and only if G = C, for n =5,6,7.
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Proof. If G = C,, 5 < n < 7, then by Proposition B(ii), 7:-(Cr) =
n-2%]=n-2

Now assume that ,.(G) = n — 2. By Theorem B, if A < n — 2, then
1t-(G) < n - % — 1. Hence, if A > 3, then %+(G) < n—3. So, if
%(G)=n—-2,thenA=20rA=n-1.

If A = 2, then since G is 2-connected, G is a cycle. So by Proposition B(ii),
G=C, where5<n<7.

If A =n—1, then let v be a vertex of degree n — 1. Since G is 2-connected,
it has a vertex other than v, say u, with degg(u) > 3. Let w and z be the
neighbors of u other than v. Now let D := V — {u,w,z}. By the choice
of u,w and z, (V — D) has no isolated vertex. Also, since every vertex in
D is adjacent to v, (D) has no isolated vertex. Moreover, the vertices u, w
and z all are dominated by v. Therefore, D is a TRDS of G. In this case,
7-(G) < n — 3, a contradiction. [ ]

The next corollary follows readily from Theorems 4 and 5.

Corollary 4. If G is a connected graph of order n > 8 and minimum
degree § > 2, then v, (G) <n—-3.

Remark 3. Since v,,.(C7) = 5, the condition of Corollary 4 cannot be
violated. Also, the example in Figure 2 shows that this upper bound is
sharp.

Figure 2: Graph G of order n = 10, where v;,(G) =n — 3.

Let G be a graph of order n and minimum degree § > 2. A vertex
of degree greater than two is called a large vertez. We denote the set of
vertices of degree two in G by S(G) and the set of large vertices in G
by L(G). If there is no confusion, we denote these two sets by S and L,
respectively. Also, let F be the family of connected graphs G such that
L(G) is an independent set.
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Theorem 6. If G is a connected graph of order n > 11 and minimum
degree 6 > 2, then v1:(G) <n —4.

Proof. Lete =uv € E, where u,v € L, and let G' = G —e. Observe that
0(G') > 2 and 4 (G') 2 Y- (G).

Assume that G’ is disconnected. Then G' has exactly two components, say
G, and G;. Suppose that u € V(G;) and v € V(G2). Two cases arise.

(1) 8(G1) = n1 =1 or 6(G2) = ng — 1, where n; = n(G;), i = 1,2. We may
assume that 6(G1) = ny — 1. Then G} is a complete graph. Now if §(G2) =
ng — 1, then {u,v} is a TRDS of G; else, by Theorem 3, v (G;) < n2 — 2.
Hence, domy,(»,G2) < na—2 and there is a TRDS of G, say D, containing
v of order at most nz — 2. It can be seen that D U {u} is a TRDS of G of
order at most n — 4. So, 7-(G) <n-—4.

(2) 6(G1) < n1 — 1 and 6(G2) < ng — 1. Hence, by Theorem A, we have
Yr(G1) < n1 = 6(G1) and 7(G2) < n2 —8(Ga). Thus, 1+(G) < 1 (G') =
Yr(G1) + 12r(G2) < n — 6(G1) — 8(G2) <n—4.

Assume that G’ is connected. Since §(G') > 2 and v (G) < ¥r(G'), we can
apply the same argument for edges joining two large vertices in G'. Hence,
we may assume that there is no edge in G joining two large vertices; that
is L is an independent set.

Also, if G has a cut vertex, then by Theorem 4, v:+(G) < n — 4. Thus, we
may further assume that G is a 2-connected graph.

Claim 1. If the induced subgraph (S) has more than one component of size
at least two, then v+(G) <n —4.

Proof of Claim 1. Assume that uv and wz are two edges in two distinct
components of (S), and let D := V —{u,v,w, z}. Since § > 2 and the degree
of every vertex in V — D is one, every vertex in V — D has a neighbor in
D. If a vertex z is adjacent to the vertices u and v, then z is a cut vertex,
which contradicts the 2-connectivity of G. Similarly, the vertices w and z
have no common neighbor. Also by assumption the edges uv and wz are
in distinct components. Therefore, no vertex in DN S is adjacent to two
vertices of V' — D. Thus, the subgraph (D N S) has no isolated vertex.
Moreover, since every vertex of L is of degree at least three, the subgraph
(D N L) has no isolated vertex. Hence, D is a TRDS of G of order n — 4
and we are done. a

From now on, we may assume that (S) has at most one nontrivial com-
ponent. Also, if G is a cycle, then by Theorem B(ii), we are done. Thus,
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assume further that A > 3. Note that every component of S is a path, as
A((S)) <2 and G is a connected graph.

Claim 2. If the nontrivial component of (S) has more than 4 vertices, then
%r(G) <n—4.

Proof of Claim 2. Assume that a component of (S) is a path of order at
least five, say uzy...wz. Let v be the neighbor of u in L. It can be seen
that the set D :=V — {u,v,w, 2} is a TRDS of G of size n — 4 and we are
done. a

Claim 3. If there exist a pair of vertices in L, with no common netghbor
in S, then 7,+(G) <n —4.

Proof of Claim 3. Let u and v be two vertices in L with no common neigh-
bor in S. By Claim 1, every vertex in .S, which is not in the unique nontriv-
ial component of S is an isolated vertex in (S). Since the unique nontrivial
component of S is a path, (S) has at most two vertices of degree one. Thus,
each of the vertices » and v has at least one neighbor in S, which is isolated
vertex in (S). We call these isolated vertices w and z, respectively. Then, it
is easy to see that D := V — {u,v,w, 2} is a TRDS of size n — 4, and hence
Yer (G) <n-—-4. o

If A =n -1, then let v be a vertex of degree n — 1 and u be a vertex with
minimum degree. If {u,v} is not a TRDS of G, then there is a vertex w
in G in which Ng(w) = {u,v}. Thus dege(w) = 2, and by choosing u, we
have degg(u) = 2 and v is a cut vertex which contradicts the 2-connectivity
of G. Hence, 7+(G) =2<n—4.

If A > 5, then by Theorem B, «;,(G) < n—4. Hence, suppose that A < 4.

First, assume A = 4 and v be a vertex of degree 4 with neighbors u,w, 2, y.
Since L is an independent set, the neighbors of v are of degree 2. Moreover,
the set {u,w, z,y} C S is independent, for otherwise, v is a cut vertex. Let
D :=V - {u,v,w,2}. The only neighbor of v in D is y, which is not
adjacent to u, w and z; so y is not isolated in (D). Thus, if z is an isolated
vertex in (D), then Ng(z) C {u,w,2}. But in this case v is a cut vertex,
a contradiction. Hence, D is a TRDS of order n — 4.

Assume that A = 3. Let p be the number of edges in FE having both of their
ends in S. By Claims 1 and 2, p < 4. Now by double counting the number
of edges with one end in S and the other end in L, we have 3|L| = 2|S|-2p,
where |S| + |L| = n. Thus 5|L| = 2n — 2p, and so 5|(2n — 2p).
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If n = 11, then p = 1. Hence, |L| = 4 and |S| = 7. Let uv be the
unique edge in S. Suppose that w and z are the neighbors of © and v in
L, respectively. If w = z, then w is a cut vertex, a contradiction. Thus,
w # 2. Let y be a vertex in L — {w, 2} and « be a neighbor of y in S. Since
p=1, theset D :=V — {u,v,z,y} is a TRDS of G of order n — 4. Thus,
7r(G) Sn—4.

If n = 12, then p = 2. Hence, |L| = 4 and |S| = 8. By Claim 1, we
have a component in S which is a path, say uvw. Suppose that every two
vertices in L have a common neighbor in S (note that this neighbor is
unique with respect to pairs, because every vertex in S is of degree two).
Each of the vertices u,v and w has at most one neighbor in L and hence,
is not a common neighbor for the vertices in L. Thus, |S| > ('g') +3,i.e,,
8> (g) + 3, a contradiction. Hence, there exist a pair of vertices in L, with
no common neighbor in S. By Claim 3, we have v,,.(G) <n - 4.

Now we prove the theorem by induction on n. For n = 11 and 12, we have
shown that 4;-(G) < n —4.

Assume that n = n(G) > 12 and the inequality holds for every graph H
with n(H) < n. Let v and v be two adjacent vertices in S. Let w and
z be the other neighbors of « and v, respectively. If w = z, then w is a
cut vertex, a contradiction. Hence, w # 2. Let H be the connected graph
obtained from G by deleting the vertices 4 and v and joining the vertices
w and z. We have §(H) > 2 and 11 < n(H) = n -2 < n. By the induction
hypothesis, v:»(H) < n(H) — 4 = n — 6. Suppose that D' is a TRDS of H
with at most n — 6 vertices. If w € D' or z € D', then D := D'U{u,v} isa
TRDS of G of order at most n — 4. Assume that w,z ¢ D'. If D’ U {u,v}
is not a TRDS of G, then at least one of the vertices w or z, say w, has no
neighbor in V(H) — D' other than z, i.e., every neighbor of w in G other
than u is in D’. Thus, D := D' U {u,w} is a TRDS of G of order at most
n—4.

Hence, we may assume that S is an independent set; i.e, p = 0. If every two
vertices in L have a common neighbor in S (which is unique with respect
to pair), then |S| > ('£1), where |S| = 3n and |L| = #n, which implies that
n < 10, a contradiction. We thus conclude that G satisfies the condition of
Claim 3, and hence, 7:-(G) <n-—4. ]

Remark 4. The graph of Figure 2 shows that the conditions of Theorem 6
cannot be violated. Also, since y(C11) = 7, the upper bound is sharp.
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