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Abstract: Multi-sender authentication codes allow a group of senders to construct
an authenticated message for a receiver such that the receiver can verify authenticity of
the received message. In this paper, we constructed one multi-sender authentication codes
from pseudo-symplectic geometry over finite fields. The parameters and the probabilities
of deceptions of this codes are also computed.
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§1 Introduction

Multi-sender authentication code was firstly constructed by Gilbert, MacWill-
iams and Sloane in [1] in 1974. Multi-sender authentication system refers to
that a group of senders cooperatively send a message to the receiver, then the
receiver should be able to ascertain that the message is authentic. About this
case, many scholars and researchers had made great contributions to multi-sender
authentication codes [2-6].

In the actual computer network communications, multi-sender authentication .
codes include sequential model and simultaneous model. Sequential model is that
each sender uses his own encoding rules to encode a source state orderly, and the
last sender sends the encoded message to the receiver, the receiver receives the
message and verifies whether the message is legal or not. Simultaneous model
is that all senders use their own encoding rules to encode a source state, and
each sender sends the encoded message to the synthesize respectively, then the

Supported by the NSF of China(61 179026)and Fundamental Research of the Central Universities
of China Civil Aviation University of Science special (ZXH2012k003).

Address: College of Science, Civil Aviation University of China, Tianjin 300300, P.R.China.

E-mail: xlwang@cauc.edu.cn, wangxiuli1999@tom.com

ARS COMBINATORIA 112(2013), pp. 175-187



synthesizer forms an authenticated message and verifies whether the message is
legal or not. In this paper, we will adopt to the second model.

In a simultaneous model, there are four participants: a group of senders P =
{P1,Pa,+-+, P}, the keys distribution center, he responsible for the key distri-
bution to senders and receiver, including solving the disputes between them, a
receiver R, a synthesizer, he only runs the trusted synthesis algorithm. The code
works as follows:each sender and receiver has their own cartesian authentication
code respectively. Let (S, E;, T;; fi)(i = 1,2,- -+, n) be the sender’s and Cartesian
authentication code, (S, Eg, T; g) be the receiver’s cartesian authentication code,
h:TyXTyx---xXT, = T be the synthesis algorithm. n; : E — E; be a sub-
key generation algorithm, where E is the key set of the key distribution center.
When authenticating a message, the senders and the receiver should comply with
the protocol: The key distribution center randomly selects a encoding rule ¢ € E
and sends e; = m;(e) to the i — th sender Pi(i = 1,2, -,n) secretly, then he cal-
culates eg by e according to a effective algorithm, and secretly sends eg to the
receiver R; If the senders would like to send a source state s to the receiver R,
P; computes #; = fi(s,e;)i = 1,2,---,n) and sends m; = (5,)(i = 1,2,---,n)
to the synthesizer through an open channel; The synthesizer receives the message
m; = (s,4)({ = 1,2,:--,n) and calculates ¢t = h(1, 1, - -, £,;) by the synthesis al-
gorithm A, then sends message m = (s, f), he checks the authenticity by verifying
whether ¢ = g(s, eg) or not. If the equality holds, the message is authentic and is
accepted. Otherwise, the message is rejected.

We assume that the key distribution center is credible, though he know the
senders’ and receiver’s encoding rules, he will not participate in any communica-
tion activities. When transmitters and receiver are disputing, the key distribution
center settles it. At the same time, we assume that the system follows the kerck-
hoff’s principle which except the actual used keys, the other information of the
whole system is public.

In a multi-sender authentication system, we assume that the whole senders
are cooperation to form a valid message, that is, all senders as a whole and re-
ceiver are reliable. But there are some malicious senders which they together
cheat the receiver, the part of senders and receiver are not credible, they can take
impersonation attack and substitution attack. In the whole system, we assume -
{Py, Pa,---, P,} are senders, R is a receiver, E; is the encoding rules set of the
sender P;, Ep is the decoding rules set of receiver R. If the source state space
S and the key space Ex of receiver R are according to a uniform distribution of
message space M and tag space T are determined by the probability distribution
of § and Eg. L = {i1,i,+, i} € {1,2,--+,n,,l <n, P ={p1,p2, -, o}, EL =
{Ep,,Ep,,-++, Ep). Now let us consider the attacks from malicious groups of
senders. Here there still are two kinds of attack:

The opponent’s impersonation attack: P; send a message m to receiver. P;
is successful if the receiver accepts it as legitimate message. Denote Py(L) is the
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largest probability of some opponent’s successful impersonation attack, it can be
expressed as

PiL)= tr:xeaé %ah)!( P(m is accept by R/ey).

The opponent’s substitution attack: the largest probability of some opponent’s
successful substitution attack, it can be expressed as

- /3
Ps(L) = :{1&)& %aﬁ)lc m'rg’%u P(m’ is accept by R/m, e, ).

In this paper, we give a construction about multi-sender authentication code from
Pseudo-Symplectic Geometry over finite fields.

§2 Pseudo-Symplectic Geometry

Let F, be the finite field with g elements, where g is apowerof 2, n =2v +¢
and 6=1,2. Let

V) K
(& 5) (1) w0

and S is an (2v + 8) X (2v + §) non-alternate symmetric matrix.
The pseudo-symplectic group of degree (2v + 8) over F, is defined to be the
set of matrices Psay.4(Fy) = {T|TSs ‘T = S5} denoted by Psay.s5(F,).
Let F,(,z"*‘” be the (2v + 6) -dimensional row vector space over F,. Psy,.s5(F;)
has an action on F&"*? defined as follows
F*D X Psyyus(Fg) = FE

((x1y 22, - oy X2948), T) = (X1, X2, .., X2045)T.
The vector space Fff"*") together with this group action is called the pseudo-
symplectic space over the finite field F,; of characteristic 2.

Let P be an m-dimensional subspace of Fff””, then PS; 'P is cogredient to
one of the following three normal forms

0 I®
M(m,2s, s)=| I 0
Qin-29)

0 19

(s)
M(m,2s+1, s)= d 0

o(m-z.s'- 1)
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0 ¥

9 0
M(m,25+2,5)= 01
11

0(m-2:-2)

for some s such that 0 < 5 < [m/2)]. We say that P is a subspace of type (m, 2s +
T, §,€), where 7 =0,1 or 2 and € =0 or 1, if

(i) PS5 'P is cogredient to M(m, 2s + 7, 5), and
(ii) e2y+1 ¢ P Or €241 € P according to € = 0 or € = 1, respectively.

Let P be an m-dimensional subspace of Fff"*". Denote by P* the set of
vectors which are orthogonal to every vector of P, i.e.,

Pt ={ye F&*ySs'x =0 for allx € P}.
Obviously, P* is a (2v + & — m)-dimensional subspace of F3"*.

More properties of pseudo-symplectic geometry over finite fields can be found
in [7].

In [2], Desmedt, Frankel and Yung gave two constructions for MRA-codes
based on polynomials and finite geometries, respectively. There are other con-
structions of multi-sender authentication codes are given in [3 — 6]. The construc-
tion of authentication codes is combinational design in its nature. We know that
the geometry of classical groups over finite fields, including symplectic geome-
try, pseudo-symplectic geometry, unitary geometry and orthogonal geometry can
provide a better combination of structure and easy to count. In this paper we con-
structed one multi-sender authentication codes from pseudo-symplectic geometry
over finite fields. The parameters and the probabilities of deceptions of this codes
are also computed. We realize the generalization and application of the similar
idea and method of the article [9) from symplectic geometry to pseudo-symplectic
geometry over Finite Fields.

§3 Construction
Let F, be a finite field with g elements and ¢;(1 < i < 2v+2) be the row vector

in F”"*? whose i - th coordinate is 1 and all other coordinates are 0. Assume that
2<n+1<r<v.U=/{e,e  ,e,),ie, U is an n—dimensional subspace of

2v+2
F((]v ) generated by €1,€3,° ", €, then U+ = <e|) *t 3y Cyapsls te2V+2>' “,l =
: 1
(e1, -, €i-1, €001, €n), 1 S i <y then Wit = (e, -+, €y, €yuis €yantl,* * 5 €2v42).

The set of source states S =(s|s is a subspace of type (2v—2n+2,2v-2n+2,v—
n,1) and s C U*}; the set of i — th sender’s decoding rules Ep,={ep lep, is a
1-dimensional subspace and U + ep, is a subspace of type (n + 1, 0,0, 0) which
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is orthogonal to {e},- -, e;_1,€i+1,**, €n)}, 1 £ i < n; the set of receiver’s decod-
ing rules Eg={egleg an n—dimensional subspace and U + ey is a subspace of type
(2n,2n, n, 0)}; the set of i—th transmitter’s tags T; = {¢;1; is a subspace of type (2v—
2n+3,2(v—n+1),v—n+1,1)and ; ¢ U"}); the set of receiver’s tags T={ 1 t is
a (2v — n + 2)-dimensional subspace and m* € Eg}.

Define the encoding map f; : S X Ep, = T}, fi(s,ep) =s+ep,1 <i<n.

The decoding map f : S X Eg = T, f(s,er) = 5 + eg.

The synthesizing map g : Ty X To X -+ X T, = T, 8(t1, 82, -, ta) = A(t1 + 82 +
-+ -+1,), where A is a nonsingular matrix and A(#) + #; + - - - +1,) is a subspace of
type 2r + 1,2r,r,1).

The code works as follows:

1. Key distribution.

The key distribution center randomly chooses an eg € Eg and selects a (2n, n)
subspace e such that U C e, and selects {ep, € Ep, so thatep, +ep, +:--,+ep, = ¢,
A is a nonsingular matrix satisfying eg = (e,A4). The key distribution center
randomly secretly sends eg, ep, to the receiver and the senders respectively, and
sends A to the synthesizer.

2. Broadcast. If the senders want to send a source state s € S to the receiver
R, the sender P; calculates 1; = fi(s,ep,) = 5 + ¢p, then sends #(1 < i < n) to the
synthesizer .

3. Synthesis. After the synthesizer receives ty, #, - - -, £», he calculates
h= (1,82, ,ta) = A(ty + 12 + - - - +1,) and then sends m = (s, 1) to the receiver R.

4.Verification. When the receiver R receives m = (s,1), he calculates ' =
g(s,ep) = s +egr. If t = ¢, he accepts ¢, otherwise, he rejects it.

Let

(™ o 000 O0O0 O OO
o b o oo 00 0 0 0)"
1 1o

! n—-t v-n | i-l-1 n-i v-n
then

M 0 0 00 0 O 0 00

0 J=D 0 00 O0 O 0 00O

Ut = 0 0O I*¥" 00 0 0 0 00

B ) 0 0 00 O 0 ™ 0 0]

0 0 0 00 0 O 0 1 0

0 0 0 00 O0 O 0 01

! n-1 v-n { i-I-1 1 n-i v-n 1 1
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0 0 00 0 O 0 0O
0 I=) 0O 00 OO 0 0O
0 o I*7 0 0 0 O 0O 00
wt=| 0 0 0o 00 1 O 0 0O
0 0 0 00 0 0 I® 0 O
0 0 0 00 0O 0 1 0
\ 0 0 0O 00 0O 0 0 1)
I n-{ v=n 1 -1 1 n-i v-n 1 1

Lemma 3.1 Let C; = (S,Ep, Ti; f7), the codes is a Cartesian authentication
code,1<i<n.

Proof. (1) For any e, € Ep, s € S, Because ey, is a 1—-dimensional sub-
space and U + ep, is a subspace of type (n + 1,0,0,0) which is orthogonal to
(€1, »€i-1,€is1,"** s €n)}, 1 < i < n; we can assume that

e=(Ri Re 0 1 0 0 R 0).
n v-n i-1 1 n-i ve-n 1 1

Let s € S, since s € U+, s has the form as follows:

Ay I 0 0 0 0
.| B 0 0o
1 0 0 0 O 10
D, 0 0 0 01
n v=n n  v-n 1 1
Let #; = s + ep,, then
Ay I 0 0 0 O 0 0
B, 0 0 0 O I“" 0 O
L= Ry Ry 0 1 0 0 R, 0 ~
0 0o 0 00 O 1 O
\ Dy 0 0 0 0 O 0 1
n v-n i-l 1 na=i v-n 1 1
(A I 0 0 0 0 00
B, 0 0 0 0 I 00
RR, RR 0 1 0 O 00O
0 0O 0 0 0 O 1 0
\ D o 0 00 O 01
n v-n  i-l 1 n-i v-n 1 1
and
0 ¥ 0 0 =
10-m 0 0 0 »
S 2'1‘,- ~ 0 0 01 =
0 0 1 1 =
* * * x 0
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Obviously, ; is a subspace of type (2v—2n+3,2(v—n+1),v—n+1,1)and ; ¢ U+,
that is ; € T;. Furthermore we know t; N U+ = (s + ¢, )N U* = s+ (e, NU*) =
s+0=ys.

Conversely, for any #; € T;, let s = ;N UL, L C 4, satisfying f; = s ® L.
Obviously, s € U*. Fort; ¢ W;* and 4 ¢ U+, let

Ay I 0 0 0 0 00

Bpb 0 0 O0 0 I 0 0

= R Ry 0 1 0 0 00
0 0O 0 0 0 O 10

D, o 0 0 0 0 01

n ven i-1 1 n~i v-n 1 1

Obviously,

A I™ 0 0 00

B, 0O 0 I¥Mm 0 0

GOUt=l g 9 0 o0 10
D, 0o 0 0 01

n v-n n  v-n 1 1
For ¢; is a subspace of type 2v—2n +3,2(v-n+1),vy—n+1,1), then; N Ut is
a subspace of type 2(v—n) + 1,2(v—n+1),v—n,1), thatiss € S. Choose
L=(R R, 01 00 R 0),

so L € ep, s® L = s® ep,. Therefore, f; is a surjection. For any #; € Tj, ep, € Ep,,-
if there exist s € § so that & = s + ep, then s € ; N U*. However, dims =
2(v - n) + 2 = dim(t; 0 U*), so s = ; n U*, that is, s is determined by ¢ and ep,.

Lemma 3.2 Let C = (S, Er,T; g), the codes is a Cartesian authentication
code.

Proof. (1) Forany s € S, eg € Eg, from the definition of s and eg, we assume

that
A I 0 0 00
;| B 0 0™ o00
10 o 0 o0 10
b 0 0 0 01
n v-n n  v-n 1 1
and

t=s+ep=| H H, ™ 0 Hs

- -0 00O
14
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Ay 1M 0
By 0 0 I~

H H, I o0

0 0 0 0

D, O 0 0
n v=-n n v-n

is an (2v — n + 2)— dimensional subspace.

Butt* = (Hy, 'By, I™, 'A,, ' Dy, '0) € Eg, so By = 0, therefore we take
A " 0 0 O
0 0 0 1™ o
t=| H H, I 0 0
1
0
1

-0 ~O0O0O0O
- —_-— 000

0 0 0 0
D 0 0 0

n v-n n v-n

" —_-00CO0OCQ

Obviously t € T.
(2) ForteT,tisan(2v—n + 2)- dimensional subspace, and t* € E,
AL I 0 0 00
B, 0 0 I™ 00
L
MUT=t9 0o 0 0 10
Db 0 0 0 01
n v-n n v-n 1 1
(N UL)Y* =+ + U is a subspace of type (2n,2n,2n,0), t N U* is a subspace of
type Qv —2n+2,2v-2n+2,v—n,1),sowetake s=tN U+, ie., s€S. Let
ex=(H H, I™ 0 H; 0),
n v-n n v-n 1 1
therefore ez is an n—dimensional subspace and U + eg is a subspace of type
(2n,2n,n,0), then ep is a transmitter’s decoding rule and satisfying ¢ = s + eg.

If 5" is another source state contained in ¢, then s’ ¢ U+, Therefore, s’ C tN
U* = s, while dims’=dims, so 5’=s, i.e., s is the uniquely source state contained
int.

From Lemma 3.1 and 3.2, we know that such construction of multisender
authentication codes is reasonable and there are n senders in this system. Next we
compute the parameters of this codes and the maximum probability of success in
impersonation attack and substitution attack by group of senders.

Lemma 3.3 Some parameters of this construction are
IS' = qn(2v-2n+l); IEP,I = qv+|.

Proof. Since s € Ut and s is a subspace of type (2v—2n+2, 2v-2n+2,v-n, 1),
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s has the form as follows:
A 1 I(v—n)

0 0 00 v-n
s=| B 0 0 I*M 0 0] s
10 0O 0 0 10 | B
D, 0 0 0 01 1
n v-n n v-n 1 1

where A, By, D; arbitrarily. So |S| = g"®-2+)),

For any ep, € Ep,, we can assume that ep, has the form as follows:

en=(Ri R, 0 1 0 0 R 0),
n ven i=} 1 n=i ven 1 1

where Ry, Ry, R; arbitrarily. Therefore, |Ep,| = g"*'.

Lemma 3.4 (1) For any ; € T}, the number of #; containing ep, is ¢""**!(1 <
i <n);

(2) The number of the i — th transmitter’s tag is |T;| = g2*® "1,

Proof. (1) Since the transitivity properties of the same subspaces under the
pseudo-symplectic groups, we may take #; as follows:

AL I 0 0 0 0 00
By 0 0 0 0 I™ 0 0
L= R R, 0 1 0 0 00 R
0 o0 0 0 0 0 10
D, 0 0 0 0 0 01
n v-n i-1 1 n-i v-n 1 1

if ep, C #;, then we assume that

=(R R 0 1 0 0 R 0),

n  v-n i-l 1 n-i v-n 1 1
where R,, R; arbitrarily, therefore the number of #; containing ep, is g "1 <ig
n);

(2) We know that every ¢; contains only one source state ;"\ U+ and the num-
ber of #; containing ep,. Therefore we have |tj] = IS||Ep,|/g" "™+ = IS|g""-"*D|/q"-"*! =
an(v-n-H).

Lemma 3.5 (1) The number of the receiver’s decoding rules is |[Ez| = ¢""*?;

(2) For any ¢ € T, the number of ez which contained t is g"*~"*)(1 < i < n);

(3) The number of the receiver’s tag is |T| = g"@*-2#+D),

Proof. (1) Let ep € Ep, eg has the form as follows:
ex=(H H, I" 0 Hs; 0),

n v-n n v-n 1 1

ép

(
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where H), H, Hs arbitrarily. Therefore |Eg| = g"¥*+D.

(2) Since the transitivity properties of the same subspaces under the pseudo-
symplectic groups, we may choose ¢ as follows:
Ay om0 0

0 0 0 I
t=| H, H, " 0
0 0 0 0
D 0 0 0

n v-n n v=-n

- O= 000
- OO0 OO

If eg C t, then
ex=(H H, I" 0 H; 0),

n v-n n v-n 1 1

where H,, Hs arbitrarily. Therefore the number of ez which contained ¢ is g"-"*1);

o (33)Similarly to Lemma 3.4(2), |T| = |SI|Egl/q""*' = ISlg""*V /g~ =
q” v-n+ .

Without loss of generality, we assume that L = {i}, i, -, i} € {1,2,:--,n},1 <
n, PL={p1,p2,- ., i, EL = {Ep,, Ep,, - -, Ep,). Now let us consider the attacks
on R from malicious groups of senders.

Lemma 3.6 For any e, = {E,,, Ep,,* -, Ep,} € EL, the number of eg contain-
ing e is gD,

Proof. Forany e, = {Ep,,Ep,, -, Ep} € EL, we assume ey, as follows:

ee=(R Ry R I® 0 0 R, 0) .
1

! n-l v-n n=l v-n 1 1

If ez D ey, then ey has the form as follows:

(Rt R, R I 0 0 Ry O
R = H, H, Hy 0 J (U H; 0 ?
! n-l v-n 1 n-l  v-n 1 1
whelre Hy, Hy, H3, H; arbitrarily. Therefore, the number of eg containing ey, is
q(V+ Hn-D :

Lemma 3.7 For any t € T, and e, = (Ep,, Ep,,*+, Ep,} € Ey, the number of
e which contained in  and containing e, is g0,

Proof. For any t € T, we assume ¢ as follows:
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Al A om0 0 0 00

0 0 0 0 0 ™ 0 0

| R R0 1% 0 0 00
|H H, 0 0 I o o0 0]

0 o0 0 0 0 0 1 0

D D, O 0 0 0 01

i n-{ v-n 1 n-1 v-nt 1 1

If e, C t, then e, has the form as follows:

eL=(R1 Rz R3 1(0 0 0 R7 0),
!

I n-l v-n n-l v-n 1 1

Since e;, C eg C t, then we assume ep as follow:

e_RleRg,I“) 0 0 R, O
R=\H, H, HR 0 I*b 0 H, 0]

! n-t v-n I n~{ v-n 1 |

where G3 and G7 arbitrarily. Therefore, the number of ez which contained in ¢
and containing e, is g0+,

Lemma 3.8 Assume that ¢, and f, are two distinct tags (t),% € T) which
decoded by receiver’s key er, s, and s; contained in # and #, are two source
states, respectively. Let so = §1 N 52, dim so = k, then 1 £ k < 2(v = n) + 1, the
number of ez which contained in #; N 7, and containing e, is g&*~v-D@-D),

Proof. Sincet) = sy +eg,tr = sa+egand ) # £, then 5y # 55, Forany s € S,

U € s,obviously n < k < 2r — n. Assume that s} is the complementary subspace

of sg in the s;, then s; = 5o + 5} (i = 1,2). From #; = 5; + eg = 5o + 5} + eg and

si=uNUL, weknow so = ( NUHDNGNATY) =11 NupnUr = 51N = 52N,

andfy N1y = (51 +ep) Nty = (so+ 5] +er) Nty = ((So + eg) + 57) N 1y, since

So+er Gt thent)y Nt = (5o +eg) + (s; N 1), while S; Nty C 85| Nty = Sp, SO WE

have t) Nty = 59 + ep.

From the definition of ¢;, we may take #;,i = 1,2 as follows:

A, A, A, O 0 0 0

o 0 o0 O 0 Ivm 9

r=| Bu Ry Ry J O 0 0

| H, H, H, 0 I*b o 0

0O 0 0 O 0 0 1

D, D, D, O 0 0 0

1

! n-l  v-n 1 n-l v-n

- —_-_—0 0000
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Let

Al A, A3 0 O 0 00

0 0 0 0 O I¥m o 0
tm:R, R, Ry I® 0 0 00
1WR=\'H, H, H,, 0 I o o0 0]

0 0 0 0 O 0 10

Dy, D, Dy 0 O 0 01

! n—1 v-n 1 n-1 v-n 1 1

from above we know that t; N, = 5o + eg, thendim(thy N) =k+2n-n=k+n,
therefore,

. (A Ay A3 0 0 O
dml "y 0 0 010

For any e;, eg C t) N t3, we can assume that

eL=(R| Ry R3 I(I) 0 0 Ry 0),

{ n-l v-n | n-l v-n 1 1

) =k+n—-(wv-n+n+l)=k+n-v-1.

o= B RR Rs I 0 0 R O
R=\H, Hb H 0 I™D 0 H, 0"
! n-l  v-n { n-i v-n 1 1
so where every row of
(0 H, H, 0 H, 0)

is the linear combination of
Al Ay Ay 0 0O
0O 0 0 01 0/
Therefore, the number of ez C #) N t; and containing e is g*+"=v-D-D,
Theorem 3.1 In the constructed multisender authentication codes, the largest

probabilities of success for impersonation attack and substitution attack from E,
on areceiver R are q

1
P(L) = pro=t Ps(L) = 7
respectively.

Proof. Impersonation attack: E,, after receiving their secret keys, encodes
a message and send it to reveiver. E; is successful if the receiver accepts it as

legitimate message. So

Py(L)

max max

eeEy meM

ma}x | {er € Egler Cegandeg C 1} |
[{3
| {er € EgleL C er} |

q(n—l)(v-n+ 1) 3 1

q(n-l)(v+l) - qn(n-l) .
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Substitution attack: Ej replace t with another message ¢, after they observe
a legitimate message ¢. E is successful if the receiver accept it as legitimate
message. So

max | {er € Egleg C t,t and ey, C eg} |
reT
Pg(l) = maxmax max
e €EL meM m’tmeM | {er € Egler Ctand e, C eg} |
_ e q(n—l)(k-m-v—l) _ max 1 _ 1
T 1skS2-m+1 gOeDe-nD) T 1gayimye gR-22-R-D T gn-l”
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