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Abstract

The matching preclusion number of a graph G, mp(G), is the
minimum number of edges whose deletion leaves a resulting graph
that has neither perfect matchings nor almost perfect matchings.
Besides its theoretical linkage with conditional connectivity and ex-
tremal graph theory, the matching preclusion number is a measure
of robustness in interconnection networks. In this paper we develop
general properties related to matchings in the Cartesian product of
graphs which allow us, in a simple manner, to establish the match-
ing preclusion number for some interconnection (product) networks,
namely: hyper Petersen, folded Petersen, folded Petersen cube, hy-
perstar, star-cube and hypercube. We also conclude that the Carte-
sian product of graphs operation inherits the matching preclusion
number optimality from factor graphs of even order, which reinforces
the Cartesian product as a good network-synthesizing operator.

Keywords: Cartesian Product, Perfect Matching, Matching Preclusion,
Interconnection Network, Fault Tolerance

1 Introduction and Preliminaries

In this work we are concerned with the following theoretical framework.
Let G stand for the family of all graphs, and let ® : G x G — G be a binary
operation on graphs. Also, let v be a graph parameter with the following
property: if two graphs G; and G, are optimal with respect to parameter
v (in the sense that both values v(G1) and 4(G>) reach an intrinsic bound
for v), then so will the graph G; ® G2. One of the features of this general
framework is the possibility of directly calculating the value of parameter
~ for several networks created via the use of ®. In this paper, we exemplify
for the Cartesian product operation and the matching preclusion number
parameter.
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We consider only finite, undirected graphs with no loops and no parallel
edges. Let G be a graph of order n. A matching M of G is a set of pairwise
nonadjacent edges. A matching M of G is called a perfect matching (resp.
an almost perfect matching) if its size | M| is equal to n/2 (resp. (n—1)/2).
If G has a perfect matching (almost-perfect matching), then we say G is
matchable (almost-matchable). A set F of edges in G is called a matching
preclusion set if G — F' is neither matchable nor almost-matchable. The
matching preclusion number of G, denoted by mp(G), is the cardinality
of a minimum matching preclusion set in G. If G has neither a perfect
matching nor an almost perfect matching, then mp(G) = 0.

The concept of matching preclusion was introduced by Brigham et al.
[2]. They presented it as a measure of robustness in interconnection net-
works — if mp(G) is large, networks for which it is essential to have each
node possessing at any time a special partner will be robust in the event
of edge failures —, as well as a theoretical linkage to conditional connec-
tivity, behavior of graph invariants, and extremal graph theory. Also in
their work, the matching preclusion number was calculated for the Petersen
graph, complete graphs, complete bipartite graphs and hypercubes.

The matching preclusion number has a natural and trivial upper bound
as described in [2] and reproduced in Proposition 1. It comes from the
observation that we can always prevent a graph from having a perfect
matching by removing all the edges incident to a single vertex. Because
the matching preclusion number is to be minimized, we choose this vertex
to be the one with minimum degree. Thus, for a graph G of even order,
the natural upper bound for mp(G) is 6(G). In case of an odd graph H, we
must consider removing the edges incident to two vertices. Then the upper
bound for mp(H) is d; + dy, where d; and ds are the first two elements of
a non-decreasing degree sequence of H.

Proposition 1. [2] Let the degree sequence of an n-vertez graph G be
di,dy,. .. ,dn where §(G) =dy < dz <... < dn. Then mp(G) < 6(G) ifn
is even, and mp(G) < §(G) + dz if n is odd.

The matching preclusion number is considered to be optimal when
equality holds in Proposition 1, as there is absolutely no possibility for
it to be higher than the natural upper bound.

Since the results from graph theory can be applied to networks analysis
and evaluation®, further studies naturally arose in order to investigate the
matching preclusion for interconnection networks, namely: the (n,k)-star
and Cayley graphs generated by transpositions [6]; arrangement graphs [3];

3Topologies for interconnection networks are represented by graphs. In multiproces-
sor systems, vertices represent processors, and an edge p1p2 means that processors py
and p2 are able to communicate directly with one another.
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restricted H L-graphs and recursive circulant G(2™,4) [15); k-ary hyper-
cubes [17]; tori and related Cartesian products [7]; regular interconnection
networks [5]; crossed cubes [8]. Some other studies developed variations of
the matching preclusion problem, such as the conditional matching preclu-
sion [4] and the strong preclusion [16], which in turn brought other works
related to the respective problems for different interconnection networks.

For the next definition we follow the notation in [12]. The Cartesian
product of two graphs G and H, denoted by GO H, is a graph with vertex
set V(G) x V(H), that is, the set {(g,h) | g € G, h € H}. The edge set of
GO H consists of all pairs [(g1,h1), (g2, k)] of vertices with hy = hy and
(91, 92] € E(G), or g1 = g2 and [hy, ho] € E(H). For ease of notation, use
(91, [h1, h2]) to represent the edge [(g1, h1), (91, h2)] if [h1, ho] € E(H) and
use ([g1,92], h1) to represent the edge [(91, k1), (92, h1)] if [91,92] € E(G).
Then the edge set of GO H can be represented by (E(G)x V(H))U(V(G) x
E(H)). We will call G-edges those from E(G) x V(H), and H-edges those
from V(G) x E(H). That is, the pair ([z,y],2) is a G-edge if z € V(H)
and [z,y] € E(G), and the pair (z,[y,2]) is an H-edge if z € V(G) and
[y,z] € E(H). In order to have a uniform notation for edges by using
square brackets, we write [z, [y, z]] instead of (z, [y, 2]).

A useful and intuitive manner for visually interpreting the Cartesian
product of two graphs G, and Gg, where |V(G1)| = n; and |V(G3)| = n2
is shown in Figure 1. Use the following steps:

Step 1. Draw Gy;
Step 2. Replace each vertex v € V(G1) by a copy of Gz (call it vG2);

Step 3. Transform each edge [u,v] € E(G,) into ny edges, linking uG> to
vGy (these ny edges must link the corresponding vertices of the
copies of G»).

Some well-known properties of the Cartesian product that are relevant
to this work follow below:

Property 2. G, 0G: =2 G2, 0 G;.

Property 3. dg,ne,((z,¥)) = dg, (z) + dg, (y), where d(v) is the degree
of a vertez v.

Property 4. §(G1 O G2) = 6(G,) + 0(G2), where 6(G) is the minimum
degree of a graph G.

Property 5. £, oa,((z1,%1), (T2, 42)) = g, (71, 22) + Lg, (y1,Y2), where
£G(u,v) 18 the distance between vertices v and v in a graph G.

Property 6. D(G,0G;) = D(G,) + D(G2), where D(G) is the diameter
of a graph G.
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(a) Draw K3 (b) Replace each vertex of K3 by a
Cs

(¢c) Transform each edge [u, v] € E(K3) into |V(Cy)| new edges, linking uCy to vCy by its
corresponding vertices

Figure 1: The 3 steps for visualizing K3 0 Cjy.
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The Cartesian product operation has many interesting and desirable
properties for synthesizing interconnection networks: as the number of ver-
tices grows geometrically, the vertex degrees, the diameter and the aver-
age distance grow arithmetically; network algorithms can be easily and
systematically synthesized from the corresponding algorithms of the fac-
tor networks [18]. Not at random, some classical and highly implemented
topologies — such as hypercubes, k-ary n-cubes, meshes, tori and general-
ized hypercubes — are the Cartesian product of graphs, and many other
product topologies have been proposed/studied (some of them will be cited
in Section 3). These properties of the Cartesian product are a part of the
explanation why many works have been dedicated to studying this opera-
tion recently. Besides articles, works in this area include two books: one in
2008 [12] and another in 2011 [11].

In the following sections we develop general properties related to per-
fect matchings in the Cartesian product of graphs (Section 2) which allow
us, in a simple manner, to establish the matching preclusion number for
some interconnection product networks (Section 3), according to the gen-
eral framework described in the beginning. We also develop properties
related to almost-perfect matchings and matching preclusion number of
graphs of odd order (Section 4).

2 Perfect Matchings in Cartesian Product of
Graphs

In this section we develop properties related to perfect matchings in Carte-
sian product of graphs, including upper and lower bounds for the matching
preclusion number under this operation. With these results, we formulate
a theorem which shows that the Cartesian product inherits the optimality
of the matching preclusion number of the factor graphs of even order.

Lemma 7. If Gy or G5 is matchable, then Gy O G is matchable.

Proof. Let Gy be a matchable graph, and let Ejs(G1) be a perfect matching
in G;. A perfect matching in G; O G, is easily obtained from G)-edges:
Em(G1) x V(Gg). Since Ep(Gy) covers all vertices in V(G;) — for it is
a perfect matching in Gy —, Ey(G1) x V(G2) will cover all vertices in
V(G1) x V(Gy2), i.e., all vertices in V(G, O G,). O

Figure 2 illustrates the idea of the proof.
Lemma 8. mp(G1 OG3) < §(G1) + 6(G2) if ny X ng is even.

Proof. From Proposition 1, we know that mp(G) < §(G) if n is even.
From Property 4, we know that §(G1 O Gz2) = §(G1) + 6(G2). Therefore,
mp (Gl 0 Gz) < J(G], O Gz) = 6(01) + 5(02) O
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(a) G1 = C3 and G2 = Kj. Perfect matching in Gy O G2
from a perfect matching Ep(G2) in G2: V(G1) X Ep(G2).

(b) G1 = C4 and G2 = Kp. Two perfect matchings in
G1 0G2 from the perfect matchings Epy(G1) and Epg(G2)
in factor graphs: one from Gj-edges (Ep(G1) X V(G2)),
and another from Ga-edges (V(G1) x Ep(G2)).

Figure 2: Perfect matching in G, O G3, provided that G; and/or G, are
matchable.

Lemma 9. mp(G; O0G3) > mp(G1) + mp(G2) if n1 and ny are even.

Proof. A perfect matching in G1 0G5 can be built from a perfect matching
M in Gi: M xV(Gsz) (Lemma 7). In order to ensure that G; O G3 will not
have perfect matchings of this form, it is necessary that at least one of the
copies of G in G [0 G5 shall not have perfect matchings. The minimum
number of edges we need to remove from a copy of G, so that it is not
matchable, is exactly mp(G,) by definition. Similarly, we consider perfect
matchings from Ga-edges. Therefore, it is necessary to remove at least
mp(G1) + mp (G2) edges. a

Observation. As described in [12], if ¢ is a graph parameter and ® is
a graph product, then we say that ¢ is supermultiplicative (respectively,
submultiplicative) on ® if for every pair of graphs G; and G it holds that
@(G1® Gz2) 2 ¢(G1)p(Gz) (tesp., p(G1 ® Gz2) < ¢(G1)p(G2)). By adapt-
ing this terminology, we can similarly define superadditive and subadditive
parameters, replacing multiplication by addition on the right hand size of
the previous inequalities. Therefore, from Lemma 9 we can say that the
matching preclusion number mp is superedditive on 00 when both factor
graphs are even.
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We now state Theorem 10, which brings interesting corollaries. It
shows that the Cartesian product of graphs operation inherits the match-
ing preclusion number optimality from factor graphs of even order. This
property reinforces the Cartesian product as a good network-synthesizing
operator, since the topologies created by this operation will preserve the
factors’ optimality with respect to the matching preclusion number.

Theorem 10. Let G; and Gy be graphs of even order. If both Gy and Gy
have optimal matching preclusion numbers, then so will G, O Gs.

Proof. Since G; and G5 have optimal matching preclusion numbers, we
have mp(G1) = §(G1) and mp(G2) = §(G2). We know from Lemma 8
that mp (G, O G3) < 6(Gy) + §(G2). And from Lemma 9 we know that
mp (G10G2) > mp (G1) +mp (Ga). Since mp (G4) = §(G1) and mp (Gz) =
4(G2), we conclude that mp (G10G?) = 6(G1) +6(G2) = 6(G10G,). O

3 Matching Preclusion Number for some In-
terconnection Networks

Theorem 10 allows us to calculate, in a simple manner, the matching preclu-
sion number of Cartesian product of networks of even order with optimal
matching preclusion number. In this section we show some examples.

e Hypercube. Denoted by H, or @, it is the Cartesian product of n
copies of Kj.
Corollary 11. [2, Theor. 12] mp(Qn) = 6(Qn) =n.

Proof. It is easy to verify that mp (K3) = §(K3). Since @, = (K2)",
we conclude from Theorem 10 that mp (Q,) = 6(Q,). a

As observed, the result in Corollary 11 was already known from (2,
Theor. 12]. However, we have presented this alternative proof in
order to exemplify the utility of Theorem 10, which allows us to
calculate the matching preclusion number in a simpler manner.

e Hyper-Petersen [9]. Denoted by HP,, n > 3, it is the Cartesian
product of an (n— 3)-dimensional hypercube and the Petersen graph.

Corollary 12. mp(HP,) = 6(HP,) =n.
Proof. It is known that mp (Qn-3) = §(Qr—3) and mp (P) = §(P) (2].

Since HP,, = Q,,—30P, we conclude from Theorem 10 that mp (HP,) =
S(HP,). ]
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o N-folded Petersen [13]. Denoted by FP,, it is the Cartesian product
of n Petersen graphs.

Corollary 13. mp(FP,) = §(FP,) = 3n.

Proof. It is known that mp(P) = §(P) [2]. Since FP, = P*, we
conclude from Theorem 10 that mp (FP,) = §(FP,). a

¢ Folded Petersen cube [14]. Denoted by FPQy k, it is the Cartesian
product of an n-dimensional hypercube and & Petersen graphs.

Corollary 14. mp (FPQnx) = 0(FPQyn ) =n + 3k.

Proof. It is known that mp(Q.) = 6(Qn) and mp(P) = &(P) [2].
Since FPQnr = Q. O P*, we conclude from Theorem 10 that
mp (FPQn‘k) = J(FPQn,k)- a

o Hyperstar {1]. Denoted by Sy, n,,...,n,, it is the Cartesian product of
k star graphs.

Corollary 15. mp (Sn,ns,...ne) = 6(Snymapine) = Sob_, (ns — 1).

Proof. 1t is known that mp(S,) = 6(S,) [6]. Since Sp; sy =
Sy, 08,0 --- 08,,, we conclude from Theorem 10 that

mp (Sﬂl.nz----,ﬂk) = 6(87‘1)”2)"-’"&)' D

¢ Star-cube [10]. Denoted by SQy, n, it is the Cartesian product of an
m-dimensional star graph and a n-dimensional hypercube.

Corollary 16. mp(SQmun) =0(SQmu)=m+n—1.

Proof. It is known that mp (Sp,) = 6(Sm) [6] and mp (Qn) = 6(Q4) [2].
Since SQmn = Sm O Qn, we conclude from Theorem 10 that

mp (SQm,n) = 6(5Qm,n)- (]
The above corollaries are examples of the applicability of Theorem 10

to obtain new information on the matching preclusion number of classes of
graphs defined via the Cartesian product operation.
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4 Almost-Perfect Matchings in Cartesian
Product of Graphs

In this section we develop properties related to almost-perfect matchings
in Cartesian product of graphs, including upper and lower bounds for the
matching preclusion number under this operation. This means that we now
investigate the problem in graphs of odd order.

Proposition 17. If G; and G2 are both almost-matchable, then G; O G,
is almost-matchable.

Proof. Let Ep(G1) and Ep(G3) be almost-perfect matchings in G; and
G2, respectively, and let z € G; and y € G2 be the vertices not covered
by these matchings. An almost-perfect matching in G; O G5 can be easily
built in two different ways: (1) (Em(G1) x V(G2)) U ({z} x Em(G2)) or
(2) (V(G1) x Epm(G2)) U (Em(G1) x {y}). In both cases, (z,y) will be the
vertex not covered by the almost-perfect matching in G; 00 Ga. O

Figure 3 illustrates the idea of the proof.

(b) Em(G1) % (V(G2)) U ({=} x Em(G2))

Figure 3: Two ways of obtaining an almost-perfect matching in G4 O Gy,
provided that G; and G5 are both almost-matchable (G; = C3; and G2 &
Ps).

Proposition 18. mp (G, 0G;) < d1(G1)+d1(G2) + min(dy (G1) + d2(G2);
d2(Gh) + d1(G2)) if both ny and ny are odd, where di(G;) and d3(G;) are
the first two elements of a non-decreasing degree sequence of G;. '
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Proof. Directly from Proposition 1, it follows that mp (G) < d1(G) + d2(G)
if n is odd, and from Property 3 it follows that dg, g ¢, ((z, %)) = dg, (z) +
dg,(y)- o

The following definition will be useful. Let F" be a subset of E(G10G2)
such that F contains only G;-edges (for Go-edges the definition is analo-
gous). For a vertex v € V(Gs), let vF denote the projection of F' onto the
copy vG1, that is, the subset of edges

vF = { [ [z,y],] : there is an edge [ [z,y],w] in F for some w € V(G2)}.

Informally, for each edge e = [[z,y],w] € F, vF contains a correspond-
ing edge e’ obtained by replacing w by v, i.e., €' = [[z,],v]. (If w = v then
e = ¢'.) The idea is to consider the edges of F' as if they were all in copy
vG). Clearly, |F| = [vF|. Now we are ready to state the next proposition.

Proposition 19. mp (G, O G2) > min(mp(G1); mp (G2)) if both ny and
N2 are odd.

Proof. Let F' be a subset of E(G; [0 G3) such that |F| < min(mp(G,);
mp(Gz)). We will prove that G; 0G2 — F admits an almost-perfect match-
ing. Let F5 be the subset formed by the Ga-edges of F. For v € V(G,),
[ consider the projection vF5. Note that
/ [vFy| = |F2| < |F| < mp(Ga) < min(mp (G1); mp(Ga)).

Thus, by removing vF, from vGs, the copy vG; admits an almost-
perfect matching M. Consider the projections wMps of Mp, for every w €
V(G1) (note that My = vMp). Then, for each w € V(G,), by removing wF,
from wGy, the copy wG2 admits the almost-perfect matching wM,. Let
(w,z) be the wM,-unsaturated vertex, for each w € V(G;). Consider the
copy G, and let F; = F\ F5. Since |Fi| < |F| < mp(G,), by removing F}
from G O Ga, the copy G, admits an almost-perfect matching M; (note
that this happens even if all the edges in F} lie in copy zG;). By putting
all together, we conclude that the graph

G10G: — (Fiy U (Uuev(c,)whz))
admits an almost-perfect matching, namely M; U (Uyev(c,)wMz). Since
FC (Fl U (UwGV(Gg)wF2))’ it is clear that G4 1G5 — F' admits an almost-
perfect matching as well. O

5 Concluding Remarks

We have developed properties related to the existence of perfect and almost-
perfect matchings in Cartesian product of graphs, associated to properties
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of the factor graphs. We then developed upper and lower bounds for the
matching preclusion number of this operation. Under these conditions,
we established the matching preclusion number for some interconnection
networks, namely: hyper Petersen, folded Petersen, folded Petersen cube,
hyperstar, star-cube and hypercubes (it was already known for this latter;
however, we have presented an alternative simpler proof). We also con-
cluded that the Cartesian product of graphs operation inherits the match-
ing preclusion number optimality from factor graphs of even order, which
reinforces the Cartesian product as a good network-synthesizing operator.
It is an application of a general framework described in Section 1 for a
graph operation and a parameter related to matching. As future research
directions, other binary operations can be chosen and in combination with
many other parameters related to matching, connectivity, planarity, hamil-
tonicity, coloring, an so on.
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