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Abstract

Let G be a connected cubic graph embedded on a surface  such
that every face is bounded by a cycle of length 6. By Euler for-
mula, ¥ is either the torus or the Klein bottle. The corresponding
graphs are called toroidal polyhex graphs and Klein-bottle polyhex
graphs, respectively. It was proved that every toroidal polyhex graph
is hamiltonian. In this paper, we prove that every Klein-bottle poly-
hex graph is hamiltonian. Furthermore, lower bounds for the number
of Hamilton cycles in Klein-bottle polyhex graphs are obtained.

1 Introduction

A graph G is hamiltonian if G has a cycle through all vertices of G and the
cycle is called a Hamilton cycle of G. It is NP-complete to determine if a
graph is hamiltonian, even for a 3-connected cubic graph [10]. For a plane
cubic graph, Barnette [4] made the following conjecture.

Conjecture 1.1 (Barnette, [4]). Let G be a 3-connected cubic plane graph.
If every face of G is bounded by a cycle of length at most 6, then G contains
a Hamilton cycle. O

Goodey [6] proved that every cubic plane graph with only square and
hexagonal faces is hamiltonian, which implies that Barnette’s Conjecture
holds for bipartite graphs. Aldred et al. [1] confirmed Conjecture 1.1 for
graphs with less than 178 vertices. A fullerene graph is a 3-connected cubic
plane graph with only (exactly 12) pentagonal and hexagonal faces. The
following is a week version of Barnette’s conjecture for fullerene graphs.

Conjecture 1.2 (Myrvold, [9]). Every fullerene graph is hamiltonian. O
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Recently, Conjecture 1.2 has been verified for partial fullerene graphs
such as partial leapfrog fullerene graphs (8] by Marusi¢, and fullerene graphs
with a non-trivial cyclic-5-edge cut [7] by Kutnar and Marusié. Deza et al.
[5] considered the extension of fullerenes on other surfaces and found that
torus and Klein bottle are only two surfaces which can be tiled entirely
with hexagons.

A cubic graph G embedded on the Klein bottle is called a Klein-bottle
polyhex graph if every face of G is bounded by a hexagon. Analogically, a
toroidal polyhez graph is a cubic graph embedded on the torus with only
hexagonal face. They have been discussed as hexagon tessellations of the
Klein bottle and the torus [14], respectively.

For toroidal graphs, Thomas and Yu [12] showed that every 5-connected
toroidal graph is hamiltonian, and Thomas, Yu and Zang [13] proved that
every 4-connected toroidal graph contains a Hamilton path. However, it is
not necessary for a cubic toroidal graph to be hamlitonian. Hamiltonian
properties of toroidal polyhex graphs have been an attractive topic of re-
search in the last decades [2, 3, 15] whereas Klein-bottle polyhex graphs
have been less attractive in this respect. It has been shown that every
toroidal polyhex graph is hamiltonian. In this paper, we show that every
Klein-bottle polyhex graph is hamiltonian.

Theorem 1.3. Fvery Klein-bottle polyhex graph is hamiltonian. (]

Combining with earlier results in [5] for surface embedding and results
in (2, 3, 15] for toroidal polyhex graphs, we have the following conclusion.

Theorem 1.4. If G is o cubic graph embedded in a surface such that every
face is bounded by a cycle of length 6, then G contains a Hamilton cycle. 0O
2 Klein-bottle polyhex graphs

In this section, we will give a construction of Klein-bottle polyhex graphs
according to [14].
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Figure 1: Hezagonal cylinder (6,2) (left): v11,; is adjacent to vo,; for j € Zs;
and hezagonal cylinder (5,3) (right): vo; is adjacent to vo,; for j € Zs.

Let C = zox) -+ z9r—) be an even cycle and let P = yoy; -+ -y be a
path. A hexagonal cylinder (k,m) is the “brick” product C§P of C with
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P as: using v;; to denote the vertex (z;,y;) in C§P where i € Zy; and
J € Zyny1, the edge set consists of all pairs of v; juy ; where i/ = i+1 (mod
2k), together with v; jv; j4+1 where ¢ = j (mod 2) and j # m. For examples,
the hexagonal cylinders (6, 2) and (5,3) are shown in Figure 1. Note that
the hexagonal cylinder (k,0) is the cycle C.

Following Thomassen [14], the graphs Hy m a, Hi,m,b) Hk,m,c and Hi m s
are defined as graphs obtained from the hexagonal cylinder (k, m) by adding
edges or vertices in the following way:

® Hipma: add edges vy,0V2,m,¥3,0%0,m) U5,0V2k=2,m - V2k—1,0Va,m fOr
even m;

o Himp: add edges v1,0V1,m, ¥3,0V2k—1,m, V5,0¥2k—3,m) -+ V2k—1,0U3,m
for odd m;

o Hy m,c: for even k, add edges vo;i41,0v2i+k+1,0 (Where i € Zi), vj,mVjtk,m
(where j = m (mod 2));

o Hi s for odd k, add new vertices wo, w;, ..., wg—3 and ug, Uy, ..., Uk—1,
and the edges voit1,0wi, Vjmu; (Where j = 2i if m is even and
j = 2i + 1, otherwise), and the cycles Wi, | kit Wig 1 Wy ks =+~ W
and u.-u‘-_,_;i_:,ui.,.lui_,_k_.;_s e U4 '

Theorem 2.1 (Thomassen, [14]). Let G be a Klein-bottle polyhex graph
with girth 6. Then G is isomorphic to one of Him,a, Himp, Hkmie,
Hj. s for some non-negative integers k and m. O

Note that, in [14], Klein-bottle polyhex graphs were originally classified
into five classes: Hi,m,a, Hi,mpr Him,cs Him,y and Hyq. The class Hy 4
with no definition in this paper was further identified as a sub-family of
Him, 5 in [14].

Let P = v, ---va; and P x K; be the Cartesian product of P and
K, (the complete graph with two vertices). Then v 0,v2,0,v1,2¢ and v2 2k
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Figure 8: Exemples: Hi,m,a, Hi,m,by Hi,m,c and Hi m,s: dashed lines are the
new edges added in the construction of Klein-bottle polyhex graphs.

are the four vertices of degree 2 in P x K5. Let G be the cubic graph
obtained from P x K, by identifying v 2x with vg 0, and identifying vg 2%
with v; 9. According to the proof of Theorem 2.1 in [14], a cubic polyhex
graph with girth less then six is isomorphic to G for some k, which is hamil-
tonian. Hence it suffices to show the four classes of Klein-bottle polyhexes
in Theorem 2.1 are hamiltonian.

An equivalent representation for Hi m and Him, was given by Shiu
and Zhang [11] in notation K(p,q), which implies that both H . and
Hp m,» are bipartite [11]. However, for other two cases Hi,m,c and Hi m,y,
it is easy to see that they are non-bipartite since each of them contains

odd-length cycles.

3 Hamilton cycles

In this section, we are to prove Theorem 1.3 which says that every Klein-
bottle polyhex is hamiltonian.

Lemma 3.1. Each Hy o and each Himp has at least 207 Hamilton
cycles.

Proof: We prove a slightly stronger result that each Hamilton cycle men-
tioned in the lemma contains exactly one edge from {vq jva,j+1| @ =
Jj (mod 2)} for each j € {0,--- ,m —1} and the edge v;,gvg,m, where 8 =2
for Hxm,e and 8 = 1 for Himp. We use induction on m to prove this
statement. Note that m is even in Hy ,;, o and m is odd in Hy g, 5.
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For m = 0, Hy o, has a required Hamilton cycle:
V1,0V2,0¥3,0 * * * ¥2k—1,0Y0,0Y1,0,

which satisfies the statement (see Figure ).

W
%o i Yoo Vo Vao Vso Vso Vi

Figure 4: A Hamilton cycle in Hy0,q.

For m = 1, Hj 1 has two Hamilton cycles (see Figure 5):
1,0v1,1V2,1 * * * V2k-1,10,1Y0,0V2k-1,0 * * - U2,0V1,0

and
V1,01,1%,1V2k~1,1 * * * V2,1V2,0V3,0 * * * Y2k-1,0Y0,0V1,0.

Clearly, both of them satisfy the statement. Hence, the statement holds for
m = 0,1. Now suppose m > 2 and the statement is true for smaller m.

Figure 5: Two Hamilton cycles in Hy 5.

In the following, we only prove the lemma for graphs Hy m o. A similar
discussion will prove the lemma for graphs Hi y, 5.

Delete all vertices in {v; ;|¢ € Zgx; j = m —1,m} and the edges incident
with them from Hy ,, .. Add the edges v; ovjm—2 to the remaining graph if
V;,0Yj,m are edges of Hi m .. So we obtain a graph Hi ;,-2,. By inductive
hypothesis, Hi m_2,4 has 2L"7*] Hamilton cycles and each of them contains
the edge e = v1,0v2,m-2. Let C be one of such Hamilton cycles. Note that
v1,m-1 and v3,;,_1 are adjacent to vy,m and vsm, respectively.

In the graph Hi ma there exist two paths joining v, 0 and vz ,m—2 that
contains all the vertices that were deleted from Hy ,, o to obtain Hi m—24:

P= V1,0V2,mV1,mV0,m * * " V3, mVU3,m-1Y4,m~1" " V1,m-1V2,m-1Y2,m-2
and
P = V1,092,mV3,m " * * Vo,mV1,mV1,m—-1Y0,m~1 " * V3,m-1V2,m-1V2,m-2-

Since C is a Hamilton cycle and C — e is a Hamilton path joining v; ¢
and vy ;-2 in the smaller graph Hy ,;n—3,q, we have that (C' — e) U P and
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Figure 6: Two paths joining vi,0 and va,m—2 in Hrmq.

(C—e)UP’ are two distinct Hamilton cycles of Hy, m q. S0 Hy m o has 2175
required Hamilton cycles, which completes the proof of the lemma. (]

Lemma 3.2. Each Himc and each Him s has at least k2™ Hamilton
cycles.

Proof: We prove a slightly stronger result: for Hy m s, each of these k2™+1
Hamilton cycles contains exactly two edges w;va;i41,0,w; +A$1V2i4k42,0 for
some i € Zy; for Hi ¢, each of them contains exactly one edge v; ovitx,0
for some odd i € Zg;.

We first use induction on m to prove the lemma for Hy ,,, ;. Notice that
k is odd. Let

Pipep = Uit 1 0WiWiy k1 Wid] ** W 141 V244k,0
be the path containing all vertices of {w;|i € Z;} and let
Pi,,i+"—§—‘ = U mUil k1 Uil o Uk Vjm

be the path containing all vertices of {u;|i € Zi}, where j = 2i,j' =
20—k—-1=2i+k—1(mod 2k)if miseven,and j =2i+ 1,5 =2i —k,
otherwise. Then

P,‘,,-.,.y,‘g V2i4+k,0V2i+k+1,0° ** 'U2a',oP,-', ,-+g#v2i+k—1,0'u2i+k—2,0 <t V2i41,0
and

Pi,i + k_;i'l)25+k,0v2i+k—l,0 . -v2i+2,0P,-' +1,i+ 5;-3’021‘+k+1,0'"2£+k+2,0 *r e V2i41,0

are two required Hamilton cycles of Hy o 5 (see Figure 7). Since i can be
any one in Z, we obtain 2k Hamilton cycles of Hy s. .

Now suppose m > 1 and the statement holds for smaller m. Delete

all vertices in {v; 0|t € Z2x} together with all edges incident with them.
Add edges w;vz;; to the remaining graph and obtain a graph Him-1,¢.
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Figure 7: Two Hamilton cycles of Hso,5.

By inductive hypothesis, Hi m—1,7 has at least k2™ Hamilton cycles and
each of them contains two edges e; = w;vz;; and e; = w; +ER V2411
for some ¢ € Zi. Let C be one of such Hamilton cycles containing e; and
es. Clearly ej,e; € S = {wvg;1]i € Zg} and S is an edge-cut set of
Hjm-1,7. So deleting e; and ep from C separates C into two paths and
let P be the one joining ;3 and v2i4x41,1- Then P covers all vertices in
{vi,jli €Zx;j=12,..,m— 1} u {u,lz € Zk}

Figure 8: Eaxtending Hamilton cycles of Hr,m—1,5 to Hamilton cycles of Hy,m,;.

In the following (see Figure 8), we extend C' to Hamilton cycles of
Hp i,z in two different ways. Let Py = v2;,1v2i,0v2i41,0 * * * V2i4k,0 and Py =
Vit k+1,1V2i+k+1,0V2i4k+2,0 * - U2i—1,0 A0 Pj = V4,102; 0¥2i—1,0 * * * V2i+k+2,0
and P = i4k+1,1V2i4k+1,002i+k,0 * ** V2i+1,0- Then PUPLURUP,_, ;2
and PUPJUP,UP, ;. r11 are two Hamilton cycles of Hi,m,s. Since Hk,m—1,¢
has at least k2™ Hamilton cycles and each of them can be extended to two
distinct Hamilton cycles of Hy m s, Hi,m,s has k2™+! Hamilton cycles. So
the lemma is true for Hy m, .

For Hy m c, using v; oVi+k,0 and vjmvjm (iisodd; j = 2¢,5' = 2t +k if
m is even, and j = 2t+1, j' = 2t+ k41, otherwise) instead of P"H_L;_: and

P{ i EpL a similar discussion shows that the lemma holds for Hyme. O

Theorem 1.3 is an immedjate corollary of Lemmas 3.1 and 3.2 and can
be, therefore, further stated as follows,

Theorem 3.3. Every Klein-bottle polyhex graph is hamiltonian. In partic-
uwlar, Hi m,a and Hymp have at least 2l=) Hamilton cycles, and Hy e
and Hi s have at least k2™+1 Hamilton cycles. 0O
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