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Abstract

For a vertex v of a graph G, the unlabeled subgraph G—v is called a card
of G. We prove that connectedness of an n vertex graph G and presence of
isolated vertices in G can be determined from any collection of n—2 of its cards. It
is also proved that if two graphs on n 2 6 vertices and minimum degree at least
two have n-2 cards in common, then the numbers of edges in them differ by at

most one.
Key words : vertex-deleted subgraph (card) , common cards, number of edges.

1. Introduction

All graphs considered are finite simple and undirected. We use the
terminology in Harary [2]. The degree of a vertex v of a graph G is denoted by
deg v (or deggv). The minimum degree among the vertices of a graph is denoted
by 8. The number of edges of a graph G is denoted by ¢(G). For a vertex v of
G, the unlabeled subgraph G-v is called a card of G. The collection of cards of
G is called the deck of G.

The famous Ulam’s Reconstruction Conjecture for graphs [1] claims
that all graphs on at least three vertices are determined uniquely up to
isomorphism by their decks. Myrvold studied [4] adversery reconstruction
number of G which is the smallest £ such that no subcollection of the deck of G

of size k is contained in the deck of any other graph H, H # G. It is well known
[1] that the number of edges of a graph on »n vertices can be determined from
the deck of G. Manvel [3] proved that, if G and H are graphs on n vertices with
n—I cards in common, then |e(G) — e(H)| < 1. Myrvold [5] verified that for
n =6, all pairs of graphs G and H with five cards in common have e(G) = e(H)
except for the pair in Figure 1 and proved that “ for n = 7, e(G) = e(H)
whenever G and H have »n—/ cards in common”. Here we study pairs of graphs
with n-2 cards in common.

AMS(2000)Subject classification 05C 60, 05C 07.
*Research supported by DST, Govt. of India. MS/093/98 and SR/S4/MS:320/06

ARS COMBINATORIA 112(2013), pp. 213-223



G-izH-i, i=1to5and e(H)—e(G)=1
Figure 1: A pair of 6-point graphs with 5 cards common

We prove that connectedness of G and presence of isolated vertices in
G can be determined from any collection of n»-2 of its cards. It is also proved
that if two graphs on » 2 6 vertices and J = 2 have n-2 cards in common, then
the numbers of edges in them differ by at most one. However, it is not yet
known whether §2 2 can be determined from »—2 cards or not.

2. Recognizability from n-2 cards

A family (property) of graphs is called recognizable from a specified
collection of their cards if all-graphs-having that subcollection within their deck
belongs to that family (have that property).

Here we prove that connected graphs and graphs having isolated
vertices are recognizable from any collection of n—2 of their cards.

Lemma 1. Let G be a connected graph on » vertices. Then at most an cards
2

of G have isolated vertices.

Proof. Suppose & cards of G each have isolated vertices. Then G has at least &
endvertices such that no two of them are adjacent with the same vertex and
hence n 2 2k. This proves the lemma. [ |

Lemma 2, Connected graphs and disconnected graphs on » (2 7) vertices are
recognizable from any collection of n—2 of their cards.
Proof. Let 3 be a given collection of n—2 cards of a graph G. If two of the
cards in I are connected, then G is connected.
Now let I have at most one connected card.
Case 1. There exists a connected card 4 in 3.
Now G is either (i) connected, or

(ii) disconnected with exactly two components, one of them being K.

If all the disconnected cards in 3 —{4} (n—3 in number) each have isolated

vertices, then G is disconnected by Lemma 1 (as 73 > l"J forn=17).

2
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Otherwise, G has at least two cards having no isolated vertex. Hence (ii) does
not hold and G is connected.
Case 2. Nocard in J is connected.

Now G is either disconnected or P, (since P, is the only connected graph
with n-2 cutvertices). If 3 coincides with the collection of disconnected cards
of P, , then it can be proved that G is P, . Otherwise, G is disconnected. [ ]

Theorem 3. A graph with an isolated vertex can be recognized from any
collection of n—2 of its vertex-deleted subgraphs for n 2 7.

Proof. Let 3 be the given collection of »-2 cards of G. By Lemma 2, we know
if G is connected or not. If G is disconnected and there is a connected card in J,
then 5=0.

Now let G be disconnected and no card in 3 is connected.

If at least two cards in J have no isolated vertices, then 5+ 0. Hence
we can take that at most one card in I has no isolated vertex.

We consider two subcases.
Case 1. There exists a card without isolated vertices in 3.

Now G has at most one isolated vertex. Let us characterize G when it has
no isolated vertex.

Since all but at most three cards of G have isolated vertices, G must
have at least n-3 vertices adjacent to a vertex of degree one and hence, af Jeast
n-3 vertices of degree one. Also G can have at most one component on three or
more vertices (since each such component of G gives rise to at least 2 cards of G
without isolated vertex). Other components of G are K;’s.

If G has no components on three or more vertices, then it is just a union
of K;'s, leading to a contradiction (Since in J, there is a card with no isolated
vertex). ,

If G has a component which is a tree, and that tree has four or more
endvertices then there would be at least four cards with no isolated vertices
(which is not the case here). So any components which are trees have at most
three endvertices. If the tree has three endvertices, then it has one vertex v of
degree three. If v is not adjacent to some endvertex, then the graph again has at
least four cards with no isolated vertices (those obtained from deleting v and the
three endvertices). Thus the degree three vertex v is adjacent to an endvertex. If
there is a path of length three or more from v to one of the other endvertices
which has first edge vu, the four cards from deleting the three endvertices or u
have no isolated vertices. Thus, if G has a component which is a tree having
three endvertices, this component must be one of F;, F;and F; of Figure 2.

If G has a component which is a tree having only two endvertices (the
only remaining case for trees) then it is a path. Any path on six or more vertices
has at least four cards which have no isolated vertices. So such a component is
one of F,, Fs and F of Figure 2.
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0—0—0 0—0—0—0 0—0—0—0—0
Fy Fs Fy
F, Fy Fy Fp

Figure 2 : Possibilities for the sole non K, component of G (Theorem 3)

The remaining cases are when G has a component on three or more
vertices which has a cycle. Such a cycle can have size at most three. The reason
is that either a cycle vertex v is adjacent to an endvertex or it is not. If the vertex
v is adjacent to an endvertex u, then G-« has no isolated vertices. If it is not,
then G- has no isolated vertices. Similar reasoning can be used to argue that
the component only has one cycle. Let the cycle be (a, b, ¢). These vertices may
or may not be adjacent to an endvertex. But either way, there can be no other
vertices besides a, b, ¢, and at most one endvertex adjacent to each which are in
this component or else there will be four or more cards with no isolated
vertices. The possible cases are F;, Fg, Fy or F)y of Figure 2.

Thus when G has no isolated vertices, it has to be one among the ten

graphs

F, u(zi)K, , F u[n_-S_)Kz , F; u(g_—_g]x, , F u(g—j) K,
2 2 2 2

F5 U(ﬂ)Kz ’ Fs U(”_"_S_)K) , F U(ﬁ_—_:‘}_J K,, Fp U(M)Kg ,
2 2 2 2

Fy U(ﬁi)Kz and F]oU(ﬁ_‘_i)K).
2 2

Hence if 3 does not coincide with some collection of n—2 cards of one
these ten graphs, then G has 6= 0. Otherwise, 6# 0 as decided in each of the ten

cases below.

Case 1.1. 3 coincides with a subcollection of n-2 cards of F; u(n - 6)1{;.
2
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2

(n— 6]1(2 , one card K; u(n- 2)K2 and one among P;s u(n-6)K; and
2 2 2
F, u( n- 6) K.
2
The existence of a component F; in the card K, U F; u( n- 8)](;
2
implies that G has a component of order at least six. Since the card
P u(n - 6)K, (or Fu (n - 6) K;) has no component of order at least six, the
2 2
corresponding deleted vertex in G must be a vertex of that component of order at
least six so that 5 0.
Case 1.2. 3 coincides with a subcollection of n-2 cards of Fs u(n -4 JK;.
2

Now 3 consists of “n—~f cards K, U F5 U ( n;q) K, , one card
Kv (ﬂ)K; and one card P; U (n_;_4)K; ”or « n—-52 cards K, U Fsu
(g-_6)Kj, two cards K;uU (n_-Z_)K; and one card P; U (ﬂ)Kz” . Hence G
coniains a component with Fi = P, as an induced subgfaph. Hence while
augmenting the card P; v( 52-_4 ) K, to G, the annexed vertex cannot remain as

an isolated vertex. Hence 6+ 0.

Now 3 consists of n—6 cards K, F3 u(n-8)Kz , two cards K; U P,u

Similarly in the other eight cases also, it can be proved that 6 = 0.

Case 2. Each card in 3 has an isolated vertex.

Now G has either an isolated vertex or at least n—2 endvertices,
no two having the same neighbour. Hence either G has an isolated vertex or G is
P, u(g-_‘i)K; or (g) K,or P; u[ﬂ)K;. As in Case 1, we can prove that if 3

2 2 2
coincides with a collection of n—2 cards of one of these graphs, then &G) = 0
and if not &G) = 0. [ ]

3. Graphs with #—2 cards in common

Notation. Whenever G and H are taken as two graphs having »n-2 cards in
common, we assume that G and H are labeled with v;, v,, ..., v, and u;, u,, ...,
u, respectively so that G—v; = H-u, for i=1ton-2. Acard G-v,, 1<i<n-2 is
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called a common card of G and a card H—u,, 1 <i < n-2 is called a common card
of H.

The following two lemmas are obvious.
Lemma 4. Let G and H be graphs with ¢(G) and e(G) + k, k2 0 edges
respectively. If G-v = H-u,thendegu=degv +k. [ ]

Lemma 5. Let G and H be graphs on n verities with §2 2, and with ¢(G) and
e(G) + k, k 2 0 edges respectively. If G and A have »-2 cards in common, then
deg vy + deg v,— (deg u,-,;+ deg u,) = k (n—4). [ ]

We now prove our main theorem.

Theorem 6. Let G and H each be a graph onn 26 vertices with 6= 2 such that
they have n—2 cards in common. Then |e(G) —e(H)| < 1.

Proof. For n =6, we have verified the theorem by hand using the list of graphs
in[2]. Now letn=7.

Without loss of generality, let us take that e(G) < e(H).
If possible, let e(H)-e(G) 2 3. -—(I)
Now by Lemma 5, deg v,_+ deg v,— (deg u,_, + deg u,) 2 3(n—~f) -—-(1)

Since 2 <degv; <n-1and2 <degu <n-I,degv,~degu <n-3and
hence

deg v,; + deg v, — (deg u,; + deg u,) < 2(n-3) ---~(2)
From (1) and (2), 3 (<) <2 (n-3). This is impossible as 7> 7.
Now, if possible let e(H) —-e(G) =2. -—-(1I)

Notation : For simplicity, we will denote Gand H by E and F respectively.
Then e(E) - e(F) =2 and E~v;= F—u,, 1 <i< n-2 (by hypothesis).
So Lemma 4 applied to E and F gives degg v, = degr u, + 2 and hence

degcv, 22 fori=1ton-2. ---=(3)

Now by Lemma 5, degg v, + degg v, — (degy un_+ degyu,) = 2n-8.
Consequently, degru,, + degr u,— (degg v,-; + degg v,) = 2n-8. ----(4)

Since 2 S deggv, $n-1and 2 <degy u,<n-1 for i=1ton,
0<deggv,<n-3 and 0<degru, <n-3 for i=1ton.

Hence degp u,-; + degru, < 2n—6 and deggv,-; + deggv, 2 0 and (4) gives rise to
the three cases discussed below, each leading to a contradiction.

218



Uyt Uy

n—49

F

Figure 3: Structure of F when it has two isolated vertices
in Case 1, Theorem 6.

Case 1. degruy.; + degru, = 2n— 6 and degg v,-; + deggv,= 2.

Now degr u,; = degr u, = n—-3. Hence in F, there can be at most two
vertices which are adjacent to neither , nor u,., and these alone can be isolated
vertices of F (Figure 3). On the other hand, F has at least n—6 vertices which are
adjacent to both u, and u, ; (Figure 4). Hence, apart from u, and u,_,, there can
be at most four vertices in F which are nonadjacent to at least one among u,,;
and u, and these alone can be endvertices of F.

Up-} Un

Figure 4: Structure of F when it has four endvertices
in Case 1, Theorem 6.

Thus, F has at most two isolated vertices and at most four endvertices.  ----(5)
Also degpv,_;+ deggv, =2, implies {deggv,_;, degev,} = {2, 0} or {1}.
Subcase 1.1. {degg v,-;, degg va} = {2, 0}.

Without loss of generality, we can take that degr v,; =2 and degg v, =0.

As degg v;2 2 for i = 1 to n-2, this implies v, is the only isolated vertex of E.
Thus E-v; and hence F—u,, 1< i < n—2 has at least one isolated vertex. ----(6)
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If possible, let F have no isolated vertex. Then by (6), all the vertices of
F other than u,_; and u, must be adjacent to endvertices. Therefore there must be
at least n—2 ( 2 5) endvertices in F. This contradicts (5).

If possible, let F have exactly one isolated vertex. Then it is different
from u, and u,,_;, and the common card corresponding to deletion of that isolated
vertex of F has no isolated vertex, contradicting (6).

So by (5), we can take that F has exactly two isolated vertices, say u,
and u,. Then in F, the vertices u,.; and u, (each of degree n—3) are adjacent and
each is adjacent to all the vertices other than #; and %,.

Now F-u,,ie{l,2,..., n-2}- {s, t} has at least two isolated vertices (and
there are n—4 such cards). Consequently, »— of the cards E-v, , E-v, ,..., BV,
each must have two isolated vertices. Hence E has at least n— endvertices (since
E has exactly one isolated vertex), and this contradicts (3).

Subcase 1.2. {deggV,.;, degeva}= {1}.
We consider two subcases as below.
Subcase 1.2.1. v,_; and v, are adjacent.

Now in E, the subgraph induced by {v,,, v,} is a component (= X;). Thus
E—v;and hence F-u;, 1< i < n—2 are disconnected with a component K,. --- (7)

Since degr u,= n-3 (= 4), all but two vertices of F are adjacent to u, and
thus u, and its neighbours (totalling n-2) together can not occur in a component
K, in F~u,, 1< i < n-2. Hence neither of the two cards obtained by deleting one
among the other two vertices can have a component K. However, at least one of
the above two cards must be a common card and this contradicts (7).

Subcase 1.2.2. v, and v, are not adjacent.

Let v, and v, be the neighbours of v,, and v, respectively. Two
subcases arise depending on v;=v, or not.

Subcase 1.2.2.1. v;=v,
Now the card E-v; (and hence F-u; ) has two isolated vertices (namely

Yyt and Vn).
Each card E-v, (and hence F-u), i € {1, 2, ..., n—2}—{s} has the following two
properties.

(i) has no isolated vertex

(ii) has at least two endvertices. -—(8)
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E F
Figure 5 : Structure of E and F in Subcase 1.2.2.1, Theorem 6.

As a result, there will be two endvertices, say »,” and u,” which are adjacent to
u in F and hence for i & {s, n—I, n}, u, is adjacent neither with %, nor with u,”
Thus degr u;’ = degr u,”’= 1, degru, 2 4 (since u, is adjacent to both u,_; and %,
each of which is different from u,”and u,”) and degy u; 2 2 for all other vertices
u, of F (Figure 5). Hence the two cards F—u,’and F-u,” each has exactly one
endvertex. Thus, at most »—5 of the cards F—u; , F—u, , ..., F~u, ; have more
than one endvertex, giving a contradiction to (8).

Subcase 1.2.2.2. v, =y,

VYn-1 Vn us’ Up-y Uy U
O e
U U
n—4
E F

Figure 6 : Structure of E and F in Subcase 1.2.2.2 , Theorem 6.

Now the common cards E-v;and E-v, (and hence F—u;and F-u,)each has
exactly one isolated vertex and at least one endvertex. Each of the other n—<¢
common cards E-v, (and hence F-,), i €{1, 2, ..., n~2}~{s, ¢} has the following
two properties.

(i) has two endvertices

(ii) has no isolated vertex. weeei(®)
As aresult, F will not have an isolated vertex and there will be two endvertices
in F, say u;”and u,” adjacent with , and %, respectively. Thus in F, the vertices
u, and u,.; (each of degree n—3) are adjacent and each is adjacent to all the
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vertices other than #,”and #,"and hence degru, > 3, degru, 2 3 and degru, > 2
forall u; € {uy, u,..., u, }—{us, u,, us’, u,’} (Figure 6). Now the common card
F—u,” (respectively F~u,”) has exactly one endvertex namely %’ (respectively
u,’). This contradicts (9).

Thus Case 1 can not arise.
Case 2. degru,_;+ degru, =2n-7 and degpv,.;+ deggv,= 1.

Since 0 < degr u, < n-3, {degr u,,; , degr u,} = {n-3, n—4} and
{degg vp.; , degp v, } = {1, 0}. Without loss of generality, let us take that deg
U,-; = n-3, degr u,= n—4, deggv, ;=1 and degg v,= 0. Let v, be the neighbour
of v,_; in E. Then, since degg v, 22 for i ¢ {n—I, n}, the common card E—v, has
exactly two isolated vertices. Each of the other »~3 common cards has the
following two properties.

(i) has exactly one isolated vertex

(ii) has at least one endvertex. - (10)

Now, if F has two isolated vertices, say u, and u,, then the common
cards other than F—u, and F-u, (n—~ in number), each has at least two isolated
vertices, contradicting (10). If F has only one isolated vertex, say u, then the
common card F-u, has no isolated vertex, again contradicting (10).

Otherwise, F has no isolated vertex. Now since F—u, has exactly two
isolated vertices, there will be two endvertices in F, say u;‘and u, ”, both of them
adjacent with ;. Then neither of the common cards F-u,” and F-u,” has an
isolated vertex, and this contradicts (10).

Thus Case 2 can not arise.

Case 3. degru,,+ degr u, = 2n—8 and deggv,;+ degg v,=0.

Now {degr u,-; , degr u,} = {n-3, n-5} or {n—4} and degg v,-; = degr v,
= 0. Since deggv, 22 for i ¢ {n—1, n}, each common card E—v, (and hence
F-u)), 1< i < n-2 has exactly two isolated vertices. ---(11)

Now, if F has at least three isolated vertices, then there will be a
common card with at least three isolated vertices, contradicting (11). Hence F
has at most two isolated vertices. Now since u,., and u, are not isolated
vertices, there will be a common card F-u;, for some s<{1,2,...,n~2} with at
most one isolated vertex, again contradicting (11). Thus Case 3 can not arise.

Hence (II) can not occur. As (I) can not also occur, we have
le(H)—e(G)| < 1 proving the theorem. [ |
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4. Conclusion

There are graph pairs G and H on six vertices with & 2 2 and having
four cards in common such that |e(G) — e(H)| =1. It seems that, for sufficiently
large », the number of such pairs with different number of edges will be zero.

It will be useful if an algorithm to determine the number (within a
neighbourhood of 1) of edges of a graph G from an arbitrary collection of #n-2 of
its cards can be found. Some immediate open problems arising out of this paper
are the following.

1. Proving that e(G) = e(H) for sufficiently large n.

2. Finding families of examples where |e(G) — e(H)| =1, showing that the bound
given by Theorem 6 is tight.

3. Removing the condition &= 2 from the hypothesis of Theorem 6, or
providing counterexamples showing that §=2 cannot be removed.

Acknowledgement: We are very thankful to Professor Wendy Myrvold for
pointing out and filling some major gaps in the proof of Theorem 3 and a referee
for suggesting the open problems given at the end.
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