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Abstract

A geodetic (resp. monophonic) dominating set in a connected
graph G is any set of vertices of G which is both a geodetic (resp.
monophonic) set and a dominating set in G. This paper establishes
some relationships between geodetic domination and monophonic
domination in a graph. It also investigates the geodetic domination
and monophonic domination in the join, corona and composition of
connected graphs.
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1 Introduction

Throughout this paper we consider only finite graphs with no loops or
multiple edges. For any two vertices v and v in a graph G, a u-v geodesic
refers to any shortest path in G joining u and v. The length of a u-v_
geodesic is called the distance between u and v, and is denoted by dg(u, v).
The closed geodetic interval Ig[u, v] is the set of all vertices lying on any u-v
geodesic. For a subset S of the vertex set V(G) of G, the geodetic closure of
S is the set Ig[S] = Uy veslc[u,v]. Various concepts inspired by geodetic
closures are introduced in (15, 8]. A geodetic setin G is any set S of vertices
in G satisfying I¢[S] = V(G). The minimum cardinality g(G) of a gecdetic
set is the geodetic number of G. Any geodetic set of cardinality g(G) is
refered to as a minimum geodetic set. Geodetic sets and geodetic numbers
are studied in [1, 2, 3, 4, 6, 7). We also define Ig(u,v) = Ig[u,] \ {u,v}
and Ig(S) = Uyveslo(u,v). We call S a 2-path closure absorbing set if
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for each z € V(G) \ S, there exist u,v € S such that dg(u,v) = 2 and
z € Ig(u,v). Clearly, a 2-path closure absorbing set is always a geodetic
set. The minimum cardinality of a 2-path closure absorbing set in G is
denoted by p2(G). In 7], the geodetic numbers of the join of graphs are
described in terms of 2-path closure absorbing sets.

By a chord of a path [uj,ug,...,u,] in a graph G we mean any edge
u;u; with j > i+ 1. A w-v monophonic path is a chordless u-v path. A
longest monophonic path is referred to as a monophonic diametral path,
and its length is denoted by diam,,(G). The closed monophonic interval
Je[u,v] consists of all vertices lying in any »-v monophonic path, and for
S C V(G), the monophonic closure of S is the set Jg[S] = Uy vesJalu,v].
We also define Jg(u,v) = Jelu,v] \ {»,v} and Jg(S) = Uy vesJa(u, v). In
case Jg[S]=V(G), S is called a monophonic set. The minimum cardinality
m(G) of a monophonic set is called the monophonic number of G. Any
monophonic set of cardinality m(G) is referred to as a minimum mono-
phonic set. Monophonic sets and monophonic numbers are investigated in
[10, 11].

The open mneighborhood of a vertex v in G is the set
Ng(v) = {u € V(G) : wv € E(G)}. Any vertex v is an exireme verter
if the mduced subgraph (Ng(v)) is a complete graph. The symbol Ezt(G)
denotes the set of all extreme vertices in G. The degree degg (v) of a vertex v
refers to the value |[Ng(v)|, and we define A(G) =max{dege(v) :v€V(G)}.
The closed neighborhood of v is the set Ng[v] = Ng(v)U{v}. For § C V(G),
we define Ng(S)=U,esNg(v)and Ng[S|=Ng(S)JS. If Ng[S}=V(G), then
S is a dominating set in G. The minimum cardinality among dominating
setsin G is called the domination number of G, and is denoted by ¥(G). The
concept of domination in graphs has historical roots in a chessboard prob-
lem - to find the minimum number of queens needed on a 8x8 chessboard
such that all squares are occupied or attacked by a queen. A consider-
able number of studies have been dedicated in obtaining variations of the
concept (see [16, 17, 19]). The authors in [13] cited over 75 variations of
domination and listed over 1,200 papers related to domination in graphs.

In [9], the geodetic domination in a graph is introduced. A geodetic set
which is at the same time a dominating set is called a geodetic dominating
set. A geodetic dominating set is also called a «yg-set. The minimum car-
dinality 7,(G) of a ~g-set set is called a geodetic domination number of G.
Any vg-set of cardinality ,(G) is called a minimum vg-set. The following
theorem is found in [9].

Theorem 1.1 [9] Let G be a connected graph of order n > 2. Then

(i) 74(G) = 2 if and only if there erists a geodetic set S = {u,v} such
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that dg(u,v) < 3.
(%) 74(G) = n if and only if G is the complete graph on n vertices.

(#3%) 74(G) = n — 1 if and only if there is a vertez v in G such that v is
adjacent to every other vertez of G and G — v is the union of at least
two complete graphs.

Inspired by the work of H. Escuardo et. al. [9], the present paper
introduces the monophonic domination in graphs. Some interesting rela-
tionships between the geodetic domination and monophonic domination in
graphs are known. The geodetic domination and monophonic domination
in the join, corona and composition of graphs are also characterized.

2 Monophonic domination

Any set S of vertices of a connected graph G is a monophonic dominating
set or a ym-set in G if S is both a monophonic set and a dominating set
in G. The minimum cardinality among all monophonic dominating sets
in G is called the monophonic domination number of G, and is denoted
by Ym(G). Any ym-set of cardinality v, (G) is called minimum v,,-set.
Clearly, max{m(G),7(G)} < ¥m(G) for all connected graphs G.

Let d denote the monophonic diameter of a connected graph G and
P = [u;,uy, ...,uq441] & monophonic diametral path, and let k = [‘%ﬁ]
Put A = {uy,u4, ...,ugk—2} if d is a multiple of 3, and put
A= {uy,uq, ..., U3(k—1)—2, Ud+1}, otherwise. Then S = (V(G) \ V(P))UA
is a monophonic dominating set in G. Thus
2d
(@ < V(@) - VP + k= v(E) - | 2.
In particular, ym(Pn) = [2£2] =n — | &].
Since geodetic dominating sets are themselves monophonic dominating
sets, Tm(G) < 74(G). Strict inequality in the preceding statement can be
verified by considering the cycle G = Cs on 5 vertices. In particular, since

every monophonic path in any tree T is actually a geodesic, v, (T) = v,(T).
See [9] for interesting results on geodetic domination in trees.

Lemma 2.1 Let G be a connected graph. Then Ext(G) C S for all
monophonic dominating sets S in G.

It follows from Lemma 2.1 that yn(K,) = n. If n > 3 and
G =K, +U;K,,, where j > 2 and }_;n; =n—1, then v»(G) =n—1.
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It is worth noting that statement (i2) in Theorem 1.1 actually holds
when n = 1, and it is necessary for statement (i%¢) that n > 3. The
following theorem follows from the preceding results and Theorem 1.1.

Theorem 2.2 Let G be a connected graph of order n > 2. Then

(i) ¥m(G) = 2 if and only if there erists a monophonic set S = {u,v}
such that dg(u,v) < 3.

(%) Ym(G) = n if and only if G is the complete graph K.

(ii3) Ifn > 3, then ym(G) =n —1 if and only if G = K, + U;K,,,, where
j22and ¥ nj=n~-1

Corollary 2.3 Let G be a connected graph of order n > 1. Then

(2) Ym(G) = n if and only if 7,(G) =n.
(#9) Ifn > 3, then Yym(G) =n —1 if and only if v,(G) =n — 1.

3 Realization Problems

Theorem 3.1 Let a and b be positive integers with 2 < a < b. Then

(4) a and b are the domination and monophonic domination numbers,
respectively, of a connected graph G;

(1) a and b are the monophonic number and monophonic domination
number, respectively, of a connected graph G.

Proof: To prove (i), put n = 3a — 2, and let the path P, be given by
P, = |z1,%2,...,2Zn). Let G be the graph formed by adding to P,
(b — a) pendant edges zouj, j =1,2,...,b— a. The set {x2,zs,...,Z3k—-1,
.++sTp—2,Tx} is 2 minimum dominating set in G. Thus 7(G) = a. On the
other hand, the set {u;,Z1,%4...,Z3k—2,..,Zn:3=1,2,...,(b—a)} isa
minimum v,,-set in G. Thus, Y (G) = (b—a)+a=b.

To prove (i1), obtain a similar graph G with n = 3(b—a)+4 having (a—2)
pendant edges zou;, j = 1,2,...,a—2. Then yn(G)=(a—2)+(b—a+2)=b.
Since the set {u;,z1,z,:j=1,2,...,(a —2)} is a minimum monophonic
set, n(G) =(a—-2)+2=a. |

Theorem 3.2 For all positive integers d, k and n with 3 < d < k and

n>k+1+ |2, there exists a connected graph G such that |V(G)| = n,
diamy,(G) = d and 7,(G) = k.
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Proof: We consider three cases.

Case 1: Suppose that 3 =d < k. Thenn > k+3. Lett =n -k —1.
Let {z,y} and {u1,uo,...,u:} be the partite sets of the complete bipartite
K,,. Take G as the graph G; in Flgure 1 obtained by adding to Ky,
(k-1) pendant edges yv;, 7 = 1,2,. — 1. By Lemma 2.1, A = {'v‘7 :
i=12,. —1} C S for all 'y,,.-sets S in G. Since A is not a vy,,-set in
G, 'ym(G) > k One can easily verify that A U {z} is a y,,-set in G. Thus
Mm(G) =k, diamp(G) = 3 and |V(G)| =n.

Figure 1

Case 2: Suppose that 4 = d < k. Let t = n -k — 2, and let {z,y}
and {u1,us,...,u:} denote the partite sets of Kp;. Form G as the graph
Gz in Figure 1 by adding to K, the path [z,u,v,y] and (k — 2) pendant
edges yv;, § = 1,2,...,k — 2. Since {z,y,v; : j = 1,2,...,k -2} is a
Ym-set in G, ym(G) < k. Let S be a ym-set in G. Then |SN {z,u,v,y,u;:
Jj=1,2,...,t} > 2sothat with Lemma 2.1, |S] > k. Therefore, 7,(G) = k
diam,(G) =4 and |V(G)| =n.

Case 3: Now suppose that 5 < d < k. Let r = k — [§], and put
t =n—d—r > 1. Obtain the graph G as in Figure 2 from G in Figure 1 by
considering monophonic diametral path Piy) = [z1,22,...,%d, Tas1 = v;]
(G = 1,2,...,7). Put A = {z1,24, ""“’(sfg]—z)}' Then AU {v; :

Figure 2

Jj=12,...,v.} is a yp-set. Thus 74(G) < k. Let S be a minimum
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Ym-set in G. Then we have |SN {zy, 22, 23,24,u;:j=1,2,...,t} = 2.
Further, if P* = [z4,2s,...,2Z4,v;] ( = 1,2,...,7), then, by previous re-
mark, |SNV(P*)| > [§]. These results together with Lemma 2.1 yield
Ym(G) = 1+ [§] + (r — 1) = k. Therefore, Y (G) = k, diammn(G) = d and
V@) =@d+1)+(r—-1)+t=n. |

Theorem 3.3 For all positive integers d, k and = satisfying
1+ [fﬂ <k<dandn2>k+ [334], there exists a connected graph G
such that |V (G)| = n, diamn(G) = d and 7,(G) = k.

Proof: If d = 2, then k = 2. In this case we may take G = Kj (n_2). Sup-
pose that d > 3. Let ¢t = k — [$], and put 7 = n —d — t. Form the graph
G as the graph in Figure 3 by adding to path Piyy = [z1,%2,...,%a+1)
T paths [z2,uj,24], 7 = 1,2,...,7, and (t — 1) pendant edges zjv;,
i=12,...,(t — 1). Following the arguments used in Case 3 of the proof

Td Td+l
Figure 3
of Theorem 3.2, Y (G) =k, diamp,(G) =d and |V(G)| =n. |

Theorem 3.4 For every pair of positive integers k and n with2 < k < m,
there exists a connected graph G such that v, (G) = k and v4(G) = n.

Proof: By Theorem 2.2 and Corollary 2.3, we may take G = K, when
k = n. Suppose that k < n. We consider two cases:

Case 1: Suppose that k = 2. If n = 3, we take G = Cs. Then yn(G) =2
and v,(G) = 3. Suppose that n = 2+ for some positive integer r > 2. Let
G be the graph G, as in Figure 4. The set {u,v} is the unique y.-set, and
thus v, (G) = 2. Since the set {z,u;,v2,u3,v4,...,%r41} (When r is even)
or {z,u1,v2,u3,...,Ur41} (when r is odd) is a
Yg-set in G, 7(G) < r+2. Now, let § C V(G) be a yg-set in G. Be-
ing a geodetic set, for all j = 1,2,...,7+1, u; € S or v; € S. Since
{ujyv; : 5 =1,2,...,7+1} is not a dominating set in G, S contains one of
the vertices u, v and z. Thus |S| > r + 2. Therefore, 7,(G) > + 2.

Case 2. Suppose that k£ > 3, and n = k + r for some positive integer .
Suppose that r = 1, and let = denote a vertex in the cycle graph Cs. Take
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Urt2
r+2

Figure 4

G being the resulting graph after adding to Cs (k — 2) pendant edges zz;,
ji=1,2,...,k—2. On the other hand, if r > 2, form the graph G as the
graph Gz in Figure 4 by adding to the graph G; (k — 2) pendant edges
z;z,j=1,2,...,k—2, and the path [u, ur42,Vri2,v]. In any case, Lemma
2.1 implies that S contains all vertices z; for all monophonic dominating
sets S in G. In view of Case 1, 7m(G) = (kK —2) + 2 = k. Similarly,
1(G)=(k—-2)+r+2=n. [ ]

4 Join of graphs

The join of two graphs G and H is the graph G + H with vertex set
V(G) UV(H) and edge set E(G)U E(H)U {uv : u € V(G),u € V(H)}.
In [7), it is known that for noncomplete graphs G and H, the value of
9(G + H) is either 2, 3 or 4. In the same paper, characterization of graphs
G + H are given for each of these values. It can be readily verified that the
same characterizations hold if g(G + H) is replaced by v,(G + H). Since
Ym(G+H) < 74(G+ H), we also have 2 < 4,,(G+ H) < 4 for noncomplete
graphs G and H. In what immediately follows, we give characterizations
for graphs G + H with monophonic domination numbers 2, 3 or 4.

Recall that for connected graphs G' and H, the monophonic paths in
G + H consist of the monophonic paths in G, the monophonic paths in H,
the edges (u,v] where u € V(G) and v € V(H), the paths [u, w,v] with
w € V(H), u,v € V(G) and uwv ¢ E(G) (in case G is not complete), and
the paths [u, w,v] with w € V(G), u,v € V(H) and uv ¢ E(H) (in case H
is not complete) [11].

Lemma 4.1 If G is a noncomplete graph and S C V(G) is a Y, -set in G,
then S is @ ym-set in G + H for any connected graph H.

Lemma 4.2 Let G and H be connected graphs. If G is noncomplete and
S C V(G) is a monophonic set in G, then SU {v} is a yp-set in G+ H
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forallv e V(H).

Proof: Let S C V(G) be a monophonic set in G. Then V(G) C Je+x[S].
Further, if G is noncomplete, then S contains vertices x and y with
zy ¢ E(G). Hence V(H) C Jos+ulz,y] € Jo4+u[S]. This means that
S is a monophonic set in G+ H. That SU {v}, v € V(H), is dominating in
G+H follows from the fact that V(H)C Ng+x([S] and V(G)C Ngyg(v). B

Theorem 4.3 Let G and H be noncomplete connected graphs. Then
(i) Ym(G+ H) =2 if and only ym(G) =2 or y(H) = 2.

(%) If m(G) # 2 and m(H) # 2, then ym(G + H) = 3 if and only if
Ym(G) =3 or v (H) =3.

(i43) If m(G) = 2, then yu(G + H) = 3 if and only if ym(G) > 2 and
TYm(H) > 2.

(iv) Ym(G + H) = 4 if and only if m(G) 2 3, m(H) 2 3, ym(G) > 3 and
m(H) > 3.

Proof: (i) is clear. To prove (i), assume m(G) # 2 and m(H) # 2. In
view of Lemma 4.1, if yn(G) = 3 or ym(H) = 3, then y»(G + H) < 3.
If yn(G + H) = 2, then 7 (G) = 2 or ym(H) = 2, by (i). Consequently,
m(G) = 2 or m(H) = 2, a contradiction. Thus 1,(G + H) = 3. Con-
versely, suppose that 7,,(G + H) = 3, and {v,v,w} a ym-set in G + H.
Suppose, further, that u,v € V(G) and w € V(H). Then uv ¢ E(G) and,
as pointed out earlier, V(G) \ {u,v} C Jg[u,v]. This means that {u,v}
is a monophonic set in G. Thus, m(G) = 2, a contradiction. Similarly,
[V(H) N {u,v,w}| # 2. Therefore, either {u,v,w} € V(G) or
{u,v,w} € V(H). Since the vertices u, v and w are arbitrary, 7»(G) =3
or ym(H) =3.

To verify (#ii), assume m(G) = 2. By Lemma 4.2, v,(G+ H) <3. In
view of result (i), if ym(G) > 2 and vy, (H) > 2, then 4 (G + H) = 3. The
converse is clear.

Lastly, we will prove (iv). Suppose that y»(G + H) = 4. By Lemma
4.1, ym(G) > 3 and yn(H) > 3. Further, by result (iii), m(G) > 2 and
m(H) > 2. Conversely, by result (ii), vm(G + H) # 3. Result (i) also
implies that v, (G + H) # 2. The conclusion follows. [ ]

Now, we turn to the geodetic domination number and monophonic dom-
ination number of the join G + K.

Theorem 4.4 Let G be a noncomplete graph andp > 1. Then every geode-
tic set in G + K, is dominating in G + K.
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Proof: Let S C V(G+K,) be a geodetic set in G+ K. Then SNV(G) # 0,
and V(Kp) € Ngik,[SNV(G)] € Neyk,[S). Let z € V(G) \ S. There
exist u,v € S such that x € Ig4k,[u,v]. Necessarily, u,v € V(G). Since
de+k,(u,v) = 2, [u,z,v] is a u-v geodesic in G + K, consequently in G.
In particular, uz € E(G). Thus, = € Ng+k,[S]. Since z is arbitrary,
V(G) € Ng+k,[S]. Therefore, S is a dominating set in G + K. [

Corollary 4.5 For any noncomplete graph G and p > 1,
79(G + Kp) = 9(G + Kp).

Lemma 4.6 Let G be a noncomplete graph and p > 1. If S C V(G + Kp)
is @ Ym-set in G + Kp, then SNV(G) is a monophonic set in G.

Proof: Let S C V(G +K)) be a y-set in G+ K,,. Let x € V(G)\ S. There
exist u,v € S such that z lies in a u-v monophonic path P in G + K. This
implies that V(P) C V(G). Thus z € Jg[S N V(G)]. Since z is arbitrary,
SNV(G) is a monophonic set in G. |

Theorem 4.7 If G is a noncomplete graph and p > 1, then
m(G) £ (G + K,) <m(G) + 1.
More precisely,

(?) 1m(G + Kp) = m(G) if and only if G has a minimum monophonic
set which is dominating in G;

(%) Ym(G + Kp) = m(G) + 1 if and only if every minimum monophonic
set in G is not dominating in G.

Proof: The right-hand inequality follows from Lemma 4.2, while the left-
hand inequality follows from Lemma 4.6. Suppose that ym(G+Kp)=m(G).
Suppose, further, that G' has no minimum monophonic set which is dom-
inating in G. Let S be a minimum ym-set in G + K,. By Lemma 4.6,
SNV(G) is a monophonic set in G. If SCV/(G), then S is not a minimum
monophonic set in G. Hence m(G) <|S|=7m (G + K}), contrary to our as-
sumption. Therefore, SNV (G)# S and m(G)<|SNV(G)|<|S|=ym(G+Kp).
Again, this gives a contradiction. Accordingly, G has a minimum mono-
phonic set which is dominating in G. The converse of (%) is clear. Statement
in (iz) follows immediately from (i) and the above inequality. |
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5 Corona of graphs

The corona G o H of graphs G and H is the graph obtained by taking one
copy of G and |V'(G)| copies of H, and then joining the ith vertex of G to
every vertex in the ith copy of H. It is customary to denote by H, that
copy of H whose vertices are adjoined with the vertex v of G. In effect,
G o H is composed of the subgraphs H, + v joined together by the edges of
G. If G is the trivial graph, then Go H = H + K;.

Throughout this section, G and H are connected graphs.

Theorem 5.1 Let G be nontrivial. Then S C V(G o H) is a minimum
vg-set in Go H if and only if for every v € V(G), SNV (H,) is a minimum
2-path closure absorbing set in H, and S = Uyev(c)(S NV (H,)).

Proof: First, we show that if S, C V(H,) is a 2-path closure absorbing
set in H, for each v € V(G), then S = U,ev(g)Sy is a 7g-set in Go H.
For each v € V(G), v € Igog[Sy U Sy, for all u € V(G) \ {v}. Thus S
is a geodetic set in Go H. Let u € V(Go H)\ S. If v € V(G), then
u € Ngor|[Su] € Ngou|[S]. Suppose that u € V(H,). Since S, is a 2-path
closure absorbing set in H,, there exist z,y € S, such that dy, (z,y) = 2
and u € Iy, [z,y]. Thus, u € Ngon[z] € Neor[Sy] € Ngor[S]. Therefore,
S = Uyev(c)Sv is a yg-set in GoH.

Next, we show that if S C V(G o H) is a yg-set in Go H, then SNV (H,)
is a 2-path closure absorbing set in H, for all v € V(G). Let v € V(G),
and let w € V(H,) \ (SN V(H,)). Since S is a geodetic set in G o H, there
exist £,y € S such that u € Igon(r,y]. Necessarily, z,y € SN V(H,).
Since zv,yv € E(G o H), dy,(z,y) = dgon(z,y) = 2. Thus, SNV (H,) is
a 2-path closure absorbing set in H,,.

Now, suppose that S is a minimum <,-set in Go H. For each v € V(G),
let S, = SNV(H,). By the above results, $* = U,ev(c)Sy is a vg-set in
GoH. If S is a minimum +y,-set in G o H, then S = S*. Suppose that for
some vp € V(G), Ty, C V(Hy,) is a minimum 2-path closure absorbing set
in H,. By the first result, (S\S,,)UT, is a 7g-set in Go H. The definition
of S implies that |Ty,| = |Sy,]- This proves that S, is a minimum 2-path
closure absorbing set in H, for all v € V(G). Conversely, suppose that
S = Uyev(c)(S N V(H,)), where SNV (H,) is 2 minimum 2-path closure
absorbing set in H,. Then S is a yg-set in Go H. Let T C V(G o H) be
a 7,-set in G o H. By the second result above, |SNV(H,)| < |T NV (H,)|
for all v € V(G). Since T is arbitray, |S| = 74(G o H). This completes the
proof of the theorem. |

Corollary 5.2 If G is nontrivial, then v4(G o H) = p(H) - |V(G)|. In



particular, v4(G o K,,) = p|V(G)|.

Theorem 5.3 Let G be a nontrivial graph and H a noncomplete graph, and
let SC V(GoH). Then S is a Ym-set in Go H if and only if SNV (H, +v)
18 @ Ym-set in Hy + v for allv € V(G).

Proof: Let S be a yy,-set in Go H. Since H is noncomplete, for each
v € V(G), there exist z,,5, € SN V(H,) such that dg,(zv, %) > 2.
Let v € V(G), and let S, = SN V(H, + v). We first claim that S,
is a monophonic set in H, + v. Let v € V(H, +v)\ S,. If u = v,
then we take x,,y, € S, N V(H,) such that dy,(zy,y,) = 2. Then
u € JH,40[Tv, y0] € JH,+0[Sv]. Suppose that u # v. Since S is a mono-
phonic set in Go H, there exist x,y € S such that « € Jgog[z,y). Necessar-
ily z,y € S, so that « € Jy,44[Sy). This proves that S, is a monophonic
set in H, + v. Second, we show that S, is dominating in H, + v. Suppose
that v € §,. Then V(H,) C Ny, +v[v] C Ny, +4[Ss). Suppose that v ¢ S,.
Clearly, v € Ny, 44[Sy]. Let u € V(H,)\ S,. There exists w € S such that
u € Ngop[w]. Since ux ¢ E(Go H) for all z € V(G) \ {v}, w € V(H,).
Thus u € Ny, [w] € Ny, [Sy). This means that S, is a dominating set in
H, +v.

Conversely, let €V (GoH)\S. Then for some ve V(G), ue V(H,+v)\S,.
There exist z,y € S, = SNV (H,+v) such that u € Jy, 4,[z,y] C Jeor|[S).
This proves that S is a geodetic set in Go H. Note also that the domination
of S, in H, + v implies the existence of z € S, such that u € Ny, [z
Since Ny, 4v(7] = Neon|z], S is a dominating set in Go H. |

Theorem 5.3 and Theorem 4.7 yield
Corollary 5.4 If G is nontrivial and H is noncomplete, then
m(H) - |V(G)| £ 1m(Go H) < (1+m(H)) - |V(G)].
Corollary 5.5 If G is nontrivial and H is noncomplete, then

(2) Ym(G o H) = (1 + m(H))|V(G))] if and only if H has no minimum
monophonic set that is dominating.

(#) Ym(G o H) = m(H) |V(G)| if and only if H has a minimum mono-
phonic set that is dominating.

6 Composition of graphs

The composition G[H] of two connected graphs G and H is the graph
with V(G[H]) = V(G) x V(H) and (u,v)(«',v') € E(G[H]) if and only if

23



either uu’ € E(G) or u = ¢/ and vv' € E(H). Given S C V(G[H]), the
G-projection Sg of S is the set of all first components of S. That is,

Sg={zx € V(G):(z,y) € S for somey € V(H)}.

Similar definition is given for Sy. For any A C V(G), we define
A° = AN Ng(A), A% = AnIg(A) and A™ = AN Je(A).

Theorem 14 in {10] can be re-stated as follows:

Theorem 6.1 [10] In the composition G[K,], where G is connected and
p>2, S C V(G[K,]) is a monophonic set in G[K,)] if and only if

§=[(A\A") x V(Kp) VT, 1)

where A C V(G) is a monophonic set in G and Tg = A™.

It should be understood that, in Theorem 6.1, T'# if and only if A™ #0.
Theorem 6.1 remains true if “monophonic” and A™ are simultaneously
replaced by “geodetic” and A9, respectively (see [2]).

Theorem 6.2 Let G be a connected noncomplete graph and p>2. ThenS
in Theorem 6.1 is dominating inG[K,|if and only if A is dominating in G.

Proof: Suppose that S is dominating in G[K,]. Let z € V(G) \ A. Take
any y € V(Kp). There exists (u,v) € § such that (z,y) € Ngik,[(x,v)].
This means that zu € E(G). Since u € Sg = A, £ € Ng[A], and so A
is dominating in G. Conversely, suppose that A is dominating in G. Let
(z,y) € V(G[Kp)) \ S. Suppose that z ¢ A. There exists u« € A such
that z € Ng[u]. If u ¢ A™, then (u,y) € S and (z,y) € Ngix,)[(%,y)]-
If u € A™ and (u,v) € T for some v € V(Kp), then (u,v) € S and
(z,y) € Ngx,)[(u,v)]. Suppose that z € A. Then z € A™ but (z,y) ¢ T.
Pick w € V(K}) such that (z,w) € T. Then (z,y) € Ngix,}[(z, w))- [ ]

Corollary 6.3 For any connected noncomplete graph G and p > 2,
79(G[Kp)) = min{p|A| — (p — 1) |A%| : Ais a yg—set in G}, and
¥m(G|Kp)) = min{p|A4| — (p — 1) |A™"| : Ais a ym—set in G}.

Proof: If A9 # @, choose any v € V(K,) and put T = A9 x {v}. This
establishes the formula for 7,(G[Kp]). Similar arguments will establish the
second result. |

Now we turn to the composition K,[G].



Theorem 6.4 If G is a connected noncomplete graph and p > 2, then

2 <7 (KplG)) < 4.

Proof: Let u; and uy be distinct vertices in V(K}), and let v;,v; € V(G)
such that dg(v1,v2) = 2. Put S = {(u1,v1), (1, v2), (u2,v1), (u2,v2)}, and
suppose that (z,y) ¢ S. If z # wu, then (z,y)(u,v),
(xiy)(uls"’?) € E(KP[G]) so that (:B, y) € NK,[GI[S] and
(z,9) € Ik, i6)[(#1,%1), (u1,v3)] € Ig,[c)S]. Suppose that z = u;. Then
Tz # up, and we have (z,y) € NKp[G] [(uz,vl)] - NK,,[G][S] and
(z,y) € Ik, (g)[(u2, v1), (u2,v2)] C Ik, c)[S]- Thus, S is a yg-set in Kp[G),
and the conclusion follows immediately. [ ]

Theorem 6.5 Let G be a connected noncomplete graph and p > 2. Then

(2) 719(Kp[G]) = 2 if and only if G has a minimum geodetic set {vy,va}
with dG('Ul,‘!)g) =2.

(#5) v9(Kp[G)) = 3 if and only if there exists A C V(G) with |A| =3 and
A is a 2-path closure absorbing in G.

Proof: Let § = {(u1,v1), (u2,v2)} be a vg-set in Kp[G]. Then u; = u; and
nv, € E(G). Let u = uj;, and let y € V(G) \ {’Ul,’vz}. Then
(u,9) € Ik, ig)[(u,v1), (u,v2)]. Since diam(K,[G]) = 2, v1y,v2y € E(G).
Thus, dg(v1,v2) = 2 and y € Ig[vy,v2]. Therefore, {v1,vs} is a geodetic
set in G, and so g(G) = 2. Conversely, suppose that {vi,v2} is a geodetic
set in G with dg(v;,v2) = 2. Pick u € V(K}), and let S = {(u, 1), (u,v2)}.
We claim that S is a yg-set in K[G]. Let (z,y) € V(K[G])\ S. If z # v,
then zu € E(K}) so that (z,y) € Ik, ()[S] and (z,y) € Nk, (¢)[S]. Sup-
pose that = u. Then y # v, and y # va. Since {v1,v2} is a geodetic set
in G, y € Ig[v1,ve). Since dg(vy,v2) = 2, yv1,yv2 € E(G). Consequently,
(@, y)(w,n1), (z,y)(w,v2) € E(Kp[G]). Hence, (z,y) € Ik,c[S] and
(z,y) € Nk,6)[S]. Therefore, S is a yg-set in Kp[G] and +,(K,[G]) = 2.
This proves (z).

Suppose that v,(Kp[G]) = 3 and § = {(u1,v1), (uz,v2),(us,vs)} is
a 7g-set in K,[G]. First, we claim that u; = up = u3. Suppose that
uy # up. Since diam(K,[G)) = 2, V(K,[G]) = Ng, g)[(1,v1), (u3,v3)] or
V(K,|G]) = N, (g)[(ua,v2), (u3, vs)]. This means that {(u,v1), (us,vs)}
or {(uz,v2),(u3,v3)} is a yg-set in K,[G], a contradiction. Denote by u
the vertex u; = uy = u3, and let A = {v;,v3,v3}. Let y € V(G)\ A. In
particular, (u,y) ¢ S. Assume that (u,y) € Ik, (g)[(%, v1), (4,v2)]. Since
diam(K,(G)) = 2, (u,v1)(u,y), (v,v2)(4,y) € E(K,[G]). This means that
vy, v2y € E(G). Consequently, dg(v1,v2) = 2 and y € Ig[v1, v2] C Ig[T].



Since y is arbitrary, A is a 2-path closure absorbing set in G. Conversely,
suppose that G has a geodetic set A = {v;,v3,va} which is 2-path closure
absorbing in G. Pick u € V(Kp), and let § = {(u,v1), (u, v2), (u,v3)}. Let
(z,y) € V(Kp[G])\S. Suppose that z # u. Since G is noncomplete, we may
assume that wvvo ¢ E(G). Then  (z,y)(u,v1),
(xsy)(u!v?) € E(KP[G]) Thus (a:'! y) € I [G][(u7”l):(u’ 02)] c IK,[G][S]
and, in particular, (z,y) € N, gl(u, vl)f C Nk,g)[S]). Now suppose
that £ = u. Then y € V(G) \ A. Since A is 2-path absorbing in G,
we may assume that dg(vi,v3) = 2 and y € Iglv,vp]. This means
that vy, voy € E(G) so that (u,v)(z,v), (u,v2)(z,y) € E(Kp[G]). Thus
(l‘,’y) € IKP[G][('U'$U1)7(U,U2)] - IK,[G][S] and, in Pal’tiCUIara
(z,¥) € Nk,ig)l(u,v1)] € Nk,c)[S]. Therefore, S is a v,-set in K[G].
In view of Theorem 6.5(3), 74(Kp[G]) = 3. This establishes (iz) [ |

In view of Theorem 6.4, we also have 2 < ¥y (Kp[G]) < 4 for any
connected noncomplete graph G and p > 2.

Theorem 6.6 Let G be a connected noncomplete graph and p > 2. Then

() Ym(KplG)) = 2 if and only if ym(G) = 2.
(#1) Ym(Kp[G]) = 3 if and only if Y (G) = 3 or m(G) = 2 but ym(G) # 2.

Proof: Let us prove (i). If ym(Kp[G]) = 2, then & ym-set in K,[G] is of the
foom S = {(u,v1),(w,v2)}, where viva ¢ E(G). Let
y € V(G)\ {v1,v2}. Then (u,y) € Jk,ig)[(2,v1), (u,v2)]. Note that if
[(xl.: yl)) (321 y2): teey (xn—l, yn—1)1 (xn, yn)] isa (ur vl)'(uv ‘02) monophonic
path in K,[G], then v = =z for all & = 1,2,...,n. Consequently,
[¥1,¥2,---,¥n) is a v1-v2 monophonic path. Thus y € Jg[v1,v2]. Since
(u,y) € Nk, c[(u, v1), (2, v2)], We may assume that (u,y)(u, 1) € E(K[G]).
This means that yv; € E(G) and so y € Ng[v1]. This means that {v1,v2}
is a y-set in G. Therefore, ¥, (G) = 2. The converse follows from the fact
that if {v;,v2} C V(G) is a ym-set in G, then {(u,v1),(u,v2)} is & ym-set
in K,[G] for all u € V(Kn).

Now, we will prove (ii). Suppose that § = {(u1,v2), (42, v2), (u3,v3)} is
a minimum ,,-set in K, [G)]. If the vertices u;, uz and u3 are distinct in K,
then Jx cj[S] =S, a contradiction. Let u; =up =u. Suppose that uz # u.
If viv2 € E(G), then Jk,(g)[S] = S, a contradiction. Thus dg(v1,v2)2>2.
We claim that Jk )((u, v1), (4, v2)]=V(Kp[G]). Clearly, if z # u, then
(z,9) € Jk,jc)[(u,v1), (1, v2)] for all y € V(G). On the other hand, since
(u,v1)(u3,v3), (u, v2)(us, vs) € E(Kp[G]) and S is a monophonic set in
K,(G), (w,y) € Ik, 1c9l(w, v1), (4, v2)] for all y € V(G). This establishes the
claim, and {(u,v), (u,v2)} is a monophonic set in K,[G]. Following previ-
ous arguments, {vy,v2} is a monophonic set in G. Thus m(G) = 2. That
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Tm(G) # 2 follows from Theorem 6.6(i). Now, suppose that uz = u. Let
y € V(G) \ {v1,vs,v3}. Since (u,y) € Jk,iq[S), v € Je[{v1,v2,v3}]. Thus
{v1,v2,v3} is a monophonic set in G. Moreover, since (u,y) € N, K,(c)1S],
y € Ng[{v1,v2,v3}]. This implies that {v;,v,v3} is a y-set in G. In view
of Theorem 6.6(%), v (G) = 3.

Conversely, if {v1,v2,v3} is 8 Ym-set in G, then {(u,v1), (u, v2), (¥,v3)}
is & yy-set in K,[G] for any u € V(K},). In view of Theorem 6.6(3), if
Ym(G) = 3, then v (Kp[G]) = 3. Suppose that m(G) = 2, and let
{v1,v2} be a monophonic set in G. Pick distinct vertices u, w € V(Kp), and
put § = {(u,v1), (u,va), (w,v1)}. Then V(Kp{Gl) € Jicicy[(uv1), (urv2)]
Note also that V(K[G]) C Nk, (g)[(%,v1), (w,v1)]. Thus S is a ym-set in
K,[G]. Because v,(G) # 2, Theorem 6.6(i) implies that v, (K,[G]) # 2.
Therefore, vm (Kp[G]) = 3. [ ]

Finally, we consider the composition G[H|, where G is any graph and H
is noncomplete. It is easy to verify that if S C V(G[H]) is a dominating set
in G[H], then S¢ is a dominating set in G. Moreover, for each u € A\ A°,
T, ={y € V(H) : (u,y) € S} is dominating in H. However, it does not
follow that if S is a geodetic set in G[H], then S¢ is a geodetic set in
G. Consider, for example, the composition P3[P;] as in Figure 4, with wij
denoting the vertex (v;,u;) in P3[Ps]. The set S = {(v2, 1), (v2,u3)} is

Figure 4: P3[P;]

both a geodetic set and a dominating set in P3[P;), but Sp, = {v2} is not
a geodetic set in Ps.

The following lemma is usefull for the next results.

Lemma 6.7 [10] Let G be any graph and H a noncomplete graph. If
P = [(u,v1), (u2,v2),...,(un,vn)], where n > 2, is a monophonic path
in G[H], then we have the following possibilities:

(3) If thew;’s are dinctinct, then [uy, uy .. ., uy] isa monophonic path inG.
(23) If the u;’s are equal, then [vy,vy...,vy] is @ monophonic path in H.

(#43) If the u;’s are not distinct and not all equal, then n = 3.
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If P in Lemma 6.7 is a geodesic in G[H] and the u;’s are distinct, then
[ur, ug ..., us] is & geodesic in G. On the other hand, if the u;’s are all
equal, then n = 3 and [v1, v, v3) is a geodesic in H.

Lemma 6.8 Let G be a nontrivial graph and H a noncomplete graph,
and S C G[H]. If S is a geodetic (resp. monophonic) set in G[H|, then
S =Uyca ({u} xT.,), where ACV(G) and T, = {y € V(H) : (u,y) € S}
satisfying the following:

(1) If z € V(G) \ Ig[A] (resp. =z € V(G)\ Jg|4] ), then there exists
u € A such that zu € E(G) and {z} x V(H) C Igm[{u} x T] (resp.
{2} x V(H) C Jopml{u} x Tu).

(i1) For each u € A\ A9 (resp. v € A\ A™), T, is a 2-path closure
absorbing (resp. monophonic dominating) set in H.

Proof: Let A =S¢. Let x € V(G) \ Ig|A4]. Let y € V(H). Then (x,y) lies
on a geodesic P=[(u1,¥1),(u2,¥2), - - ,(tn,¥n)], where (u1,1), (¢n,yn)ES.
Since = ¢ Ig[A], the vertices u;,u,...,un should not be distinct in G.
Consequently, n = 3, u) = uz = u and = = ua. This means that uz € E(G)
and (z,y) € Igiml(w, 1), (% ¥3)] € Igim[{u} x Tu]- The conclusion in (¢)
follows from the arbitrary nature of y.

Let uc A\A9, and let y€ V(H)\Ty.. Then (u,y) lies in a (u1,v1)-(un,vn)
geodesic P=[(u1,v1),(u2,v2), .. .,(tn,vn)] in G[H] with (u1,v1),(un,vn) €S.
Since u ¢ A?, n = 3, dy(v1,v2) = 2 and y € Ig[vy,v2]. This means that
T, is a 2-path closure absorbing set in H.

The monophonic counterpart is done similarly. B

In Lemma 6.8(z), it is necessary that uz € E(G). Under the same
condition, for each z € V(G) \ Ig[A] (resp. for each z € V(G) \ Jg[Al]),
pick exactly one u € A such that uz € E(G) and denote by A9 (resp. A™)
the set of all such u’s.

Theorem 6.9 Let H be a noncomplete graph. Then for any nontrivial
graph G,
v(G[H]) = min{}; - pa(H) + o1 + 2|A?| : A is dominating in G}, and
TYm(G[H]) 2 min{Ag - Ym(H) + 02 + 2|A™| : A is dominating in G},

where Ay = |A| — |A° U A% U A9], Ay = |A| — |A° U A™ U A7,
oy = |(A° U A9)\ A9| and o = |(A° U A™) \ A™|.



Proof: Let S C V(G[H]) be a v,(G[H]). Then S = Uye4 ({u} x T.,) , where
A=Sgand T, = {y € V(H) : (u,y) € S} satisfying the the conditions in
Lemma 6.8. Property (ii) of Lemma 6.8 yields the inequality

| Uneay(acuasudsy ({u} X Tu) | 2 A1 - p2(H).

By property (i) in Lemma 6.8, we may assume that in choosing u € A9,
{z} x V(H) C Igiz[{x} x T,). This means that

[Useacuaoude ({u} X Tu)| 2 01 + 2| A9).

This establishes the first inequality in the theorem.
The second inequality can be done using parallel arguments. |
Let us revisit the graph P3[Ps] in Figure 5. Since {wg;, w3} is a y,-set in
P3| Ps], v4(P3[Ps]) = 2. On the other hand, the estimate given in Theorem
6.9 has value 2 for this particular graph and is attained when A° = A9 = §)
and A9 = A. This shows that such lower bound is sharp.

Theorem 6.10 Let G be a nontrivial graph and H a noncomplete graph,
and let A C V(G) be a dominating set in G. For eachu € A, letT, C V(H)
be such that the following hold:

(?) For each u € A\ A°, T, is a 2-path closure absorbing set in H;

(#) For each u € A°, there exist w,z € Ty, such that dy(w,z) > 2.
Then S = Uyea ({u} X Ty,) is a v,-set in G[H|.

Proof: Let (z,y) € V(G[H]) \ S. Suppose that z ¢ A. Either z € Ig[A] or
z ¢ Ig[A]. If z € Ig[A] and z lies in a z;-z, geodesic [z}, 3, .. ., T,] With
Z1,Zn € A, then (z,y) lies in the geodesic [(z1,11), (z2,¥2),-- -, (ZTn,Yn))
for any y1, 2, ..., yn € V(H) with (z1,%1),(Zn,¥n) € S. This means
that (z,y) € Igm[S]. Suppose that z ¢ Ig[A]. Since A is dominating
in G, there exists v € A such that zv € E(G). Conditions (¢) and (i)
guarantee the existence of 2;,22 € T, such that dy(z;,22) > 2. (Note in
here that since H is noncomplete, if v ¢ A°, then T}, being a geodetic set,
contains nonadjacent vertices.) Then (z,y) € Ig[(v, 21), (v, 22)]. Now,
suppose that € A. Then y ¢ T,. If z ¢ A°, then condition (i) implies the
existence of vertices z),z; € T such that dy (2, 22) =2 and y € Iy[z, z2].
Clearly, (z,21), (z,22) € S and (z,y) € Igim(z, 21), (z, 22)] € Igm[S]. On
the other hand, if x € A° and u € A such that zu € E(G), and if 2,2, € T,
are such that dg(z1,22) > 2, then (2,y) € Igim[(u, 21), (u, 22)] € Igm)[S].
Indeed, S is a geodetic set in G[H].
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To show that S is dominating in G[H}, let (z,y) € V(G[H])\S. Since A
is dominating in G, if = ¢ A, then there exists u € A such that zu € E(G).
Pick any v € T,. Then (u,v) € S and (z,y)(v,v) € E(G[H]) so that
(z,y) € Ng|S]. Suppose that z € A. Then y ¢ T,. Similarly as
above, if £ ¢ A°, then there exist 23,22 € T, such that dy(z1,22) = 2
and y € Iy[z1,22). In particular, (z,2z1) € § and z;y € E(H) so that
(z,4) € Ngpyl(z, 21)] € Ngpm)[S]- On the other hand, ifz € A°andu € A
such that zu € E(G), and if z € Ty, then (z,y) € Ng{(u, 2)] € Nea [.S']
This shows that S is dominating in G[H].

Corollary 6.11 Let H be noncomplete and G a nontrivial graph. Then
v¢(G[H]) < min{|A4] p2(H) — |A°| (p2(H) — 2) : A is dominating in G}.

By revisiting again the composition P3[Ps] or considering the graph
Py[P,]) for n > 3, we can easily verify that the upperbound given in
Corollary 6.11 is sharp.

Parallel arguments will also establish the following results:

Theorem 6.12 Let G be a nontrivial graph and H a noncomplete graph,
and let A C V(G) be a dominating set inG. For eachu € A, let T, C V(H)
be such that the following hold:

(i) For eachue A\ A°, T, is a yyn-set in H;

(i) For each u € A°, there exist w,z € Ty, such that dg(w,2) > 2.
Then S = Uyea ({u} X T.) is @ Ym-set in G[H].
Corollary 6.13 Let H be noncomplete and G a nontrivial graph. Then
¥m(G[H)) £ min{|A| ym(H) = |A°| (Ym(H) — 2) : A is dominating in G}.
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