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Abstract

In this paper, we extend the study on packing complete graph
K, with 6-cycles. Mainly, the maximum packing of K, — L and a
leave are obtained where L is a vertex-disjoint union of cycles in K.
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1 Introduction

An H-decomposition of the graph G is a partition of E(G) such that
each element of the partition induces a subgraph isomorphic to H. In the
case where H is an m-cycle, such a decomposition is referred to as m-cycle
decomposition.

A packing of a graph G with 6-cycles (hexagons) is a partition of the
edge set of a subgraph P of G, each element of which induces a 6-cycle; the
remainder graph of this packing, also known as the leave, is the subgraph
G- P formed from G by removing the edges in P. If the remainder graph is
empty, we can get 6-cycle decomposition of the graph G. If the remainder
graph is minimum in size (that is, has the least number of edges among all
possible leaves of G), then the packing is called a maximum packing.

Hanani 7] showed the remainder graphs P for any maximum packing
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of K, with triangles are as follows:

[vimod6) [0 [1[2[3] 4] 5
|P F|O|F|0|F|Cs

F is a 1-factor, F} is an odd spanning forest with § + 1 edges (tripole),
and Cj is a cycle of length 4.

Results in H-decomposition of graph G date back to the nineteenth
century [9], but have received a lot of attention over the past 40 years.
There have been many results found on H-decompositions of G for various
graphs H and G, but mainly .on H-decompositions of K,. The graphs
H that have been of most interest are path [17], m-stars [18], m-cycles
(13, 8, 11], m-wheels [5] and m-nestings [5, 14]. Recently a paper by Alspach
. and Gavlas [2] and another by Sajna [15] settled the problem of finding the
values of v for which there exists an m-cycle system of K, and of K, — I,
where [ is a 1-factor. This can alternatively be viewed as a partial m-cycle
system in which the set of edges not in any m-cycles is either  or induces
a 1-factor respectively. These edges not in any m-cycle (or the subgraph
they induce) are called the leave L.

Continuing with the theme of finding graph decompositions of graphs
which are close to complete, one way to extend these results is to assume
L, the leave induces a 2-regular graph and find the necessary and sufficient
conditions for the existence of an m-cycle system of K, — E(L). This nat-
urally generalizes the previously stated results where the leave was empty.
In 1986, Colbourn and Rosa [4] used difference methods to find necessary
and sufficient conditions for the existence of a 3-cycle system of K, — E(L)
for any 2-regular graph of L. In 1966, Buchanan (3] solved this problem
for m = n, that is, for Hamilton decompositions of K, — E(L), by using
amalgamations. Fu and Rodger [6] using yet a third approach to this prob-
lem, namely induction, settled the existence problem for 4-cycle systems of
K, — E(L), for any 2-regular subgraph of K,. Leach and Rodger [10] have
found necessary and sufficient conditions for the existence of a Hamilton
decomposition of the complete bipartite graph K, with a 2-regular leave.
Recently, Ashe, Rodger and Fu found necessary and sufficient conditions
for the existence of a 6-cycle system of K, — E(L) for every 2-regular not
necessarily spanning subgraph L of K, [1].
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In this paper, we extend the results of Ashe, Rodger and Fu [1]. We
shall consider maximum hexagon packing of K, — L.

2. Small cases

A cycle of length ! is denoted by C; = (z1,%3, ..., z1). Let A be an m-set,
B be an n-set and AN B = . Let a complete bipartite graph with two
partite sets A and B be K4 g (Km,n). In order to prove our main result,
we need to solve the following small cases.

Lemma 2.1 Let G, = K{ye}.{yx ,yz,ys,:c;,:cz,zs}+K{y1,yg.y3.::1 ,zz.ms}_(yb Y2,
y3) — (21, %2,73), G2 = K{xnme,yc}»{m,uz.ys,tl,zz,wa} + K{m,yz,ya.-'cl,zz.ra}
- (Y1,92,93) = (21,%2,23) + 7123 + T42t — 217 — 7324 and Gz =
K. {va,ws,Za,%e .96} {y1,¥2,93,21,22,73)} T K {y1,v2,¥3,21,%2 .zs}"(ylv Y2, Y3)— (21,72, 23)
+ 2173 + T4t — T1 ¢ — T3T4 + Y193 + Ya¥s — Y1Ys — YaYa, then Gy, G2 and
G3 can be packed by 6-cycles with a 3-cycle as leave.
Proof. We give the proof by direct construction.

Gl = {(ys,yl,wl,ya,-"?z, y2)7 (1'2» yl’z31y2)$11y6)’ (z37y6ay3)}'

Go = {(v1, %4, Y2, T¢, Y3, Z3), (3, T4, T1, Y6, Y2, T2),(T3, T2, Y1, Y6, U3, T1),
(3, Y6, T2, Y1, T1, Y2),(T4, T2, T¢) }-

G3 = {(y2,¥5,¥3,%4, T1,23), (T1,Y5, T2, Y4, T3, ¥1),(Z3,Ys, Ya, T1, Y2, T¢),
(y2: Y4, Y1, %4,T¢, :52)! (22, T4,%2,Y6, Y1, y3)1 (y3a Tty Y1,%2, Y6, 121),(333, Ye,
ys)}- O

Lemma 2.2 Let G = (ey, ez, €3, €4, €5, €6,€7)+ K{el,ez.u},{yl V2.¥3,%1,72,73} T
K{yhm,ya,-'rl ,12.13}_(3’1: Y2, y3)—($1 1 T2, 1:3), Ge = (:L‘4, €3, €3, Tt, €5, €6, 67)+
K{y;,yg,yg,z; \T2,23} (yla Y2, y3) - (:L'l, Z2, 33)+K{x4,eg,zg},{y|,yz,ys,zl,zz,zg} +
T1Z3 + T4Ty — T1T¢ — T3x4 and G3 = (T4, Y4, Tt Y5, €1, €2, €3)+
K{ys,m 1Za,Tt,e1 H{v,¥2,93,21,22,23} +K{‘ll1 W2,¥3,%1 '1'2.1'3}_(1/1’ Y2, y3)-(x1’ T2, 23)
+ 2173 + T4Ty — T1 Ty — T3T4 + Y193 + Ya¥s — Y1Ys — YaYs, then Gy, G2 and
G5 can be packed respectively by 6-cycles with a 4-cycle as leave.
Proof. We give the proof by direct construction.

Gy = {(es,e5,€6,€7,€1,23), (€1, €2, €3, e4,Z2,92), (21,84, 43,23, Y2, €2),
(2,93, %1, €1, 41, €2), (23,1, %2, €1,Y3, €2), (V1,T1,Y2,€4)}-



GZ = {(24,82,83,1},1:3,5[2), (xt)35136$e7)z41z2)a (y1,$1,$4,$t,y2,e2),
(z1,93, %2, %1, T3, €2), (2, T1, T3, Y3, €2, T2), (T¢, Y3, Z4,91)}

Gs = {(ys, &1, €2, €3, T4, T1), (T4, Y4, T¢, Y3, €1, T2),(y2, ¥4, Y5, T3, T1, €1),
(z2, 91,23, Y2,%4, Tt), (3, Y3, T1, Ya, Y1, €1), (T3, Ya, T2, Ys, Y2, ¢ ), (3, %4, 1,
z1,Y2, %2),(2t, Y5, ¥3,91) }- a

Lemma 2.3 Let G; = (e, €3, €3, €4, €5,€6,€7,€8) +
K{el,ez.es}r{yl.yz.ya.xl.zz,zs} + K{y;,w,ya,ml,za,za} - (yl»y2,y3) - (:El,l'z,wg),
G2 = (e1,Z4, €3, €4, Tt, €6, €7, €8) + K3y 12.93,21,22,0a) — (Y1, Y2, ¥38) — (21, T2,
3'3) + K{e;.u,x.},{y;,yg,ya,z;,zz,:ca} + 1Z3 + T4Ty — T1T¢ — TaT4 and Gz =
(31 » T4, €3, €4,Tt, T5,Ys, 38)+ K{ys.y..,a:q,:che;},{y; \W2,¥3,%1,%2,23}
+ K{(ys y2.y8,21,22,23) — (Y1, Y2, ¥3) — (T1, T2, T3) + T1Z3+ T4 T — 1%, — T3 T4 +
Y3 + Y4Ys — Y1Ys — ¥aYa, then Gy, Go and G3 can be packed by 6-cycles
with a 5-cycle as leave.
Proof. We give the proof by direct construction.

G1 = {(es, es, €7, €5, €1,41), (€1, €2, €3, €4, €5,Y2), (31, €2, Y2, 71, Y3, T3),
(y3$ €1,Z1, 4,72, 35)1 (62! z,€s,23, €1, 312), (y3a €2, $3,y2,$2)}-

G2 = {(z1,e5,€7,8,€1,91), (€1,%4,€3,€4,%¢,¥2), (V1,%4,¥2, T1,Y3,T3),
(y3, €1, 21, Y1, T2, Tt), (T4, Y3, T2, Y2, T3, T¢), (T3, €1, %2, 24,%1)}

G3 = {(z¢, 75,95, €8,€1,91), (€1,2Z4, €3, €4, Tt,Y2),(Y1, T4, Y2, 1, Y3, T3),
(3, €1, 21, Y1,22, Tt), (T4, ¥3,%2,42,%3,%¢), (Y4, Y5, %1, 23, €1, T2),(Z3, Y5, T2,
T4,%1,Y4)s (Y3, Y5, Y2, Y4, 91)}- O

Lemma 2.4 L is a 2-regular subgraph of K,. Forv = 7,9, K, - L
can be packed by hexagons with leave L; if and only if |[E(K, — L)| = %
(mod 6) where forv=17,i=2,3,4,5andv=9,7i=1,23,4,5 L, =C;
or C3UCy, Lo =Cg or C3UCs or C4UCy and L; = C; for i = 3,4,5
respectively.
Proof. When v =7, K7 is defined on {z;|j € Z7}.

Fori = 2, K7 - (Zwaltx2)U(x3) 2:4’:7:5’:':6) = {(33)x07$4)$1125$z2)}u
{(zs,zo,xs,xl,xa) U (z2, :1:4,2}6)}.

K7— (0,71, T2, %3, %4, Ts, T6) = {(z0, T2, T4, Ts, T3, Z5) }U{(Z3, Z0, T4, T1)
U (1‘5,1‘1,326, :Cg)}.

For i = 3, K7—(z9, 21, z2)U(3, T4, z5) = {(23, Zo, Z4, Z1, Z6, T2), (Z5, Z1,
333,3:6,:04,.’1}2)} U {(:l)s,:vo,.’ts)}.

For i = 4, K7 — (29, 21, 25, 22, T¢) = {(Z0, Z2, T4, Ts, T3, T5), (T, Z1, T2,
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z3,24,25)} U {(z3, Zo, 24, 21)}.
For i = 5, K7 - ($3,$0, $4,Z1) = {(301 Z3, $4,$6,$3,$5), (36: z1,%2, 23,
z4,%5)} U {(z0, %1, 25,22, Z6)}.

When v = 9, Ky is defined on {z;|j € Zo}. Let § = {(z3, 4, Zs,Ts, Z2,
35)’ (221 T6y L1y T5yT7, xO), (3:613:3) z7,21,Ts, xO)’ (123, T8, Ts, 10,1?4,-’31)}-

For i = 1, then Ko — (z4, s, Z¢, 7, 28) = S U {(z0, 71, Z2, 23) U (z4,
‘.'62,227)}.

For i = 2, Kg — (%0, 21,22, 23) = S U {(24, 5, T6, T7,78) U (T4,
T2,%7)}.

For i = 3, Ky — (z0, 71, %2, £3, T4, T5, T6, 7, Z8) = {(22, T5, T8, T3,
37’:”4)7 (38)‘”2' 6, T3, xlaw‘l)a (35, 3, To, Te, 38’-”1)» (3?7,3‘5, Zo, T4, 6, 2:1)}
U{(z2,z0,27)}. Ko~ (0,21, 22,%3)U (24,5, Zs, 27, 28) = {(<3,Z4, %6, T3,
T3, 3:5), (m21 T6,T1,T5, T7, m0)1 (mﬂt z3,%7,%1,7T8, xO)! (3:3, T8, T5,T0, T4, .'L'l)}
U{(z4,z2,27)}. Kg— (20,21, 22)V(2Z3,Z4,Zs, %6, 2Z7,28) = {(8, Z0, %4, Z7,
z1,%s), (24, Ts, T3, Ts, T1, Z8), (T5, To, T3, T1, T4, T2), (T6, T2, T8, L5, T7, T0) }
U {(z2,27,73)}.

Fori= 4, Kg - (xo,xl,xg,a:s, Tq,Ts, xs,:c-,) = {(xo,x4,$3,$3,$s,$2),
(:L‘4,:L‘7, T2,Ts, T8, :Ba), (:'87, s, T1,%6, L0, 2?3), (.’B7,$8, To, 5,23, $1)} U {(xs,
T9,24, a:l)}. Kg - (2}0, r, xz)U(ms, T4, Ts5,Te, $L‘7) = {(xz,xs,xl,a:g,zs, 34),
(0, 4, 21, 27, T5, 23), (T7, X0, T6, T3, T8, Ta), (T8, T2, T6, T1, T5, To) } U {(z2,
11:5,:1,'8,.’1:7)}. Kg—(xo,xl,x2,$3)U(x4,$5,$5,$7) = {(xg,xl,mg,a:s,xg,:c4),
(7, T8, T5, Z0, Te, T1), (T5, T7, T3, T8, T0, T2), (T0, T4, Te, T8, T2, T7) } U {(24,
T3,Ts5,%1)}.

For i = 5, Kg — (%9, 21, 22) U (z3, Z4, T5, Te) = {(z5, %o, T4, T7, 1, Z3),
(z2, T6, 1, T8, To, Z3), (T3, Te, L0, T7, T2, 5), (T8, Z3, T7, Ts, Ta, T2) } U {(7,
$3,$4,$1,$5)}. Kg - (xo,xl,zg,wa,x4,x5,x6) = {(225,:1.‘0,024,537,:31,:123),
(4, T8, T3, %7, T5, T2), (28, T1, T4, Te, 7, T2), (T6, T1, T5, Ts, To, T3)} U {(z2,
Zo, :l?;,:l:s,(i:a)}. D

3. The Main Result

A tool that we will need is from a theorem by Sotteau [16]. Sotteau
proved a generalization of the following result. It is stated here for 6-cycle
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only.
Lemma 3.1 [16] There exists a 6-cycle system of K, if and only if:

1) a and b are even.

2) 6 divides a or b. and

3) min{a, b} > 4.

Next we need the following result which is proved by Ashe, Rodger and
Fu 1]
Lemma 3.2 [1] Let G be a vertex-disjoint union of cycles in the complete
graph K,. For each odd v > 7, there exists a 6-cycle system of K, — G if
and only if |E(X, — G)| = 0 (mod 6).
Lemma 3.3 For each 2-regular subgraph L of K, and an integer v, v > 6,
K, — L can be packed by hexagons with leave L; if and only if v is odd and
|E(K, — L)| = i (mod 6) where i =0,1,2,3,4,5. Here, Lo =9, L; =Cs
orC3UCy,Ly = CgorC3UCs0r C4UC;and L; = C; fori=3,4,5
respectively. And these hold if and only if v, E(L) are related as in Table

1.
Table 1

The number of edges required in L for |E(Ky - L)| = i (mod 6) when v is odd.

v 12k +1 12k +3 12k +5 12k +7 12k+9 12+ 11
|E(K, — L)|
=1 (mod 6),
|E(L)|(mod6) 5 2 3 2 5 0
E(K, - L)]
=2 (mod 6),
|E(L)|(mod6) 4 1 2 1 4 5
|E(K, - L)|
= 3 (mod 6),
|E(L)|(mod6) 3 0 1 0 3 4
IE(Ku - L)l
=4 (mod 6),
|E(L)|(mod6) 2 5 0 5 2 3
|E(K, — L)
=5 (mod 6),
|E(L)|(mod6) 1 4 5 4 1 2

Proof. Clearly once the edges in L are removed each vertex must have
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even degree in order for K, — L to be packed by hexagons with leave L;.
So v is odd and |E(K, — L)| =4 (mod 6).

Suppose v is odd and | E(K, — L)| = i (mod 6). Then |E(L)| = 251 —
i(mod 6) and thus the tablel can be given. O

With the above preparation, we are now in a position to prove our main

result. For convenience, we denote the vertex set of graph G by V(G), edge
set of G by E(G), the number of edges of G by |E(G)|. zy is an edge in a
graph with vertex = and y. The union of two graphs G; U G is denoted
by G; + Go.
Theorem 3.1 For each 2-regular subgraph L of K,, and an integer v, v > 6,
K, —L can be packed by 6-cycles with leave L; if and only if |E(K,—L)| = <
(mod 6) where i = 0,1,2,3,4,5. Here, Ly =9, L, = C;or C3UC; ,
Ly, = CgorC3UCs0or C4UCy and L; = C; for i = 3,4,5 respectively.
Proof. The necessity is obvious. We only need to prove the sufficiency.
Note that Lemma 3.2 is a special case when i = 0. Now we consider the
casesi = 1,2,3,4,5.

Note 1. It suffices to consider |E(L)| = v — 5. For otherwise, we can
add 6-cycles to enlarge the graph G and then find the packing.

Note 2. When |E(K, — L)| = i (mod 6) for i = 3, 4,5, we may assume
|E(L)| 2 v — 4. For otherwise, we may add an i-cycle to L and then use
Lemma 3.2 to obtain the result.

We give the proof by induction on v. When v = 7,9, we give the proof
in Lemma 2.4. Assume the assertion is true for smaller v, we shall prove
the assertion is true for v. For clearness, we divide the proof into four cases.

Case(1). |[E(K, — L)] = 1 (mod 6)

By Tablel and Note 1, we only consider v—1 > |E(L)| > v—5. For any
C =(zy,z2,...,2¢) € L and z9 € V(K, \ L), let L = L' + C. Furthermore,
C* = (20,1, ..,%t) = C + zoxy + ToTs — T17;. Let L2 = L! 4+ C*, then
L = L% - 2oz, — ToT¢ + 2124

SoK,-L
= (K, — L?) + zoz; + 20Tt — 7170

Since |E(K, — L?)| = 0 (mod 6), we can get 6-cycles collection T of
K, — L? by applying Lemma. 3.2.

(i) If there exists a 6-cycle in T which contains the edge zz; but not
contains the vertex zg, without lose generality, suppose the 6-cycle is Cg =
(71, T, Y1, 2,93, ¥2). We can get the leave (zy, 20, T¢, 1, ¥2,¥3, ¥4) from
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Ce + o1 + ZoZe — T12¢

(ii) If there exists a 6-cycle in T which contains the edge z,z, and the
vertex zo, without lose generality, suppose the 6-cycle is Cg = (1, s, 11, To,
y2,¥3). We can get the leave (y1, o, Z:) U (o, Y2, ¥y3, 1) from Cg + 2oz, +
Ty — T12¢.

Case(2). |E(K, — L)| = 2,3 (mod 6)

(i) If L contains two 3-cycles, let L = L' + C} + C2 where C} =
(%1,¥2,¥3) and C% = (z,,z2, 23), then we have K, — L = (K,—¢ — L!) +
Ko v-7+ K16 + (Kg — C} — C2) where K,_g — L is defined on V(K \
{yl)y2s Y3, T1, 22, 23})’ Kﬁ,v-—7 is defined on {yl,y2a Y3,T1,Z2, -’53} UV(K, \
{v1,¥2,y3, 1, T2, T3, €}), K ¢ is defined on {e} U {y1,y2,¥3, 21, 22,23} and
Kg — C} — C2 is defined on {y;,y2, ¥3, T1, T2, T3} respectively.

When |E(K, — L)] = 2 (mod 6), |E(Ky-s — L')] = 5 (mod 6), by
induction, we can get a collection T} of hexagons and a Cj as a leave.

When |E(K, — L)] = 3 (mod 6), |E(Ky-¢ — L')] = 0 (mod 6), by
induction, we can get a collection T} of hexagons.

By Lemma 3.2, we can get a collection T3 of hexagons from Kg,—7.
By Lemma 2.1, we can get a collection of hexagons T3 and a Cs from
K6+ (Ks — C3 — C3).

Thus K, - L =T1 UT, UT3 UC3 UCs when |E(K, — L)| = 2 (mod 6)
and

K, - L=TyUT,UT;3UC;3 when |E(K, — L)| = 3 (mod 6).

(ii) If L contains one 3-cycle and one t-cycle (¢ > 4), let L = L* +
C} + C; where C} = (y1,¥2,¥3) and C; = (z1,%2,%3,...,T¢). Further-
more, let L = L! + C} + C2% + z17; + 324 — 21273 — 242, Where L! =
(z4,%5,...,z¢) + L* and C} = (z1,22,73). Then we have K, — L =
(Ky—6— L)+ Ke,v—9 +[Ka,6 + (Ko — C} — C3) = 212 — 2374 + 7123 + 2421
where K,_g — L is defined on V(K \ {y1,¥2,¥3,T1,72,%3}), Kev—9 is
defined on {y1,¥2, ¥3, Z1, 22,23} U V(K, \ {¥1, ¥2,¥3, 21, %2, Z3, T4, Tt, €1}),
K¢ is defined on {z4,z¢,e1} U {1,2,8,21,22,23} and K¢ — C} — C% is
defined on {1,2,3,z;, 2,23} respectively.

When |[E(K, — L)| = 2 (mod 6), |E(Ky—¢ — L')] = 5 (mod 6), by
induction, we can get a collection T; of hexagons and a Cs as a leave.

When |E(K, — L)} = 3 (mod 6), E(K,—¢ — L') = 0 (mod 6), by
induction, we can get 6-cycle collection T7}.
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By Lemma, 3.2, we can get a collection T3 of hexagons from Kg,_7. By
Lemma 2.1, we can get a collection of hexagons and a C3 from K3 ¢+ (Kg —
C} — C3) — m13: ~ T374 + 7173 + T4t

Thus K, — L = Ty UT, UT3UC3UC5 when |E(K, — L)] = 2 (meod 6).

K,-L =T} UT,UT3UCj; when |E(K, — L)| = 3 (mod 6).

(iii) If L contains one I-cycle and one t-cycle ({,t > 4),let L = L*+C;+
C, where C; = (n1,92,¥3,...,y) and C; = (z1,x2, 3, ..., Z¢). Furthermore,
let L = L'+ C} +C} +y1y1 + yaya — Y193 — Yayi + T1T; + T3T4 — T133 — T4T¢
where L = (ya,¥s, ..., 0t) + (4, 5, ey Tt) + L*, C} = (31,2, 93) and C3 =
(z1,22,73). Then we have K, — L = (Ky—¢ — L)+ Kg y—11 + [K5,6+ (K6 —
C} - C3) = y1y1 — y3ys + V1Y + Yal — T13y — T3T4 + T1T3 + T47:) Where
K,_¢—L! is defined on V(K, \{y1,¥2,¥3, 21, %2, Z3}), K6 v—11 is defined on
{v1,v2,43, %1, 22,23} U V(K,, \ {%1,2,¥3, 21, T2, T3, T4, T1, €, 91, Y4}), K56
is defined on {y1,y4, Z4, 2:, €} U {v1,¥2,¥3, 71, 22,73} and Kg — C} — C% is
defined on {y1, y2, ¥3, Z1, 2, £3} respectively.

When |E(Ky — L)] = 2 (mod 6), |E(Ky—s — L')| = 5 (mod 6), by
induction, we can get 6-cycle collection 77 and a Cjs as a leave.

When |E(K, — L)] = 3 (mod 6), |E(Ky—s — L')| = 0 (mod 6), by
induction, we can get 6-cycle collection T7.

By Lemma 3.2, we can get a collection T> of hexagons from Ksy—11.
By Lemma 2.1, we can get a collection T3 of hexagons and a C; from
Ks 6+ (Ks—C3 —C3) — 11 — ysya + Y193 +Yayt — 121 — T3T4 + 2173 + Ta T

Thus K, ~ L =T UT, UT3UC3UCs when |E(K, — L)| = 2 (mod 6).

K,—L=T}UT,UT3U C3 when |E(K, — L)| = 3 (mod 6).

Case(3). |E(K, — L)| = 4 (mod 6)

(i) If L contains two 3-cycles, let L = L! + C} + C% where C} =
(¥1,92,¥3) and C? = (z;, 2, x3), then we have K, — L = (K,_s — L') +
Kgy-9 + K36 + (K¢ — C} — C2) where K,_g — L is defined on V(K, \
{yl,yz,ys,a:l, za, za}), Ks'v_g is defined on {yl,yz,yg,:z:l,zg,:zg} U V(Kv\
{1, y2,y3, 21, 22, T3, €1, €2, €4 }), K36 is defined on {es, e2, e4 }U{y1, ¥2, 3, 71,
T2,z3} and Kg — C} — C% is defined on {y1, y2, y3, 1,22, T3} respectively.
Since |E(Ky-¢ — L')] = 1 (mod 6), by induction, we can get a collec-
tion T of hexagons and a C7 as a leave. Without lose generality, let
C7 = (e1,e2,€3,€4,€5,€6,€7). By Lemma 3.2, we can get a collection 75
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of hexagons from Kg,—7. By Lemma 2.2, we can get a collection T3 of
hexagons and a C, from C; + K36+ (K¢ —C} — C2). Thus K, - L =
TV UT3UC,.

(i) If L contains one 3-cycle and one ¢-cycle (¢ > 4), let L = L*+C3+C;
where C} = (1, ¥2,¥s) and C; = (z1, 22,3, ..., Z:). Furthermore, let L =
L'+ C}+CE+ 2124+ 2324 — T173 — 2424 Where L = (z4, 5, ..., 2¢)+ L* and
C% = (z1,%2,z3). Then we have K,, — L = (Ky—g — L!) + Kg,y-0 + [K3,6 +
(Ke— C} — C2) — z17; — 2374 + 2123 + T47:) Wwhere K,_g — L} is defined on
V(K, \ {ylsy2s Y3, $1,£L'2,:L’3}), Ké,y—9 is defined on {yla Y2, Y3, T1, T2, T3} U
V(Ko \ {v1,92,¥3, 21, T2, 23,24, Z¢, €2}), K36 is defined on {z4,zs,e2} U
{1, 2,3,2:1,:52,:!:3} and Ks - Cg - C§ is defined on {yl,yg,y3,$1,$2,a:3}
respectively. Since |E(K,_g — L')| = 1 (mod 6), by induction, we can get
a collection Ty of hexagons and a C7 as a leave. Without lose generality,
let C7 = (z4,€2,e€3,21,€5,¢€6,€7). By Lemma 3.2, we can get a collection
T3 of hexagons from Kgy-7. By Lemma 2.2, we can get a collection T3 of
hexagons and a Cy from C7 + K3 g+ (K¢ — C3 — C3) — 212 — 2324 + T123 +
z4zy. Thus K, - L=TH1 U UT3 UCy.

(iii) If L contains one I-cycle and one t-cycle (I,t > 4),let L = L*+C; +
C; where C; = (y1,¥2,¥3, ..., y1) and C; = (1, Z2, X3, ..., 2¢). Furthermore,
let L= L'+ C} +C3 4+ 1y + ysya — Y1¥3 — Yayi + T1%¢ + T3T4 — T1T3 — T4 Ty
where L' = (ya,¥s, -y 4t) + (Z4,Zs, .., T¢) + L*, C} = (v1,%2,¥3) and
C?% = (z1,%3,73). Then we have K, — L = (K,—¢— L')+ Kg,y-11 +[Ks6 +
(Ks—C} —C3) — viy1 — Ysya + V1y3+ Yayi — T1¢ — T3T4 + T123 + T4T¢] where
K,,_s—-Ll is defined on V(Ku \{yl, Y2, Y3, Z1, T2, 183}), Ks,u_n is deﬁned on
{y1,92,93, 21,72, 23} U V(K \ {91, %2, 43, %1, T2, T3, T4, Tt, €1, 91, ¥ }), Ks 6
is defined on {y1, Y4, %4, %1, €1} U {91, Y2, y3, T1, T2, 73} and K¢ — Cj — C3 is
defined on {y1, y2, ¥3, 21, Z2, 3} respectively. Since E(K,_¢—L*) = 1 (mod
6), by induction, we can get a collection T} of hexagons and a C7 as a leave,
Without lose generality, let C7 = (x4, y4, Zi, 1, €1, €2, €3). By Lemma 3.2,
we can get a collection T5 of hexagons from Kg4—11. By Lemma 2.2, we
can get a collection T3 of hexagons and a C; from C; + K56+ (Ks — Cj —
C3) — 1y — y3ya + V193 + Yali — T1T¢ — T3T4 + T173 + T4Te. Thus K, — L
=TUT,UT3UCy.

Case(4). |E(K, — L)| = 5 (mod 6)
(i) If L contains two 3-cycles, let L = L + C} + C% where C} =
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(v1,¥2,¥3) and C§ = (z1,%3, £3), then we have K, — L = (Ky-6 — L') +
Ke,v—9 + K36 + (Ks — C3 — C%) where K,_¢ — L is defined on V(K, \
{v1,v2,y3, 71, %2, 23}), Ko -9 is defined on {y1,y2, 3,21, 22, 23} U V(Ko \
{v1,v2,y3, 21, T2, T3, €1, €2, €5 }), K3 6 is defined on {e,, e3, es}U{v1, 2, ¥3, 21,
T2,73} and K¢ — C} — C2 is defined on {y1,y2,¥s,Z1, 2, z3} respectively.
Since E(K,—¢ — L') = 2 (mod 6), by induction, we can get a collec-
tion T of hexagons and a Cg as a leave. Without lose generality, let
Cs = (e1,€2,€3,€4,65,€6,€7,€3). By Lemma 3.2, we can get a collection
T> of hexagons from Kg,—o. By Lemma 2.3, we can get a collection T3
of hexagons and a Cs from Cs + K36 + (K¢ — C} — C2). Thus K, — L =
TTUuTh,UT3UCs.

(ii) If L contains one 3-cycle and one t-cycle (t > 4),let L = L*+C}+C;
where C} = (y1,%,¥s) and C; = (21, Z2,Z3,...,%;). Furthermore, let L =
L'+4+C}+C%+212: + T334 — 7173 — 247 Where L = (74,25, ..., 2:) +L* and
C% = (z1,%2,23). Then we have K, — L = (K,—¢ — L') + K¢ y—o + [K3,6 +
(Kg — C} — C2) — x174 — 2374 + 2123 + T47¢] where K,_¢— L? is defined on
V(Ko \ {v1,¥2,¥3, 1, T2, 23}), Ko,v—0 is defined on {y1,2, ys, z1,Z2,23} U
V(Ku \ {¥1,¥2,¥3, 71, T2, %3, 4, 71, €1}), K3 is defined on {z4,7¢,€1} U
{yls Y2,Y3, T1, .2'2,3‘3} and Kg "Cé - 032 is defined on {y1$y2$y31z1’329$3}
respectively. Since E(K,_¢ — L!) = 2 (mod 6), by induction, we can get
6-cycle collection T; and a Cs as a leave. Without lose generality, let
Cs = (e1,z4,€3,€4,2¢,€6,€7,€3). By Lemma 3.2, we can get a collection
T of hexagons from Kg,_7. By Lemma 2.3, we can get a collection T3 of
hexagons and a Cs from Cs+ K3 g+ (Ks — C1 — C2%) — 212, — 2324 + 1123 +
T4%¢. Thus Ky — L =Ty UTo U T3 UCs.

(iii) If L contains one I-cycle and one t-cycle (I,¢t > 4),let L =L*+C+
C; where C; = (y1,¥2,93,...,41) and C; = (21,22, z3, ..., z:). Furthermore,
let L= L'+ C}+C3 +y1y1+ ysys — Y13 — Yayi + T1 Tt + T3T4 — T1T3 — TaTy
where L' = (y4, Y5, ---, 1) + (%4, Ts, .-, 2) + L*, C} = (y1,%2,%3) and CF =
(21, 22,%3). Then we have K,,—~ L = (Kv_s -—Ll) +K6,,,_11 + [K5,6+(K6 -
Ci - C§) — Y1 — Y3Ya + Y13 + Yal — T1T — T3Tq + T1Z3 + T47,) where
Kv_e—Ll is defined on V(Kv\{y], Y2,Y3,, xl,mz,wa}), Kﬁ,v-—ll is defined on
{1, ¥2,¥3, Z1, T2, 23} UV (K, \ {v1, ¥2, Y3, Z1, T2, T3, €1, Y4, Y1, Tt, Ta}), Ks 6
is defined on {e1, y4, %1, Z¢, 4} U {v1,¥2, ¥3,,%1, %2, 23} and Kg — C3 — C?
is defined on {y1,¥2,¥3, Z1, 2, T3} respectively. Since |E(K,_¢ — L*)| =2
(mod 6), by induction, we can get a collection T} of hexagons and a Cg
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as a leave. Without lose generality, let Cs = (e1, 4, €3, €4, ¢, ¥4, W1, €8)-
By Lemma 3.2, we can get a collection T, of hexagons from Kg,-11. By
Lemma 2.3, we can get a collection T3 of hexagons and a Cs from Cg +
K56+ (Kg— C3 —C3%) — 1y — yaya + V1Ya+ Yy — T1 Ty — T3T4+ 173+ T4 Te.
Thus K, - L =T UT, UT3 UCs. O

4. Open Problems

We consider the packing of K, — L where L is a 2-regular subgraph with
hexagons. If there is a method to consider covering K,, with hexagons? The
author once extended the result in [6] to directed versions [12]. If there is
a method to extend [1] to directed versions ?
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