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Abstract. As usual, K., denotes the complete bipartite
graph with parts of sizes m and n. For positive integers k < n,
the crown C,, « is the graph with vertex set {ao, ay,...,an—1,bo,
bi,...,bn—1} and edge set {aibj: 0 < i <n-—1, j =4ii+
1,...,44+k—1 (modn)}. A spider is a tree with at most one
vertex of degree more than two, called the center of the spider.
A leg of a spider is a path from the center to a vertex of degree
one. Let Sj(t) denote a spider of  legs, each of length t. An H-
decomposition of a graph G is an edge-disjoint decomposition
of G into copies of H. In this paper we investigate the prob-
lems of S;(2)-decompositions of complete bipartite graphs and
crowns, and prove that: (1) K, u has an S;(2)-decomposition if
and only if nt =0 (mod 2),n 22 ift=1,and n>1ift > 2,
(2) for t > 2 and n > tl, Cpu has an S;(2)-decomposition

*Corresponding author. E-mail address: twhsu@ntnu.edu.tw (Tay-Woei Shyu)

tResearch supported by National Science Council of ROC under grant NSC 101-2115-
M-003-005.

$Research supported by National Science Council of ROC under grant NSC 96-2115-
M-008-005.

ARS COMBINATORIA 112(2013), pp. 239-248



if and only if nt = 0 (mod 2), (3) for n > 3¢, C, 3 has an

S3(2)-decomposition if and only if nt = 0 (mod 2) and n =0
(mod 4) ift =1.
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1 Introduction

All graphs considered here are finite and undirected, unless otherwise noted.
For standard graph-theoretic terminology the reader is referred to [1].

As usual, K, , denotes the complete bipartite graph with parts of sizes
m and n. For positive integers k < n, the crown Cj« is the graph with
vertex set {ao,a1,...,8n-1,b0,01,...,bn_1} and edge set {a;b;: 0 < i <
n—1,j=4i+1,...,i+k—-1 (mod n)}. A spideris a tree with at
most one vertex of degree more than two, called the center of the spider
(if no vertex of degree more than two, then any vertex can be center). A
leg of a spider is a path from the center to a vertex of degree one. Thus, a
star with ! edges is a spider of / legs, each of length one, and a path is a
spider of one or two legs. Let S;(t) denote a spider of [ legs, each of length
t. For 1 > 3 and t > 2, for convenience, vertices of degree one in S;(t) are
called end vertices of Si(t), and vertices of degree two in Sj(t) are called
internal vertices of Si(t). Suppose that H is a subgraph of a graph G. An
H-decomposition of G is an edge-disjoint decomposition of G into copies of
H. Let C}. denote a cycle of length k, Pi4; denote a path of length k, and
Sk4+1 denote a star with k edges, i.e., Sg41 = Ky k.

There are several papers concerned with decompositions of bipartite
graphs into subgraphs. Sotteau [8] gave necessary and sufficient conditions
for the existence of a Cgx-decomposition of K, . Fronéek [2] and Vanden
Eynden [10] gave some results on the decompositions of complete bipartite
graphs into cubes. Parker [5], Lin and Shyu [6, 7] gave necessary and
sufficient conditions for the existence of a Pji-decomposition of K 5,
MK, n, and Cy, i, respectively. Truszczyiiski [9] gave some necessary and/or
sufficient conditions for the existence of a P, ;i-decomposition of AKp, 5.
About the Si1-decomposition of bipartite graphs, Yamamoto et al. [11],
Lin and Shyu [4] established necessary and sufficient conditions for the
existence of a Sk 1-decomposition of K, » and Cy , respectively. Finally,
there is a paper by Jacobson, Truszczyiiski and Tuza [3] which is concerned
with the decompositions of regular bipartite graphs. Of the many results
proved in that paper three are particularly nice and give the flavor of the
subject. (1) Every r-regular bipartite graph decomposes into any double
star of size r (a double star is a tree of diameter at most 3). (2) Every
4-regular bipartite graph decomposes into the path P; on 4 edges. (3) The
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r-dimensional cube @, decomposes into any tree T of size r.

In this paper we investigate the problems of Sj(2)-decompositions of
complete bipartite graphs and crowns. In Section 2, we give necessary and
sufficient conditions for the existence of an S;(2)-decomposition of K, y (see
Theorem 2.1). In Section 3, we give necessary and sufficient conditions for
the existence of an S;(2)-decomposition of Cy, ;i when n > tl and [ is even
(see Theorem 3.4). Besides, we give necessary and sufficient conditions for
the existence of an S;(2)-decomposition of Cy, ;; when ¢ > 2 and n > ¢l (see
Theorem 3.6). Finally, we give necessary and sufficient conditions for the
existence of an S3(2)-decomposition of Cy, 3; (see Theorem 3.7).

2 Decomposition of K, into copies of S;(2)

In this section we investigate the problem of S;(2)-decompositions of Ky, n.
Before going into more detail, we need the following notations for our dis-
cussion. Let S(z;z1,To,..., k) denote the star Sk, centered at vertex z
and having 1,2, ... ,T) as its other vertices. Suppose that (A4, B) is the
bipartition of a spanning subgraph G of K, ,,, where A = {a1,02,...,ar}
and B = {by,bz,...,bn}. The label of an edge a;b; in G is the number j —1
if j — i is a nonnegative integer or n 4 (j — ¢) if j — i is a negative integer.

In the following theorem we will give necessary and sufficient conditions
for the existence of a decomposition of K, ,, into copies of S;(2) when m =0
(mod ).

Theorem 2.1 Let n, t and |l be positive integers. Kpu has an Si(2)-
decomposition if and only if the following conditions are fulfilled:

(1) nt=0 (mod 2);

(2 n>22dft=1,

3) n=2lift=2.

Proof. (Necessity) Since ntl = 0 (mod 2!), we have nt = 0 (mod 2).
Suppose that (A, B) is the bipartition of K, 4, where |A| =n and |B| =#l.
Since for each S;(2) in the decomposition, either its internal vertices or its
end vertices are contained in A, it implies |A4] > .

Assume t = 1. There are % = % copies of S;(2) in the decomposition.
Since |B| = [, each 5;(2) in the decomposition must be centered at a
different vertex in A. Let A; denote the subset consisting of all centers of
S1(2)’s in the decomposition. It follows that the end vertices of each S;(2)
in the decomposition must be contained in A\ A;, and so |A\ A1} > |, i.e,,
|A] = |A1| = I. On the other hand, since |A| = n and |A4;| = %, we have
that n— 2 > 1, ie., n > 2L

(Sufficiency) The proof is by construction. We consider four cases as
follows.
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Case 1. t=1.

By assumption, % is an integer. Suppose that (A4, B) is the bipartition of
Kn,, where A = {aj,0s,...,a3,¢1,¢2,...,¢c3} and B = {b,by,...,bi}.
Fori € {1,2,...,%}, let S(¢) be the star S(a;;by,b2,...,b;) and M(i) be
the graph with edge set {bic;,bocisr,. .., 0iCi4j-1,...,biCitq-1)}, where
the subscripts of ¢;'s are taken modulo 3. Since n > 2I, M (i) is a matching
with ! edges. We use H (i) to denote the subgraph induced by the edge set
E[S(i)] U E[M(3)]. It is easily seen that H(3) is an S;(2); H(i) and H(j)
are edge disjoint for 1 <i < j < §; and so {H()| i=1,2,...,%} form an
51(2)-decomposition of Ky .

Case 2. t = 2.

In this case we prove that Ky, can be decomposed into n copies of 5;(2).
First assume ! < n < 2l. Suppose that (A, B) is the bipartition of K5,
where A = {a1,02,...,an,61,C,...,C21—n} and B = {b1,bs,...,b,}. For
i € {1,2,...,n}, let S(i) be the star S(ai;bs,bit1,...,biri—1); Mi(i) be
the graph with edge set {b,-a,-+1, bi410i43, .-y bigjQit 241y -+ 0y b¢+(n_1_1)
@iyan—i—1)+1) (except in the case n = [, in which case we get the null
graph); and Ma (i) be the graph with edge set {bi+(,._1)c1, bi+(n_[)+102, ceny
bit(n—0)+3Ci+11+++ 1 bit(n-t)42—n—-1C21~n(= biyi-1C21-n)} (except in the
case n = 2!, in which case we get the null graph), where the subscripts of
a;’s and b;’s are taken modulo n. It is not difficult to see that M,(%) is
a matching with n — | edges and Mj(i) is a matching with 2! — n edges.
We use H(i) to denote the subgraph induced by the edge set E(S(i)) U
E(M1(3)) U E(M2(3)). Sincel < n < 2,1l = (n—-1)+ (2l - n) and
2(n—1—1)+1 < n, we have that H(z) is an S5;(2). On the other hand, the set
{a1,a2,...,8n,b1,bs,...,b,} induces a subgraph G, isomorphic to K, ,,
the set {e1,¢2,...,Co-n,b1,b2,...,b,} induces a subgraph G, isomorphic
to Ka;_pn n, and so Ky, can be viewed as an edge-disjoint union of G, and
G». It is easily seen that {Mz(3)| i = 1,2,...,n} form a decomposition of
Go.

By the definition of labels of edges in G}, it is not difficult to see that
S(3) consists of edges with the following labels in order of 0,1,2,...,l —1,
and M, (i), in order of —1,-2,...,—(n-1), i.e.,, n—1,n-2,...,l. Therefore,
{S(E)UM,(3)] i = 1,2,...,n} form a decomposition of Gy, and so {H (3)| ¢ =
1,2,...,n} form an S;(2)-decomposition of Koy,.

Now assume n > 2/+1. Let n = ¢l +r for positive integers t and r with
t>1landl+1 < r L2l Since Koy, can be viewed as an edge-disjoint
union of ¢ copies of Ko; and one copy of Kg,r, by Case 1 and the case
mentioned above, we are done.

Case 8. t =3.
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In this case we prove that K3, can be decomposed into %ﬁ copies of
Si(2). Firstly, assume ! < n < 2l. Suppose that (A, B) is the biparti-
tion of K3, where A = {a1,a2,...,@n,01,C2,...,C21—pn,d1,d2,...,d;} and
B = {b1,b,...,b,}. Theset {a1,a2,...,8n,¢1,C2,...,C20—n,b1,b2,...,b,}
induces a subgraph G isomorphic to Ka;n. We define the graphs H(3)
the same as in Case 2, and so {H(#)| ¢ = 1,2,...,n} form an Si(2)-
decomposition of G. For i € {1,2,...,1}, let M (i) be the graph with edge
set {b —1+1ds, bn_1+2di+1, ceey bn_.1+jd.'+j_1, ceey by ,-+(1_1)}, where the sub-
scripts of d;’s are taken modulo !. It is not difficult to see that M(z)
is a matching with ! edges, and M (i) and M(j) are edge-disjoint for
1 <i< j <l Now we obtain the graph H’(k) from the graph H(k)
as follows. If b,_14ic; € E(H(k)) with 1 <i<land1<j<I1-3,
then we change the edge b,_i1ic; for the edge bn_;4idiyj—1 instead. As-
sume bp—i4iCj, bniyircy € E(H(E)) with ¢ >4, (n-0)+1<(n-1)+
i, (n—~1)+1% (mod n) S nand 1<y j' £!— 3. By the definition
of H(k), we have j' > j, and by the definition of H'(:), we change the
edges bnp_i4iCj, bn_iyircy for the edges bn_iyidiyj1, bp-iyerdigj—1 in-
stead. On the other hand, by the definition of H(k) and H'(k), we have
1<i—i, j—j<l—% Itimpliesthat 0 < |(i+5—1)— (¥ + 5 —1)| <
|i - i’l -+ I] - _'I'I < 2(l —-g =2l—-n < | ie., d.'+j_1 75 d¢l+j'_1, and
so H'(k) is also an S(2) for k € {1,2,...,n}. In fact, {bp_i3ic;| 1 <
i S [ and 1 S .7 S l - !.;.}g E(U:;f S(ci;bu—l+1, bn—l+2:-"’bn)) and
(notgibipjm) 1 Si<land1<j <1—2}E (Ui;? M(i)). Suppose
that &' = G— B(UiF S(esbn-tes, buotea, -, ba) +E Uik M()). We
have that {H'(7)] i = 1,2,...,n} form an S;(2)-decomposition of G’.

Now we show that K3, — E(G’) can be decomposed into § copies of
S1(2). Let S(n + i) be the star S(b;;dy,do,...,d;) fori € {1,2,...,n -1}
(except in the case n = [, in which case we get the null graph), and let S(n+
(n —1) +1) be the star S(ci; ba—141,bn-142,.-.,b,) fori € {1,2,...,1 - %}
(except in the case n = 2!, in which case we get the null graph). For
i€{n+1,n+2,...,n+ %}, we use H'(i) to denote the subgraph induced
by the edge set E(S(:)) UE(M(i— (3 —1))). It is easily seen that H'(i) is
an S(2), and {H'(3)| i =n+1,n+2,..., 32} form an S;(2)-decomposition
of K31.» — E(G').

Now we assume n > 2/+1. Since K3 can be viewed as an edge-disjoint
union of K31» and K, we are done, by Case 1 and Case 2.

Case 4. t > 4.

Assume t is odd. Write ¢t = 27+ 3 for positive integer 7. Since Ky, can be
viewed as an edge-disjoint union of r copies of Ky, and one copy of Ka; »n,
we are done, by Case 2 and Case 3. Now assume ¢t is even. Write t = 2r
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for positive integer r. Since Ky » can be viewed as an edge-disjoint union
of r copies of Ky, we are done, by Case 2. a

3 Decomposition of C, ) into copies of S5;(2)

In this section we investigate the problem of decomposing crowns C,, ;. into
copies 5;(2). In the following theorem we will give necessary conditions for
the existence of an S;(2)-decomposition of Cy, 5. It is easily seen that S;(2)
is a path for [ € {1,2}. Therefore, assume ! > 3.

Theorem 3.1 Letn, t andl be positive integers such that! > 3 andn > tl.
If Cp,u has an Si(2)-decomposition, then the following conditions hold:
(1) nt =0 (mod 2);
(2) n=2lift=1 and! is even;
(8) n>4l -8 ift=1 and! is odd.

Proof. Since ntl =0 (mod 2!), we have nt = 0 (mod 2). Assume ¢t = 1.
Suppose that (A, B) is the bipartition of Cy 1, where A = {ap,@1,...,8n—1}
and B = {bo,b1,...,bn—1}. Let D be an arbitrary decomposition of C,;
into 5 copies of Si(2). Firstly, assume that either A or B contains all
centers of S5;(2)’s in D. By the same argument in the proof of Theorem
2.1, we have n > 21,

Now assume that both A and B contain centers of S;(2)’s in D. Let
S7(2) and S;*(2) denote two copies of S;(2) in D which are centered at
a; and b;, respectively. By the definition of C ;, the internal vertices of
S? (2) and Sf*(?) are bi,b,'+1, e ,bi+(¢_1) and Qj—(l-1)) Bj—(l=1)+1s + - » Oj,
respectively, where the subscripts of a;’s and b;’s are taken modulo n.
Since the degree of each vertex in Cy is [, we have that e; can not be an
internal vertex of S;*(2) (b; can not be an internal vertex of S;(2) ), i.e.,
i¢{ij-(-1),j-(0-1)+1,...,5hand j & {i,i+1,...i+( —1)}.
Without loss of generality we can assume that there does not exist an
in{i+1,i+2,...,5 — (I —1) — 1} such that a; is a center of S;(2) in D,
and there does not exist an ' in {i + ({ -1)+1,i+ (! -1)+2,...,5 -1}
such that b;s is a center of S;(2) in D. It follows that vertex a;_q_1) is
not an internal vertex of any S;(2) in D except S;*(2); vertex b, (1) is
not an internal vertex of any S;(2) in D except S;(2). Since the degree
of each vertex in C, is /, we have that vertex a;_(-1) is an end vertex
of I — 2 copies of S;(2) centered at A in D, and vertex b;; (-1 is an end
vertex of | — 2 copies of Si(2) centered at B in D. Therefore, there are at
least 2(I — 2) copies S;(2) in D. Since the cardinality of D is %, we have
522(1-2),ie,n>4-8.

If I is odd, then the degree of each vertex in Cy,; is odd. Since the
degree of each internal vertex of S;(2) is two, we have that each vertex in
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Ch,,i can not only be an internal vertices of S;(2)’s in D. It follows that all
centers of Sj(2)’s in D can not be contained in the same part set. By the
argument mentioned above, we have n > 41 — 8. O

In the following lemma we will prove that Cy, » can be decomposed into
copies of S;(2) when t is even.

Lemma 3.2 Let n, t and | be positive integers such that n > tl. Ift is
even, then Cp u has an Si(2)-decomposition.

Proof. Since Cy, ¢ — E(Cn,a2t) = Cp (¢—2)1, We have that C, i can be view
as an edge-disjoint union of % copies of Cy, 21, and so it is sufficient to show
that C, o; has an S;(2)-decomposition.

Suppose that (A4, B) is the bipartition of Cy, 2, where A = {ag, ay,.. .,
an-1} and B = {by,b1,...,bn_1}. For i € {0,1,...,n — 1}, let S(3) be
the star S(a;;b;,biq1,...,b0i41—1) and M(i) be the matching with edge
set  {biGn_(21-1)4ir Dit10n-(2=1)4i42 - - - » Dit5On(21-1) 44251 - - - s Diki—1
Gn—(@i-1)+i+2(1—-1)}- It is not difficult to see that S(i) consists of edges’
with the following labels in order of 0,1,2,...,/ — 1, and M(¢), in or-
der of 21 — 1,2l — 2,...,l. Since the largest subscript of a;’s in M(i) is
n—(2-1)+i+2(l—-1)=n+i—1=1%—1 (mod n), we have that the
edge set E[S(¢)] U E[M ()] induces a subgraph H(z) isomorphic to $;(2). It
is easy to see that {H(i)| ¢ =0,1,...,n — 1} form an S;(2)-decomposition
of Cn,zl. O

In the following lemma we will prove that C,,; can be decomposed into
copies of S;(2) when n and ! are even.

Lemma 3.8 Let n and | be positive integers suchn > 2l. Ifn andl are
even, then Cp; has an Si(2)-decomposition.

Proof. Suppose that (A, B) is the bipartition of Cp, 1, where A = {ag,a1,
..y@n-1} and B = {b, by,...,bp—1}. Fori € {1,3,...,n — 1}, let S(3)
be the star S(a;;b;,bi41,...,bi41—1) and M(i) be the graph with edge

set {bi@n—(1=1)+is Dit1@n—(=2)4i+1s+ + +» DidjOn(1—j1)4idgr - - - s Diki—1
@nyit(i-1)}- Since n > 2l, M(i) is a matching. Besides, since i is odd
and both n and ! are even, we have that all of the subscripts of a;’s in
M(i) are even. It implies that the edge set E[S(:)] U E[M(3)] induces a
subgraph H (i) isomorphic to S;(2). It is not difficult to see that S() con-
sists of edges with the following labels in order of 0,1, 2,...,I—1, and M (3),
inorderof I -1,1—-2,...,0. It is easy to see that {H ()] i=1,3,...,n—1}
form an S;(2)-decomposition of Cy, ;. O

In the following theorem we will give necessary and sufficient conditions
for the existence of an Sj(2)-decomposition of C, o when [ is even.
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Theorem 3.4 Let n, t and | be positive integers such that n > tl and l is
even. Cp 1y has an 5)(2)-decomposition if and only if nt = 0 (mod 2) and
n2>2ift=1.

Proof. (Necessity) By Theorem 3.1, we have that nt = 0 (mod 2) and
n>2lift=1.

(Sufficiency) If ¢ is even, then we are done by Lemma 3.2. Now assume ¢
is odd. Write ¢ = 2u+1 for nonnegative integer u. Since Cp ¢ — E(Cp 21) &
Ch,(t-2)1; Cn,u can be view as an edge-disjoint union of u copies of Cp, 2
and one copy of Cp, ;. By Lemma 3.2-3.3, we are done. O

In the following lemma we will prove that C,, 3; can be decomposed into
copies of S;(2) when [ is odd.

Lemma 3.5 Letn and! be positive integers such that n > 3l and | is odd.
If n is even, then C,, 3; has an S)(2)-decomposition.

3n

Proof. We prove that Cp 31 can be decomposed into = copies of Si(2)
as follows. Suppose that (A, B) is the bipartition of C, 3, where A =
{ao,a1,...,8n1} and B = {bg,by,...,bn—1}. Assume that for i € {0,1,
cey % - 1}, S(%) denotes the star S(azi; boi, boig1, .. ., boi+1—1) and M (5) de-

notes the graph with edge set {bsiazi—t1,b2i4102i41-1-1)s---,b2i4;
Q25pj—(I—7)s -+ ,bg,-+(,_1)a2,-+(,_1)_1}. Since ! is odd, we have that all of
the subscripts of a;’s in M(i) are odd. On the other hand, since n > 3l, it
follows that M (%) is a matching and the edge set E[S(z)]U E[M ()] induces
a subgraph H(%) isomorphic to S;(2). Besides, it is not difficult to see that
S(1) consists of edges with the following labels in order of 0,1,2,...,l — 1,
and M(3), in order of {,l —1,...,1. It is easily seen that H(i) and H(j)
are edge disjoint for 0 <i<j< 2 —-1.

Now assume that for i € {0,1,...,n — 1}, S*(¢) denotes the star S(b;;
Qi (14+1)) Bi—(142) 1+ - ai_(zz)) ;fori e {0,2, ey — 2} (i is even), M*(‘i)
denotes the graph with edge set {ai_(zl)bi+l, ai-(2l—l)bi+3’ ooy Bim(2—35)
bi+2j+1, sy ai_(;+2)b;+21_3, ai_(¢+1)b,~_1}; for 7 € {1, 3, vy — 1} (‘L is
odd), M* (i) denotes the graph with edge set {a;_(21)bi+1,2i—(21-1)bi+3, . - .,
Qi 21-5)bit 2415 -+ 5 Qi (42)bit2i-3, @i 142y bi—q+1)}- It is clearly that
M*(i) is a matching. Since n > 3l, we have that b; ¢ V(M*(3)), and so the
edge set E[S*(¢)]U E[M*(¢)] induces a subgraph H* () isomorphic to S;(2).
On the other hand, it is not difficult to see that S*(z) consists of edges with
the following labels in order of { + 1,1 +2,...,2l, if ¢ is even, then M*(3),
in order of 2! + 1,21 +2,...,3l — 1,1, and if ¢ is odd, then M*(3), in order
of 20 4+1,2042,...,31 —1,0. Itis easily seen that for 0 < i< j < n-—1,
H*(i) and H*(j) are edge disjoint.

Fori € {0,1,...,5 —1}, the edge with label ! in H (%) is ba;ag:—;. For j €
{0,2,...,n—2} (j is even), the edge with label l in H*(j) is a;j_(+1)bj-1.
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Since j is even and lis odd, {bz;02i—1| i = 0,1,..., 3 —1}N{a;_qy1ybj—i| 5 =
0,2,...,n—2} is a null set. On the other hand, fori € {0,1,..., 3 —1}, the
edge with label 0 in H(%) is by;ag. For j € {1,3,...,n— 1} (j is odd), the
edge with label 0 in H*(j) is a;_¢41)bj—(141). Since j is odd and [ is odd,
{baiazi| i =0,1,..., - l}n{aj_(,.,.l)bj_(,“ﬁ j=13,...,n—1}isalso a
null set. It implies that for 0 <1< % —-1and 0 < j <n-1, H(i) and
H*(j) are edge disjoint. Therefore, Cy, 3; can be decomposed into 37" copies
of 5)(2) as follows: H(0), H(1),...,H(%—1),H*(0), H*(1),...,H*(n—-1).
O

The following theorem follows from Lemma 3.2 and Lemma 3.5.

Theorem 3.6 Letn, t andl be positive integers such thatt > 2 andn > tl.
Ch,u has an S1(2)-decomposition if and only if nt =0 (mod 2).

Proof. (Necessity) Condition nt = 0 (mod 2) is trivial.

(Sufficiency) By Lemma 3.2, it is sufficient to deal with the case where
t is odd. Assume that ¢ = 2s + 3 where s is a nonnegative integer. It is
easy to see that C,, i can be decomposed into Cy, 25 and C, 31. By Lemma
3.2 and 3.5, we are done. O

In the following theorem we will give necessary and sufficient conditions
for the existence of an S3(2)-decomposition of Cp, 3:.

Theorem 3.7 Let n and t be positive integers such that n > 3t. Cp 3 has
an S3(2)-decomposition if and only if nt =0 (mod 2) and n = 0 (mod 4)
ift=1.

Proof. Suppose that (A, B) is the bipartition of Cyp, 3:, where A = {ao, a1,
e ,an_l} and B = {bo,bl, v ,bn-l}-

(Necessity) By Theorem 3.1, we have that nt = 0 (mod 2), and if
t=1,thenn > 4 and n is even. Assume ¢t = 1. Let D be an arbitrary
decomposition of Cy, 3 into  copies of S3(2). Suppose that there are k
copies of S3(2) in D, each centered at a different vertex in A. Since the
degree of each vertex in C, 3 is 3, and the degree of each internal vertex
in S3(2) is 2, it follows that there are 3k vertices in B which are internal
vertices of the k copies of S3(2) in D, each centered at a different vertex
in A, and those 3k internal vertices in B must be also end vertices of &
copies of S3(2) in D, each centered at a different vertex in B. It implies
that | D| = 2k. Therefore, 3(= |D|) is even, i.e., n =0 (mod 4).

(Sufficiency) If ¢ > 2, then we are done by Theorem 3.6. Now as-
sume ¢t = 1. In this case we will show that C, 3 can be decomposed into
2 copies of S3(2). Let S(i) denote the star S(a4i;bai,bsit1,b4is2) and
M (‘l) denote the graph with edge set {b4;a4i_1, b4,~+1a4,-+1, b4,~+2a4.-+2} for
i€ {0,1,...,5—1}. It is clearly that the edge set E[S(:)]UE[M (4)] induces
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a subgraph H(%) isomorphic to S3(2). On the other hand, Let S*() de-
note the star S(bs;i43;@4i+3,Q4i+2,a45+1) and M*(i) denote the graph with
edge set {a4,-+3b4,-+5, agi+204it4, a4,-+1b4.-+2}. It is clearly that the edge set
E[S*(¢)]JUE[M*(3)] induces a subgraph H* () isomorphic to S3(2). It is not
difficult to see that H(0), H(1),...,H(% -1), H*(0), H*(1),...,H*(§ 1)
are pairwise edge disjoint. Therefore, {H(0), H(1),...,H(% — 1), H*(0),
H*(1),...,H*(% — 1)} form an S3(2)-decomposition of C, 3. a
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