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Abstract. For positive integers ¢ and k, the vertex(resp. edge)
Folkman number F,(t,t,¢;k) (resp. F.(t,t,t;k)) is the small-
est integer n such that there is a Kj-free graph of order n for
which any three coloring of its vertices(resp. edges) yields a
monochromatic copy of K;. In this note, an algorithm for test-
ing (¢,¢,---,t)Y in cyclic grapbs is presented and it is applied
to find new upper bounds for some vertex or edge Folkman
numbers. By using this method, we obtain F,(3,3,3;4) < 66
and F,(3,3,3;5) < 24, which leads to F,(6,6,6;7) < 726 and
F.(3,3,3;8) < 727.
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1 Introduction

In this note, we shall only consider graphs without multiple edges or loops.
If G is a graph, then the set of vertices of G is denoted by V(G), the set
of edges of G by E(G), the cardinality of V(G) by |[V(G)|. The subgraph
of G induced by S C V(G) is denoted by G[S]. A complete graph of order
n is denoted by K,,. S C V(G) is called a K3-free set if G[S] contains no
K;.

Given a positive integer n, Z, = {0,1,2,---,n — 1}, and S C
{1,2,---,|n/2|}, let G be a graph with the vertex set V(G) = Z, and
the edge set E(G) = {(z,y) : min{|z — y|,n — |z — y|} € S}, then G is
called a cyclic graph of order n, denoted by Gn(S). G is an (s,t)-graph
if G contains neither clique of order s nor independent set of order t. An
(s, t)-graph of order n is denoted by (s,t;n)-graph. For integers s,t > 1,
the classical Ramsey number R(s,t) is defined to be the least positive inte-
ger n such that every graph on n vertices contains either a clique of order
s or an independent set of order ¢.

For a graph G and positive integers aj,a9,:--,a,, we write G —
(a1,a2,---,v.)? if every r-coloring of the vertices of G must result in a
monochromatic a;-clique of color i for some ¢ € {1,2,---,7}; we write
G = (aj,az,-+,v,)¢ if every r-coloring of the edges of G must contain a
monochromatic a,-clique of color i for some ¢ € {1,2,---,r}. Let

Folar,az,: -+, ar k) = {G : G = (a1,0a2, -+ ,a,)" and Ky Z G}.
The vertex Folkman number is defined as
F,(a1,a2, -+ ,a,;k) = min{|V(G)| : G € Fy(a1, a2, -,ar; k)}.
Let
Fe(ar,az,-+-,a,,k) ={G: G —> (ay,a2,--+,a,)° and Ki  G}.
The edge Folkman number is defined as
F.(a1,az2,+,a,; k) = min{|V(G)| : G € Fe(a1,az,---,ar;k)}.

In 1970, Folkman (3] proved that for positive integers k& and
G1,082,"+,Gr, Fy(a1,az,---, ar; k) exists if and only if £ > max{a,,- - a,}.
Recently Dudek and Rédl gave a new proof with a relatively small (cubic)
upper bound (see [2]). Until now, even with the help of computer for two
color vertex Folkman numbers, very little is known about the exact values
of them (see [6,8,11,13,14,16,18]).

By the definition of Folkman numbers, we can see that it is more difficult
to determine the values of three color Folkman numbers. For positive in-
tegers k and a),az, - - -, @y, most known exact multicolor Folkman numbers
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F,(a1,aa,: -, ar; k) contains some a; with a; = 2 or k is relatively bigger.
For example, F,(2,2,2,4;6) and F,(2,3,4;5) (see [15]) were determined in
2002. In [13}, it was prove that F.(3,3,3;14) = 25, F.(3,3,3;15) = 23,
F,.(3,3,3;16) = 21. The gap between lower and upper bounds for some
other multicolor Folkman numbers remains not small. In [19], it was shown
that F,(2,3,3;4) > 19 and F,(3;3;3;4) > 24. In [20], it was proved that
F,(2,3,3;4) < 30. In [10], it was shown that F,(3,3,3;¢9) =7 if ¢ > 8 and
it was also proved that F,(3,3,3;7) = 10. The number F,(3,3,3;6) = 13
was determined in [21]. So only in the case when g = 4 and 5 we have no
upper bound.

In the set of the Folkman numbers of type F,(k, k, k; g), we can observe
that it is more difficult to determine for smaller parameter ¢q. For the case
k =3, F,(3,3, 3;4) is the most difficult one to determine, even its bounds,
among F,(3,3,3;q) for ¢ > 4.

For a given graph G, we need to test if G — (3,3,3)”. It can be
solved by coloring each vertex of G using a direct backtrack procedure.
Even with a pruning strategy, this method is still time-consuming. The
SAT method is a better way to test if G — (3,3,3)? [9]. By transform-
ing into an SAT instance, we can use SAT program which is available
at http://www.princeton.edu/~chaff/zchaff.html. Since the cyclic
graphs have special structure, we can direct color the vertices by avoiding
equivalent colorings instead of SAT method. Since they have a large mount
of equivalent colorings, the computational steps are reduces significantly.

2 An algorithm for testing G — (¢,¢,---,t)" in
cyclic graphs
Let G be a cyclic graph with n vertices, and a r-coloring x of V(G) be

a function x : V(G) — {1,2,---,r}. We also say a r-coloring to be a
r-coloring pattern, or simply pattern, and we give some definitions:

Definition 1 For a r-coloring pattern P = aja3 - - - aq, we say the subpat-
tern a;aiq1 - - - Qi+L—1 to be a (P,i,L)-pattern, and the subpattern a;a;_;
-+« @j—r41 to be a (P,i,—L)-pattern.

Example: Let » = 3 and P = 12132133321, then the (P, 6, —4)-pattern
is 1231 and the (P, 6,4)-pattern is 1333.

Definition 2 The reverse patiern of P = ajaz---aq is defined to be the
same pattern of P but in reverse and we write reverse(P) = aza4-1-+- a;.

Two patterns are said to be equivalent if one can be transformed into the
other by applying the function reverse and a permutation of {1,2,..-,3}.
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Example: P = 123132 is equivalent to 231321 (by reverse), 132312 (by
reverse and 1 < 2).

Definition 3 Given two patterns x1 = c1¢g++-Cx,x2 = dyda -+ dy, of § C
V(G), we define x1 < X2 if there exists m > 0 such that fori < m, ¢; = d;
and ¢, < dyn, and we say x) is lexicographically smaller than xo.

Definition 4 For a pattern p, we define minimal(p) to be the equivalent
pattern having the smallest value.

Example: p = 223 is equivalent to 112, 113, 221, 331, 332, 122, 133,
211, 233, 311, 322. Since 112 is the smallest, so we have minimal(p) = 112.

In order to test G — (¢, ¢, -+ -, t)* with r colorings, we will try to find a r-
coloring of V(G)) such that there exists no monochromatic induced subgraph
containing K. If such a coloring does not exist, we have G — (t,¢,---,t)*.

For a pattern P = aja; - - - a4, we consider it as a r-coloring x of V(G)
with the property that x(i — 1) = a; for 1 < ¢ < g and x(i) = 0 for
g <1< |V(G)|. We denote the colored graph by x(G), and by Sub(P, ¢, G)
the induced subgraph of x(G) by the vertices with color ¢ caused by the
pattern P,

Let us take r = 3 for example to show how to extend the pattern. We
starting from a single 1, and then we have a choice to expand this pattern
on the right leading to the following patterns in minimal form:

(a) 1 > 11,12;

(b) 11 — 111,112,113 — 111,112;

(c) 12— 121,122,123 — 121,112,123;

The case (a) shows that 1 can be extended to 11,12. The case (b) shows
that 11 can be extended to 111,112, 113, since 112 is equivalent to 113, we
have 11 is sufficient to be extended to 111 and 112. The case (c) shows
that 11 can be extended to 121,122, 123, since 122 is equivalent to 112, we
have 12 is extended to 111, 112 and 123. By the above minimal testing,
some computation steps can be reduced.

If the current pattern is P = @jaz---aq, the pattern P can not be
extended to Pz with z € {1,2,.--,7} as follows.

R1) If Sub(Pz,z,G) contains a K; with color z, then P can not be ex-
tended to Pz.

R2) If for some L, minimal((P, | P|, —L)-pattern) < (P, 1, L)-pattern, then
P can not be extended to Pz.

Example 1: Let the current pattern be P = 1121233 and L = 3.
Observing that P3 is the pattern 11212333, then the (P, |P|, —L)-pattern
is 33321211. Therefore, minimal((P, |P|, —L)-pattern)=111 and (P,1, L)-
pattern is 112. Since 111 < 112, we have P can not be extended to P3.
Fig.1 shows the search tree of patterns for three numbers.
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Example 2: By applying rules R1 and R2, we have

1) 1 is extended to 11 and 12 since 13 is equivalent to 12 and 13 > 12;

2)

11 is extended to 111 and 112 since 113 is equivalent to 112 and

113 > 112;

3)

12 is extended to 121 and 123 since 122 is equivalent to 112 and

122 > 112.
Fig.1 shows the search tree of patterns for three numbers, where the

branches 13, 113 and 122 are eliminated.

111 112 113 121 122 123

Figure 1: Search tree of patterns for three numbers

Algorithm 1 ExtendColoring(c, i, ¢, G, 1, t)

e bmd e s
L vl

LRI PN

: if ¢ > |V(G)| then

return TRUE;
end if

: if (Sub(oe, ¢, G) contains a K; of color ¢) or (oc is not minimal ) then

return FALSE;
end if
if 1 > maz then
mazx + 1;

: end if
cforje1;7<r;j«j+1do

if ExtendColoring(cj, i + 1,3, G,r,t)=TRUE then
return TRUE;
end if

: end for

The coloring extending can be implemented by a backtracking algorithm

shown in Algorithm 1. If we want to test if G — (t,¢,- - -,t)¥ with r colors,
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we call the function ExtendColoring(o,1,1,G,r,t) with o = 1. In line 4-6
of Algorithm 1, the rules R1 and R2 are applied. If it returns TRUE, we
have G -» (t,¢,:--,t)". Otherwise, G = (¢,t,---,t)".

3 Upper bounds for some vertex and edge
Folkman numbers

3.1 Upper bound for F,(3,3,3;4) and F,(3, 3, 3;5)

In order to obtain an upper bound for F,(3, 3, 3; 4), we take the cyclic graph
Go1(S), where S = {1,2,4,7,8,14,16,17, 23,27, 28, 32, 34,37,45}, to test
if Go1(S) — (83,3,3)". This graph witnesses that R(4,10) > 92 (see [1]),
and we assume G = Gy:(S). By applying Algorithm 1, we obtain an
upper bound: After we call the procedure ExtendColoring(s,1,1,G,3,3)
with ¢ = 1, it returns FALSE. Therefore, we have G — (3,3,3)". We
further observe that the subgraph H of G induced by the vertex set
{1,2,3,4,8,9,10,11,12,13,14,15,16,17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30,
31, 32,33, 37, 38,39, 40, 41,42, 43, 44, 45, 46, 49, 50, 51, 54, 55, 56, 57, 59, 60, 61,
62, 63, 64, 65, 68, 69, 70, 72, 75, 76, 77, 78,85, 86,87, 88,89,90,91}  arrows
(3,3,3)", which have 66 vertices, thus we have

Theorem 1 F,(3,3,3;4) < 66.

We take the cyclic graph Gg4(S), where S = {1,2,3,5,6,11,12}. This
graph witnesses that R(5,4) > 25. The result obtained by the above pro-
cedure shows that it arrows (3, 3,3)”. Therefore,

Theorem 2 F,(3,3,3;5) < 24.

3.2 Upper bounds for other vertex and edge Folkman
numbers

Theorem 3 F,(3,3,---,3;2r — 2) <60+ 2r and F,,(3,3,---,3;2r —1) <
18 + 2r , where r is the number of the colors, for r > 3. ,

Proof. Let H be the subgraph of Ggy(S) (described above in Sec-
tion 3.1) which arrows (3,3,3)” and A be an independent set in the
graph H, then H — A — (2,3,3)". According to Lemma 3 from [21]
H+ Kpr_g — (3,--+,3)” and Ggy(S) + Kor—¢ — (3,---,3)". Therefore,
F,(3,3,--+,3;2r —2) < 60+ 2r. Similarly, F,(3,3,---,3;2r —1) < 18 4+ 2r.

(]

In [6], it was proved that
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Theorem 4 Let a;,b;,c;,i € {1,2,--,7},s,t be positive integers and c; =
ab;, 1<a;<s,1<b; <t. Then
Fy(er,02, -+, crist + 1) < Fyar, a2, -, ar; 8+ 1) Fy (b1, b2, -, by t 4 1).

By Theorem 4 and F, (3,3, 3;4) < 68, we have
Theorem 5 F,(6,6,6;7) < 726, F(3,3,3;8) < 727.

Proof. By Theorem 4, we have F,(6,6,6;7) < F,(3,3,3;4)x F,,(2,2,2;3) <
66 x 11 = 726. Thus Fy(3,3,3;8) < F,(6,6,6;7) + 1 < 727. o
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